Quantifying Resource and Energy Losses from Waste Fires in Poland: A Barrier to Circular Economy Transition
Abstract
:1. Introduction
2. Materials and Methods
- This study begins with an overview of recent waste management practices in Poland, focusing on policies, regulations, and operational challenges. This provides context for understanding the causes and consequences of waste fires in the region.
- A comprehensive inventory of waste fire incidents was compiled, identifying fire occurrences in waste management facilities across Poland. For our analysis, we intentionally selected data from 2018–2019 rather than more recent periods. These years marked the peak in the occurrence of large-scale waste fires, with the highest recorded volumes of burned waste and the associated energy losses. In contrast, subsequent years exhibited a noticeable decline in these incidents. By focusing on this critical time frame, we aimed to quantify the most substantial losses in both material and potential energy.
- Data from the Fire Department were analyzed to determine the specific waste management facilities where the fires occurred. The Fire Department’s records indicate only the size of the affected area; therefore, further steps were needed to assess waste types and quantities.
- Data from the Regional Environmental Protection Inspectorate and the Fire Department were cross-referenced to identify the types of waste involved in each fire incident.
- The estimated volume of burned waste was determined based on the reported fire sizes and facility characteristics.
- Using data on the specific gravities and bulk densities of different waste types, volume estimates were converted into mass (MT). This step ensured a more accurate assessment of the total quantity of waste lost to fires.
- The burned waste was classified into different categories (e.g., municipal, industrial, hazardous, and recyclables) to evaluate the extent of material loss.
- The study further estimated the potential fate of the burned waste if it had not been lost to fire. This involved assessing whether the waste could be recycled, used for alternative fuel production, or sent to waste incineration plants for energy recovery.
- Assuming that the total amount of burned waste could be used for energy recovery, the potential energy lost was calculated based on the lower heating values of individual waste types.
2.1. Waste Management Practices in Poland
2.2. Addressing Data Challenges in Estimating Material and Energy Losses
2.2.1. Data Sources and Collection
- Address and date of the fire;
- Surface area affected by the fire;
- Details of firefighting actions (duration, number of units involved, extinguishing media used)
- Type of waste facility;
- Type and quantity of burned waste;
- Volume of burned waste.
2.2.2. Data Integration and Analysis
2.2.3. Estimating Material Losses
2.2.4. Estimating Energy Losses
- Higher Heating Value (HHV): includes the total energy content.
- Lower Heating Value (LHV): excludes the energy lost in moisture evaporation.
- MSW: ~8 MJ/kg;
- Wood waste: ~16 MJ/kg;
- Paper waste: varies;
- Plastic waste: high (~30–40 MJ/kg);
- Textile waste: varies;
- Food waste: low due to moisture content;
- RDF: higher than that of raw MSW.
2.2.5. Limitations of the Methodology
3. Results and Discussion
3.1. Overview of Waste Fires in Poland (2018–2019)
- Jakubów (Masovian province)—hazardous waste storage site;
- Radom (Masovian province)—landfill site with MBT post-processed waste;
- Żory (Silesian province)—waste treatment facility with old tires;
- Studzianki (Podlaskie province)—mixed municipal waste site;
- Dąbrówka Wielkopolska (Lubuskie province)—plastics storage site;
- Dąbrówka Wielkopolska (Lubuskie)—plastics, storage site;
- Grabów (Łodź province)—plastics, storage site;
- Wrocław (Lower Silesia)—plastics and waste treatment facility.
- Gać (Lower Silesia)—bulky and MBT post-processed waste;
- Jastrzębie-Zdrój (Silesia)—landfill;
- Fałków (Holy Cross province)—plastics and textiles waste treatment facility;
- Serniki (Lublin province)—old tire waste treatment facility.
3.2. Waste Types and Fire Surface Areas
3.3. Potential Use of Burned Waste
3.4. Estimated Energy Losses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MT | metric tons |
WI | waste incineration |
WtE | waste-to-energy |
MRF | material recovery facility |
MBT | mechanical−biological treatment |
RDF | refuse-derived fuel |
PM | particulate matter |
PCDD/F | polychlorinated dibenzodioxin and dibenzofuran |
PAH | polycyclic aromatic hydrocarbon |
VOC | volatile organic compound |
TEQ | toxic equivalency |
MSW | municipal solid waste |
AOD | aerosol optical depth |
COD | chemical oxygen demand |
ELV | end-of-life vehicle |
HHV | higher heating value |
LHV | lower heating value |
References
- UNEP. Global Waste Management Outlook; United Nations Environment Programme: 2015. Available online: https://www.unep.org/resources/report/global-waste-management-outlook (accessed on 31 December 2024).
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: 2018. Available online: https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f-28552410e90a (accessed on 31 December 2024).
- Eurostat. Waste Statistics; European Commission: 2025. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation (accessed on 31 December 2024).
- Eurostat. Municipal Waste Statistics; European Commission: 2025. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_statistics (accessed on 31 December 2024).
- European Commission. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Off. J. Eur. Union 2008, L 312, 3–30. [Google Scholar]
- Closing the Loop—An EU Action Plan for the Circular Economy; COM(2015) 614 Final; European Commission: Brussels, Belgium, 2 December 2015.
- European Commission. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Off. J. Eur. Union 1999, L 182, 1–19. Available online: https://eur-lex.europa.eu/eli/dir/1999/31/oj/eng (accessed on 2 January 2025).
- Mikalsen, R.F.; Lönnermark, A.; Glansberg, K.; McNamee, M.; Storesund, K. Fires in Waste Facilities: Challenges and Solutions from a Scandinavian Perspective. Fire Saf. J. 2021, 120, 103023. [Google Scholar] [CrossRef]
- Ibrahim, M.A. Risk of Spontaneous and Anthropogenic Fires in Waste Management Chain and Hazards of Secondary Fires. Resour. Conserv. Recycl. 2020, 159, 104852. [Google Scholar] [CrossRef]
- Bargieł, P.; Zabochnicka-Świątek, M. Technologies of Coke Wastewater Treatment in the Frame of Legislation in Force. Ochr. Srod. Zasobow Nat. 2018, 29, 11–15. [Google Scholar] [CrossRef]
- Zabochnicka, M. Industrial wastewater as a growth medium for microalgal biomass for a sustainable circular bioeconomy. Appl. Sci. 2022, 12, 10299. [Google Scholar] [CrossRef]
- Conesa, J.A.; Font, R.; Fullana, A.; Martin-Gullon, I.; Aracil, I.; Gálvez, A.; Moltó, J.; Gómez-Rico, M.F. Comparison between emissions from the pyrolysis and combustion of different wastes. J. Anal. Appl. Pyrol. 2009, 84, 95–102. [Google Scholar] [CrossRef]
- Kamizela, T.; Włodarczyk-Makuła, M. Unit Quantities of Municipal Sewage Sludge Produced in Agglomerations Included in KPOŚK Reports. Instal 2024, 10, 43–46. [Google Scholar] [CrossRef]
- Pejic, L.M.; Anez, N.F.; Torrent, J.G.; Ramírez-Gómez, Á. Determination of spontaneous combustion of thermally dried sewage sludge. J. Loss Prev. Process Ind. 2015, 36, 352–357. [Google Scholar] [CrossRef]
- Shen, X.; Jin, Y.; Li, J.; Ye, L.; Yang, H.; Wang, Y. Co-pyrolysis behavior of sewage sludge and coal slurry: Pyrolysis characteristics, interaction mechanisms, and gas emissions. J. Environ. Manag. 2025, 379, 124926. [Google Scholar] [CrossRef]
- Stanczyk-Mazanek, E.; Nalewajek, T.; Zabochnicka, M. Drug-resistant microorganisms in soils fertilized with sewage sludge. Arch. Environ. Prot. 2012, 38, 97–102. [Google Scholar] [CrossRef]
- Zabochnicka-Świa̧tek, M.; Malińska, K.; Krzywonos, M. Removal of biogens from synthetic wastewater by microalgae. Environ. Prot. Eng. 2014, 40, 87–104. [Google Scholar] [CrossRef]
- Chavan, D.; Manjunatha, G.S.; Singh, D.; Periyaswami, L.; Kumar, S.; Kumar, R. Estimation of spontaneous waste ignition time for prevention and control of landfill fire. Waste Manag. 2022, 139, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Moqbel, S.; Reinhart, D.; Chen, R.H. Factors influencing spontaneous combustion of solid waste. Waste Manag. 2010, 30, 1600–1607. [Google Scholar] [CrossRef]
- Nigl, T.; Rübenbauer, W.; Pomberger, R. Cause-oriented investigation of the fire incidents in Austrian waste management systems. Detritus 2020, 9, 213–220. [Google Scholar] [CrossRef]
- Nigl, T.; Baldauf, M.; Hohenberger, M.; Pomberger, R. Lithium-Ion Batteries as Ignition Sources in Waste Treatment Processes—A Semi-Quantitate Risk Analysis and Assessment of Battery-Caused Waste Fires. Processes 2021, 9, 49. [Google Scholar] [CrossRef]
- Manjunatha, G.S.; Lakshmikanthan, P.; Chavan, D.; Baghel, D.S.; Kumar, S.; Kumar, R. Detection and extinguishment approaches for municipal solid waste landfill fires: A mini review. Waste Manag. Res. 2024, 42, 16–26. [Google Scholar] [CrossRef]
- Krzywonos, M.; Borowski, P.F.; Kupczyk, A.; Zabochnicka-Swiatek, M. Abatement of CO2 emissions by using motor biofuels. Przem. Chem. 2014, 83, 1124–1127. [Google Scholar] [CrossRef]
- Czech, R.; Zabochnicka-Świątek, M.; Świątek, M. Air pollution as a result of the development of motorization. Glob. NEST J. 2020, 22, 220–230. [Google Scholar] [CrossRef]
- Nunes, L.J.R. The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Wei, T.; Wu, J.; Chen, S. Keeping track of greenhouse gas emission reduction progress and targets in 167 cities worldwide. Front. Sustain. Cities 2021, 3, 696381. [Google Scholar] [CrossRef]
- Popielak, P.; Majchrzak-Kucęba, I.; Wawrzyńczak, D. Climate change mitigation with CCUS—A case study with benchmarking for selected countries in adapting the European Union’s Green Deal. Int. J. Greenh. Gas Control. 2024, 132, 104057. [Google Scholar] [CrossRef]
- Kobyłecki, R.; Zarzycki, R. How to realistically and cheaply reduce the costs of CO2 emissions in heating? Energ. Cieplna i Zawod. 2024, 2, 95–102. [Google Scholar]
- Zabochnicka-Świątek, M. Utilization of Chlorella vulgaris and sediments after N-NH4 removal containing clinoptilolite for sorption of heavy metals from wastewater. Rocz. Ochr. Srod. 2013, 15, 324–347. [Google Scholar]
- Cantzler, J.; Creutzig, F.; Ayargarnchanakul, E.; Javaid, A.; Wong, L.; Haas, W. Saving resources and the climate? A systematic review of the circular economy and its mitigation potential. Environ. Res. Lett. 2020, 15, 123001. [Google Scholar] [CrossRef]
- Yaman, C.; Anil, I.; Alagha, O. Potential for greenhouse gas reduction and energy recovery from MSW through different waste management technologies. J. Clean. Prod. 2020, 264, 121432. [Google Scholar] [CrossRef]
- Mohammad, A.; Paleologos, E.K.; Ogrodnik, P.; Koda, E.; Osiński, P.; Podlasek, A.; Vaverková, M.D.; Goli, V.S.N.S.; Singh, P.; Wang, K. Occurrence and ecotoxicological effects of fires at municipal solid waste landfills. Environ. Geotech. 2023, 11, 518–531. [Google Scholar] [CrossRef]
- Anokye, K.; Mohammed, A.S.; Agyemang, P.; Agya, A.B.; Amuah, E.E.Y.; Sodoke, S. A systematic review of the impacts of open burning and open dumping of waste in Ghana: A way forward for sustainable waste management. Clean. Waste Syst. 2024, 8, 100152. [Google Scholar] [CrossRef]
- Pathak, G.; Nichter, M.; Hardon, A.; Moyer, E. The open burning of plastic wastes is an urgent global health issue. Ann. Glob. Health 2024, 90, 3. [Google Scholar] [CrossRef]
- Singh, A.; Spak, S.N.; Stone, E.A.; Downard, J.; Bullard, R.L.; Pooley, M.; Kostle, P.A.; Mainprize, M.W.; Wichman, M.D.; Peters, T.M.; et al. Uncontrolled combustion of shredded tires in a landfill—Part 2: Population exposure, public health response, and an air quality index for urban fires. Atmos. Environ. 2015, 104, 273–283. [Google Scholar] [CrossRef]
- Adetona, O.; Ozoh, O.B.; Oluseyi, T.; Uzoegwu, Q.; Odei, J.; Lucas, M. An exploratory evaluation of the potential pulmonary, neurological and other health effects of chronic exposure to emissions from municipal solid waste fires at a large dumpsite in Olusosun, Lagos, Nigeria. Environ. Sci. Pollut. Res. 2020, 27, 30885–30892. [Google Scholar] [CrossRef]
- Mazzucco, W.; Costantino, C.; Restivo, V.; Alba, D.; Marotta, C.; Tavormina, E.; Cernigliaro, A.; Macaluso, M.; Cusimano, R.; Grammauta, R.; et al. The Management of Health Hazards Related to Municipal Solid Waste on Fire in Europe: An Environmental Justice Issue? Int. J. Environ. Res. Public Health 2020, 17, 6617. [Google Scholar] [CrossRef] [PubMed]
- Jakhar, R.; Samek, L.; Styszko, K. A Comprehensive Study of the Impact of Waste Fires on the Environment and Health. Sustainability 2023, 15, 14241. [Google Scholar] [CrossRef]
- Deary, M.E.; Griffiths, S.D. The Impact of Air Pollution from Industrial Fires in Urban Settings: Monitoring, Modelling, Health, and Environmental Justice Perspectives. Environments 2024, 11, 157. [Google Scholar] [CrossRef]
- Griffiths, S.D.; King, H.M.; Wilkinson, J.; Kelly, F.J.; Entwistle, J.A.; Deary, M.E. Evaluating Public Exposure to Airborne Particulates from Major Incident Fires: A Back Trajectory Plume Modelling Approach. J. Hazard. Mater. 2025, 490, 137455. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Van Rijswijk, D.; Kulka, R.; You, H.; Van Ryswyk, K.; Willey, J.; Jessiman, B. The Impact of a Landfill Fire on Ambient Air Quality in the North: A Case Study in Iqaluit, Canada. Environ. Res. 2015, 142, 46–50. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, K.; Wu, W.; Tian, H.; Yi, P.; Zhi, G.; Liu, S. Atmospheric Emissions of Typical Toxic Heavy Metals from Open Burning of Municipal Solid Waste in China. Atmos. Environ. 2017, 152, 6–15. [Google Scholar] [CrossRef]
- Blomqvist, P.; Persson, B.; Simonson, M. Fire Emissions of Organics into the Atmosphere. Fire Technol. 2007, 43, 213–231. [Google Scholar] [CrossRef]
- Nadal, M.; Rovira, J.; Díaz-Ferrero, J.; Schuhmacher, M.; Domingo, J.L. Human Exposure to Environmental Pollutants after a Tire Landfill Fire in Spain: Health Risks. Environ. Int. 2016, 97, 37–44. [Google Scholar] [CrossRef]
- Morales, S.R.G.; Toro, A.R.; Morales, L.; Leiva, G.M.A. Landfill Fire and Airborne Aerosols in a Large City: Lessons Learned and Future Needs. Air Qual. Atmos. Health 2018, 11, 111–121. [Google Scholar] [CrossRef]
- Sharma, M.; Khare, M.; Mishra, R.K. Air Quality Changes in Delhi Due to Open Waste Burning: An Accidental Fire in Bhalswa Landfill. Int. J. Environ. Sci. Technol. 2024, 21, 655–664. [Google Scholar] [CrossRef]
- Elihn, K.; Dalmijn, J.; Froment, J.; Håland, A.; Johansson, J.H.; Karlsson, H.L.; Martin, J.W.; Mikoviny, T.; Norman, M.; Piel, F.; et al. Air Quality Impacts of a Large Waste Fire in Stockholm, Sweden. Atmos. Environ. 2023, 315, 120124. [Google Scholar] [CrossRef]
- Kannankai, M.P.; Devipriya, S.P. Air Quality Impacts of Landfill Fires: A Case Study from the Brahmapuram Municipal Solid Waste Treatment Plant in Kochi, India. Sci. Total Environ. 2024, 916, 170289. [Google Scholar] [CrossRef] [PubMed]
- Oleniacz, R.; Drzewiecki, W.; Gorzelnik, T.; Grzesik, K.; Kozakiewicz, R.; Kowalewski, Z.; Kossakowska, K. Assessment of the Impact of Waste Fires on Air Quality and Atmospheric Aerosol Optical Depth: A Case Study in Poland. Energy Rep. 2023, 9, 16–38. [Google Scholar] [CrossRef]
- Bihałowicz, J.S.; Rogula-Kozłowska, W.; Krasuski, A. Contribution of Landfill Fires to Air Pollution—An Assessment Methodology. Waste Manag. 2021, 125, 182–191. [Google Scholar] [CrossRef]
- Escobar-Arnanz, J.; Mekni, S.; Blanco, G.; Eljarrat, E.; Barceló, D.; Ramos, L. Characterization of organic aromatic compounds in soils affected by an uncontrolled tire landfill fire through the use of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J. Chromatogr. A 2018, 1536, 163–175. [Google Scholar] [CrossRef]
- Øygard, J.K.; Måge, A.; Gjengedal, E.; Svane, T. Effect of an Uncontrolled Fire and the Subsequent Firefight on the Chemical Composition of Landfill Leachate. Waste Manag. 2005, 25, 712–718. [Google Scholar] [CrossRef]
- Stenis, J.; Hogland, W. Fire in Waste-Fuel Stores: Risk Management and Estimation of Real Cost. J. Mater. Cycles Waste Manag. 2011, 13, 247–258. [Google Scholar] [CrossRef]
- Oleniacz, R. Pożary i otwarte spalanie odpadów jako źródło emisji zanieczyszczeń do powietrza. In Współczesne Wyzwania Nauk Przyrodniczych—Analiza i Perspektywy Rozwoju, T. 2; Kalbarczyk, K., Mołdoch-Mendoń, I., Eds.; Wydawnictwo Naukowe TYGIEL: Lublin, Poland, 2024; pp. 16–38. [Google Scholar]
- Gorzelnik, T.; Oleniacz, R.; Drzewiecki, W.; Grzesik, K.; Kowalewski, Z.; Kozakiewicz, R.; Kossakowska, K. Air pollution caused by fires at waste storage sites: Analysis of selected episodes in Poland. In New Insights into Environmental and Energy Development; Sornek, K., Ed.; Institute of Sustainable Energy: Krakow, Poland, 2021; pp. 5–11. [Google Scholar]
- Bihałowicz, J.S.; Rogula-Kozłowska, W.; Krasuski, A.; Salamonowicz, Z. The critical factors of landfill fire impact on air quality. Environ. Res. Lett. 2021, 16, 104026. [Google Scholar] [CrossRef]
- Bihałowicz, J.S. Waste Fires in Poland and Some of Their Environmental Implications—A Ten-Year Perspective. J. Ecol. Eng. 2022, 23, 147–157. [Google Scholar] [CrossRef]
- Rykała, W.; Fabiańska, M.J.; Dąbrowska, D. The Influence of a Fire at an Illegal Landfill in Southern Poland on the Formation of Toxic Compounds and Their Impact on the Natural Environment. Int. J. Environ. Res. Public Health 2022, 19, 13613. [Google Scholar] [CrossRef]
- Kuta, Ł.; Hachoł, J.; Wdowczyk, A.; Hochman, J. Impact of Fires at Illegal Waste Storage Sites on Soil Contamination—A Study of Five Cases from Poland. Sustainability 2023, 15, 15645. [Google Scholar] [CrossRef]
- Statistics Poland. Environment 2020; Statistics Poland: Warsaw, Poland, 2020. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2020,8,3.html (accessed on 31 December 2024).
- Statistics Poland. Environment 2022; Statistics Poland: Warsaw, Poland, 2022. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2022,1,14.html (accessed on 31 December 2024).
- Statistics Poland. Environment 2024; Statistics Poland: Warsaw, Poland, 2024. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2024,1,25.html (accessed on 31 December 2024).
- Republic of Poland. Act of 14 December 2012 on Waste; Journal of Laws of 2023, Item 1587, as Amended. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20130000021/U/D20130021Lj.pdf (accessed on 2 January 2025).
- Republic of Poland. Regulation of the Ministry of Economy of 16 July 2015 on Accepting Waste for Landfilling; Journal of Laws of 2015, item 1277. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150001277/O/D20151277.pdf (accessed on 2 January 2025).
- Republic of Poland. National Waste Management Plan 2022; Resolution No 88 of the Council of Ministers of 1 July 2016, Item 784. Available online: https://bip.mos.gov.pl/fileadmin/user_upload/bip/strategie_plany_programy/DGO/Krajowy_plan_gospodarki_odpadami_2022_____M.P._poz._784_.pdf (accessed on 2 January 2025).
- Republic of Poland. National Waste Management Plan 2028; Resolution No 96 of the Council of Ministers of 12 June 2023, Item 702. Available online: https://dziennikustaw.gov.pl/M2023000070201.pdf (accessed on 2 January 2025).
- Wang, W.; Themelis, N.J.; Sun, K.; Bourtsalas, A.C.; Huang, Q.; Zhang, Y.; Wu, Z. Current influence of China’s ban on plastic waste imports. Waste Dispos. Sustain. Energy 2019, 1, 67–78. [Google Scholar] [CrossRef]
- Statistics Poland. Environment 2018; Statistics Poland: Warsaw, Poland, 2019. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2018,1,10.html (accessed on 31 December 2024).
- Statistics Poland. Environment 2019; Statistics Poland: Warsaw, Poland, 2020. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2019,1,11.html (accessed on 31 December 2024).
- Przybyła, A. Zasady Ewidencjonowania Zdarzeń w Systemie Wspomagania Decyzji Państwowej Straży Pożarnej; Komenda Główna Państwowej Straży Pożarnej, Biuro Planowania Operacyjnego: Warszawa, Poland, 2023. Available online: https://www.gov.pl/attachment/2f2b0693-f65c-44e3-be86-2ce8eb554ade (accessed on 31 December 2024).
- Christensen, T. (Ed.) Solid Waste Technology and Management; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- UNEP. Solid Waste Management (Vol. I); United Nations Environment Programme: 2005. Available online: https://www.eawag.ch/fileadmin/Domain1/Abteilungen/sandec/E-Learning/Moocs/Solid_Waste/W2/Solid_waste_management_UNEP_2005.pdf (accessed on 31 December 2024).
- Yesiller, N.; Hanson, J.L.; Cox, J.T.; Noce, D.E. Determination of Specific Gravity of Municipal Solid Waste. Waste Manag. 2014, 34, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Zekkos, D.; Bray, J.D.; Kavazanjian Jr, E.; Matasovic, N.; Rathje, E.M.; Riemer, M.F.; Stokoe, K.H. Unit Weight of Municipal Solid Waste. J. Geotech. Geoenviron. Eng. 2006, 132, 1250–1261. [Google Scholar] [CrossRef]
- Vilar, O.M.; Carvalho, M. Mechanical Properties of Municipal Solid Waste. J. Test. Eval. 2004, 32, 438–449. [Google Scholar] [CrossRef]
- Du, J.; Zhou, C.; Zhang, Y.; Shen, H.; Wu, W.; Liu, G. Physical-Chemical Properties of Municipal Solid Waste and Their Implication for Urban Management on Greenhouse Gas Emissions. ACS Sustain. Chem. Eng. 2022, 10, 11692–11701. [Google Scholar] [CrossRef]
- Neuwahl, F.; Cusano, G.; Gómez Benavides, J.; Holbrook, S.; Roudier, S. Best Available Techniques (BAT) Reference Document for Waste Incineration; EUR 29971 EN; Publication Office of the European Union: Luxembourg, 2019; Available online: https://eippcb.jrc.ec.europa.eu/sites/default/files/2020-01/JRC118637_WI_Bref_2019_published_0.pdf (accessed on 2 January 2025).
- Pohl, M.; Gebauer, K.; Beckmann, M. Characterisation of Refuse Derived Fuels in View of the Fuel Technical Properties. In Proceedings of the 8th European Conference on Industrial Furnaces and Boilers (INFUB-8), Vilamoura, Portugal, 25–28 March 2008. [Google Scholar]
- Shi, H.; Mahinpey, N.; Aqsha, A.; Silbermann, R. Characterization, Thermochemical Conversion Studies, and Heating Value Modeling of Municipal Solid Waste. Waste Manag. 2016, 48, 34–47. [Google Scholar] [CrossRef]
- Boumanchar, I.; Chhiti, Y.; Alaoui, F.E.M.; El Ouinani, A.; Sahibed-Dine, A.; Bentiss, F.; Jama, C.; Bensitel, M. Effect of Materials Mixture on the Higher Heating Value: Case of Biomass, Biochar, and Municipal Solid Waste. Waste Manag. 2017, 61, 78–86. [Google Scholar] [CrossRef]
- Finet, C. Heating Value of Municipal Solid Waste. Waste Manag. Res. 1987, 5, 141–145. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, A.; Long, Y.; Li, Q.; Zhang, Y. An Overview of Characteristics of Municipal Solid Waste Fuel in China: Physical, Chemical Composition, and Heating Value. Renew. Sustain. Energy Rev. 2014, 36, 107–122. [Google Scholar] [CrossRef]
- Grzesik, K.; Kossakowska, K.; Kozakiewicz, R.; Kowalewski, Z.; Gorzelnik, T.; Oleniacz, R.; Drzewiecki, W. Waste Fires—Waste of Energy, Waste of Materials. In Proceedings of the 4th International Conference on the Sustainable Energy and Environmental Development (SEED), Poland, Krakow, 13–15 October 2021. [Google Scholar]
- Montejo, C.; Costa, C.; Ramos, P.; Márquez, M.C. Analysis and Comparison of Municipal Solid Waste and Reject Fraction as Fuels for Incineration Plants. Appl. Therm. Eng. 2011, 31, 2135–2140. [Google Scholar] [CrossRef]
- Brożek, P.; Złoczowska, E.; Staude, M.; Baszak, K.; Sosnowski, M.; Bryll, K. Study of the Combustion Process for Two Refuse-Derived Fuel (RDF) Streams Using Statistical Methods and Heat Recovery Simulation. Energies 2022, 15, 9560. [Google Scholar] [CrossRef]
- Jędrczak, A.; Myszograj, S.; Połomka, J. The Composition and Properties of Polish Waste Focused on Biostabilisation in MBT Plants during the Heating Season. Energies 2020, 13, 1072. [Google Scholar] [CrossRef]
- Ranieri, L.; Mossa, G.; Pellegrino, R.; Digiesi, S. Energy Recovery from the Organic Fraction of Municipal Solid Waste: A Real Options-Based Facility Assessment. Sustainability 2018, 10, 368. [Google Scholar] [CrossRef]
- U.S. EPA. Volume-to-Weight Conversion Factors 2016. Available online: https://www.epa.gov/sites/default/files/2016-04/documents/volume_to_weight_conversion_factors_memorandum_04192016_508fnl.pdf (accessed on 31 December 2024).
- Sukarni, S.; Sumarli, S.; Puspitasari, P.; Suryanto, H.; Wati, R.F. Physicochemical Characteristics of Various Inorganic Combustible Solid Waste (ICSW) Mixed as Sustainable Solid Fuel. AIP Conf. Proc. 2017, 1887, 020066. [Google Scholar] [CrossRef]
- Ioelovich, M. Energy Potential of Natural, Synthetic Polymers and Waste Materials—A Review. Acad. J. Polym. Sci. 2018, 1, 555553. [Google Scholar] [CrossRef]
- Garcés, D.; Díaz, E.; Sastre, H.; Ordóñez, S.; González-LaFuente, J.M. Evaluation of the Potential of Different High Calorific Waste Fractions for the Preparation of Solid Recovered Fuels. Waste Manag. 2016, 47, 164–173. [Google Scholar] [CrossRef]
- Rivera, J.A.; López, V.P.; Casado, R.R.; Hervás, J.-M.S. Thermal Degradation of Paper Industry Wastes from a Recovered Paper Mill Using TGA. Characterization and Gasification Test. Waste Manag. 2016, 47, 225–235. [Google Scholar] [CrossRef]
- Brożek, M. Evaluation of Selected Properties of Briquettes from Recovered Paper and Board. Res. Agric. Eng. 2015, 61, 66–71. [Google Scholar] [CrossRef]
- Lombardi, L.; Castaldi, M.J. Energy Recovery from Residual Municipal Solid Waste: State of the Art and Perspectives within the Challenge to Climate Change. Energies 2024, 17, 395. [Google Scholar] [CrossRef]
- Banaś, M.; Pająk, T.; Bator, J.; Wróbel, W.; Ciuła, J. Energy Efficiency Analysis of Waste-to-Energy Plants in Poland. Energies 2024, 17, 2390. [Google Scholar] [CrossRef]
- Jaworski, T.; Wajda, A.; Jaworska-Bytomska, K. Enhancing the Performance of a Hazardous Waste Incineration Facility through the Usage of a Dedicated Application. Sustainability 2024, 16, 1297. [Google Scholar] [CrossRef]
- Floriani, S.L.; Virmond, E.; Luiz, D.B.; Althoff, C.; José, H.; Moreira, R. Potential of Industrial Solid Wastes as Energy Sources and Gaseous Emissions Evaluation in a Pilot Scale Burner (ES2008-54355). J. Energy Resour. Technol. 2010, 132, 011003. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, P.; Xue, Z.; Zhao, D.; Bu, C.; Ge, H.; Song, T. Prediction and Evaluation on Fuel Properties and Pyrolysis Characteristics of Combustible Industrial Solid Wastes. J. Energy Inst. 2022, 105, 232–241. [Google Scholar] [CrossRef]
- Martínez, J.D.; Puy, N.; Murillo, R.; García, T.; Navarro, M.V.; Mastral, A.M. Waste Tyre Pyrolysis—A Review. Renew. Sustain. Energy Rev. 2013, 23, 179–213. [Google Scholar] [CrossRef]
- Santini, A.; Morselli, L.; Passarini, F.; Vassura, I.; Di Carlo, S.; Bonino, F. End-of-Life Vehicles Management: Italian Material and Energy Recovery Efficiency. Waste Manag. 2011, 31, 489–494. [Google Scholar] [CrossRef]
- Lanoir, D.; Trouve, G.; Delfosse, L.; Froelich, D.; Kassamaly, A. Physical and Chemical Characterization of Automotive Shredder Residues. Waste Manag. Res. 1997, 15, 267–276. [Google Scholar] [CrossRef]
- Tanguay-Rioux, F.; Heroux, M.; Legros, R. Physical Properties of Recyclable Materials and Implications for Resource Recovery. Waste Manag. 2021, 136, 195–203. [Google Scholar] [CrossRef]
- Nunes, L.J.; Godina, R.; Matias, J.C.; Catalão, J.P. Economic and Environmental Benefits of Using Textile Waste for the Production of Thermal Energy. J. Clean. Prod. 2018, 171, 1353–1360. [Google Scholar] [CrossRef]
- Rago, Y.P.; Surroop, D.; Mohee, R. Torrefaction of Textile Waste for Production of Energy-Dense Biochar Using Mass Loss as a Synthetic Indicator. J. Environ. Chem. Eng. 2018, 6, 811–822. [Google Scholar] [CrossRef]
- Achilias, D.S.; Charitopoulou, M.-A.; Ciprioti, S.V. Thermal and Catalytic Recycling of Plastics from Waste Electrical and Electronic Equipment—Challenges and Perspectives. Polymers 2024, 16, 2538. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, Z. Recycling of Non-Metallic Fractions from Waste Electrical and Electronic Equipment (WEEE): A Review. Waste Manag. 2014, 34, 1455–1469. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, L.; Carnevale, E.A. Evaluation of the environmental sustainability of different waste-to-energy plant configurations. Waste Manag. 2018, 73, 232–246. [Google Scholar] [CrossRef]
- Kwon, Y.; Lee, S.; Bae, J.; Park, S.; Moon, H.; Lee, T.; Kim, K.; Kang, J.; Jeon, T. Evaluation of Incinerator Performance and Policy Framework for Effective Waste Management and Energy Recovery: A Case Study of South Korea. Sustainability 2024, 16, 448. [Google Scholar] [CrossRef]
- Han, Q.L.; Liu, H.Q.; Wei, G.X.; Zhu, Y.W.; Li, Q.; Li, T.; Su, X.; Duan, W.Y. Environmental-energy-economic analyses of waste incinerators and Co-combustion pathways: A bottom-up study of over 300 cities in China. Energy Convers. Manag. 2025, 325, 119437. [Google Scholar] [CrossRef]
- Bień, J. Production and use of waste-derived fuels in Poland: Current status and perspectives. Prod. Eng. Arch. 2021, 27, 36–41. [Google Scholar] [CrossRef]
- Kledyński, Z.; Bogdan, A.; Jackiewicz-Rek, W.; Lelicińska-Serafin, K.; Machowska, A.; Manczarski, P.; Masłowska, D.; Rolewicz-Kalińska, A.; Rucińska, J.; Szczygielski, T.; et al. Condition of circular economy in Poland. Arch. Civ. Eng. 2020, 66, 37–80. [Google Scholar] [CrossRef]
- Avdiushchenko, A. Circular Economy in Poland: Main Achievements and Future Prospects. In Smart and Sustainable Planning for Cities and Regions. Results of SSPCR 2019; Bisello, A., Vettorato, D., Ludlow, D., Baranzelli, C., Eds.; Green Energy and Technology; Springer: Cham, Switzerland, 2021; pp. 141–154. [Google Scholar] [CrossRef]
- Oleniacz, R.; Grzesik, K. Assessment and Analysis of Waste Treatment and Environmental Management. Energies 2025, 18, 138. [Google Scholar] [CrossRef]
Fire Size | Surface Area [m2] | Volume [m3] |
---|---|---|
Small | <70 | <350 |
Medium | 71–300 | 351–1500 |
Large | 301–1000 | 1501–5000 |
Very Large | >1001 | >5001 |
Waste Type | Density [kg/m3] |
---|---|
MBT post-processed waste | variable |
Refuse-derived fuel (RDF) | 150–300 |
Biowaste | 130–480 |
Chemicals | varies |
Old paper | 40–130 |
Municipal solid waste (MSW) | 100–400 |
Hazardous waste | varies |
Industrial waste | varies |
Old tires (whole) | 100–150 |
Old tires (shredded) | ~500 |
End-of-life vehicles (ELVs) | 1000–1500 |
Plastics | 40–130 |
Textiles | 130–250 |
Bulky waste | variable |
Waste electrical & electronic equipment (WEEE) | 200–300 |
Burned Waste Type | Total Surface of Fires [m2] | |
---|---|---|
2018 | 2019 | |
MBT post-processed waste and RDF | 30,600 | 1018 |
No data 1 | 8040 | 22,119 |
Biowaste | 650 | |
Chemicals | 800 | |
Old paper | 900 | |
Municipal waste | 20,725 | 6700 |
Hazardous waste | 34,100 | |
Industrial waste | 2300 | 1000 |
Old tires | 2819 | 5300 |
End-of-life vehicles | 1300 | |
Plastics | 58,656 | 16,375 |
Textiles | 3490 | |
Bulky waste | 8400 | 10,500 |
Waste electronic and electric equipment | 800 | 1200 |
Total | 169,440 | 68,352 |
Burned Waste Type | Potential Use of Waste | Estimated Volume of Waste Burned [m3] | |||
---|---|---|---|---|---|
2018 | 2019 | ||||
Low Variant | High Variant | Low Variant | High Variant | ||
MBT post-processed waste and RDF | RDF (fuel) | 15,300 | 91,800 | 509 | 3054 |
Biowaste | to be processed into RDF | 325 | 1950 | ||
Chemicals | recovery | 400 | 2400 | ||
Old paper | recycling | 450 | 2700 | ||
Municipal waste | to be processed into RDF | 14,383 | 86,295 | 14,410 | 86,457 |
Hazardous waste | recovery/ disposal | 17,050 | 102,300 | ||
Industrial waste | recovery/ disposal | 1150 | 6900 | 500 | 3000 |
Old tires | RDF | 1410 | 8457 | 2650 | 15,900 |
End-of-life vehicles | recycling | 650 | 3900 | ||
Plastics | recycling | 29,328 | 175,968 | 8188 | 49,125 |
Textiles | RDF | 1745 | 10,470 | ||
Bulky waste | RDF | 4200 | 25,200 | 5250 | 31,500 |
Waste electronic and electric equipment | recycling | 400 | 2400 | 600 | 3600 |
Total volume | 169,440 | 1,016,640 | 68,352 | 410,112 |
Waste Type | Bulk Density [kg/m3] | Lower Heating Value LHV [MJ/kg] | References |
---|---|---|---|
MBT post-processed waste and RDF | 500 | 12 | [84,85,86] |
Biowaste | 400 | 8 | [87,88] |
Chemical waste | 600 | 20 | [77,89,90,91] |
Old paper | 500 | 12 | [92,93] |
Municipal waste | 200 | 8 | [94,95] |
Hazardous waste | 500 | 18 | [77,96] |
Industrial waste | 340 | 17 | [97,98] |
Old tires | 400 | 40 | [99] |
End-of-life vehicles | 300 | 20 | [91,100,101] |
Plastics | 150 | 40 | [90,102] |
Textiles | 150 | 16 | [103,104] |
Bulky waste | 150 | 15 | [91] |
Waste electrical & electronic equipment | 200 | 8 | [105,106] |
Burned Waste Type | Estimated Lost Energy Potential [TJ] | |||
---|---|---|---|---|
2018 | 2019 | |||
Low Variant | High Variant | Low Variant | High Variant | |
MBT post-processed waste and RDF | 92 | 551 | 3 | 18 |
Biowaste | 0 | 0 | 1 | 6 |
Chemicals | 5 | 29 | 0 | 0 |
Old paper | 3 | 16 | 0 | 0 |
Municipal waste | 23 | 138 | 23 | 138 |
Hazardous waste | 153 | 921 | 0 | 0 |
Industrial waste | 7 | 40 | 3 | 17 |
Old tires | 23 | 135 | 42 | 254 |
End-of-life vehicles | 4 | 23 | 0 | 0 |
Plastics | 176 | 1056 | 49 | 295 |
Textiles | 0 | 0 | 4 | 25 |
Bulky waste | 9 | 57 | 12 | 71 |
Waste electrical & electronic equipment | 1 | 4 | 1 | 6 |
Total | 495 | 2970 | 139 | 831 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzesik, K.; Zabochnicka, M.; Oleniacz, R.; Kozakiewicz, R. Quantifying Resource and Energy Losses from Waste Fires in Poland: A Barrier to Circular Economy Transition. Energies 2025, 18, 2731. https://doi.org/10.3390/en18112731
Grzesik K, Zabochnicka M, Oleniacz R, Kozakiewicz R. Quantifying Resource and Energy Losses from Waste Fires in Poland: A Barrier to Circular Economy Transition. Energies. 2025; 18(11):2731. https://doi.org/10.3390/en18112731
Chicago/Turabian StyleGrzesik, Katarzyna, Magdalena Zabochnicka, Robert Oleniacz, and Ryszard Kozakiewicz. 2025. "Quantifying Resource and Energy Losses from Waste Fires in Poland: A Barrier to Circular Economy Transition" Energies 18, no. 11: 2731. https://doi.org/10.3390/en18112731
APA StyleGrzesik, K., Zabochnicka, M., Oleniacz, R., & Kozakiewicz, R. (2025). Quantifying Resource and Energy Losses from Waste Fires in Poland: A Barrier to Circular Economy Transition. Energies, 18(11), 2731. https://doi.org/10.3390/en18112731