Determinants of Ecological Decisions of Users of Single-Family Houses in Poland in the Field of Energy Generation
Abstract
1. Introduction
2. Literature Review
2.1. Sustainable Energy
- Minimal exploration of social relationships: Social factors are frequently treated peripherally, leading to an underestimation of the influence of neighborhood opinions, community dynamics, and local opinion leaders on individual decisions.
- Fragmentation in interdisciplinary approaches: Although interdisciplinarity is often declared, many studies are confined to a single discipline, thereby limiting the potential for integrated interpretations that span social, economic, technical, and environmental sciences [42].
2.2. Sustainable Development of Energy
2.3. Micro Energy Transitions
2.4. Restructuring of Electricity Supply
2.5. Household Decisions in the Aspect of Ecology
3. Material and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nam, H.-J.; Ryu, D. Does international trade moderate economic development’s impact on income inequality in the EU? J. Int. Financ. Mark. Inst. Money 2025, 99, 102107. [Google Scholar] [CrossRef]
- Guo, P.; He, Y.; Scrimgeour, F.; Shao, S.; Yu, Y. The impact of natural resource dependency on green economic growth: A business environment perspective. Technol. Forecast. Soc. Chang. 2024, 208, 123680. [Google Scholar] [CrossRef]
- Vasylyeva, T.A.; Pryymenko, S.A. Environmental economic assessment of energy resources in the context of ukraine’s energy security. Actual Probl. Econ. 2014, 160, 252–260. [Google Scholar]
- Kuang, H.; Liang, Y.; Zhao, W.; Cai, J. Impact of natural resources and technology on economic development and sustainable environment—Analysis of resources-energy-growth-environment linkages in BRICS. Resour. Policy 2023, 85 Pt B, 103865. [Google Scholar] [CrossRef]
- Dritsaki, M.; Dritsaki, C.; Argyriou, V.; Sarigiannidis, P. Impact of renewable and non-renewable generation on economic growth in Greece. Electr. J. 2024, 37, 107421. [Google Scholar] [CrossRef]
- Ranjan, A.; Kanitkar, T. Energy requirements for sustainable human development. Energy Sustain. Dev. 2025, 85, 101648. [Google Scholar] [CrossRef]
- Chygryn, O.Y.; Krasniak, V.S. Theoretical and applied aspects of the development of environmental investment in Ukraine. Mark. Manag. Innov. 2015, 3, 226–234. [Google Scholar]
- Alam, M.S.; Manigandan, P.; Kisswani, K.M.; Baig, I.A. Achieving goals of the 2030 sustainable development agenda through renewable energy utilization: Comparing the environmental sustainability effects of economic growth and financial development. Sustain. Futures 2025, 9, 100534. [Google Scholar] [CrossRef]
- Štreimikienė, D. Renewable energy penetration in Nordic and Baltic countries of the EU. J. Int. Stud. 2024, 17, 97–107. [Google Scholar] [CrossRef]
- Ai, H.; Tan, X.; Mangla, S.K.; Emrouznejad, A.; Liu, F.; Song, M. Renewable energy transition and sustainable development: Evidence from China. Energy Econ. 2025, 143, 108232. [Google Scholar] [CrossRef]
- Kainiemi, L.; Laukkanen, M.; Levänen, J. Multi-sectoral interactions in energy transition: Unveiling tensions between sustainability and justice. Appl. Energy 2025, 384, 125437. [Google Scholar] [CrossRef]
- Ee, A.W.L.; Lee, J.T.E.; Tian, H.; Lim, E.Y.; Yan, M.; Tong, Y.W.; Zhang, J.; Ng, A.T.S.; Ok, Y.S.; Kua, H.W. Current status on utilizing a life cycle system perspective to evaluate renewable energy production systems for achieving UN SDGs. Resour. Conserv. Recycl. 2024, 203, 107381. [Google Scholar] [CrossRef]
- Wang, X.; Iqbal, S.; Amin, N.; Hussain, M.; Zaman, S.; Khan, S. The role of government effectiveness, technological innovations, natural resource protection on carbon emissions in Gulf Cooperation Council region: A pathway for achieving sustainable development goals by 2030. J. Environ. Manag. 2025, 377, 124506. [Google Scholar] [CrossRef]
- Islam, H. Nexus of economic, social, and environmental factors on sustainable development goals: The moderating role of technological advancement and green innovation. Innov. Green Dev. 2025, 4, 100183. [Google Scholar] [CrossRef]
- Khan, I.; Sahabuddin, M. Chapter 1—Sustainability-Concept and its application in the energy sector. In Renewable Energy and Sustainability; Khan, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–22. [Google Scholar] [CrossRef]
- Mensah, J. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 2019, 5, 1653531. [Google Scholar] [CrossRef]
- Pereira, E.G.; da Silva, J.N.; de Oliveira, J.L.; Machado, C.S. Sustainable energy: A review of gasification technologies. Renew. Sustain. Energy Rev. 2012, 16, 4753–4762. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E.; Rogozińska-Mitrut, J.; Różycka, M.; Soboń, D.; Stasiak, J. Energy Innovation for Individual Consumers in Poland—Analysis of Potential and Evaluation of Practical Applications in Selected Areas. Energies 2023, 16, 5766. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef]
- Banos, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Mitchell, C.; Mitchell, C. The Political Economy of Sustainable Energy; Palgrave Macmillan: Basingstoke, UK, 2008. [Google Scholar]
- Binsaeed, R.H.; Khan, Z.; Dogan, E.; Rahim, S. The role of energy efficiency, renewable resources, green innovation, and fiscal decentralization in sustainable development: Evidence from OECD countries. Util. Policy 2025, 95, 101915. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, S.; Song, M.; Nikic, V. Quo vadis? Major players in global coal consumption and emissions reduction. Transform. Bus. Econ. 2018, 17, 112–132. [Google Scholar]
- Adelman, M.A.; Lynch, M.C. Natural Gas Supply to 2100; International Gas Union: London, UK, 2002. [Google Scholar]
- Ayinde, T.O.; Adeyemi, F.A. Fossil fuel prices and economic policy uncertainty—A regime-switching approach. Energy Clim. Change 2024, 5, 100140. [Google Scholar] [CrossRef]
- Jermain, D.O.; Pilcher, R.C.; Ren, Z.J.; Berardi, E.J. Coal in the 21st century: Industry transformation and transition justice in the phaseout of coal-as-fuel and the phase-in of coal as multi-asset resource platforms. Energy Clim. Chang. 2024, 5, 100142. [Google Scholar] [CrossRef]
- Plaga, L.S.; Lynch, M.; Curtis, J.; Bertsch, V. How public acceptance affects power system development—A cross-country analysis for wind power. Appl. Energy 2024, 359, 122745. [Google Scholar] [CrossRef]
- Altayib, K.; Dincer, I. Development of a large-scale integrated solar-biomass thermal facility for green production of useful outputs. Energy 2024, 313, 133741. [Google Scholar] [CrossRef]
- Gajdzik, B.; Nagaj, R.; Wolniak, R.; Bałaga, D.; Žuromskaitė, B.; Grebski, W.W. Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries. Energies 2024, 17, 2476. [Google Scholar] [CrossRef]
- Nguyen, A.T. The relationship between crude oil prices, energy consumption, trade openness and economic growth: An empirical study on Vietnam. J. Int. Stud. 2022, 15, 94–106. [Google Scholar] [CrossRef]
- Taher, H. The influence of renewable energy and financial development on testing the environmental Kuznets curve in Lebanon: ARDL approach. Environ. Econ. 2024, 15, 118–131. [Google Scholar] [CrossRef]
- Vasa, L.; Kubatko, O.; Sotnyk, I.; Piven, V.; Trypolska, G.; Pysmenna, U. Economic and environmental drivers of renewable energy transition in the EU. Environ. Econ. 2024, 15, 232–245. [Google Scholar] [CrossRef]
- Helm, D. The assessment: The new energy paradigm. Oxf. Rev. Econ. Policy 2005, 21, 1–18. Available online: http://www.jstor.org/stable/23606814 (accessed on 15 June 2006). [CrossRef]
- Wicks, M. Energy Security: A National Challenge in a Changing World; DECC: London, UK, 2009. [Google Scholar]
- Dobrovolska, O.; Schmidtke, K.; Krause, J.; Matukhno, O.; Cierjacks, A. Effectiveness of reforms to eliminate obstacles in the development of sustainable energy in different countries of the world. Probl. Perspect. Manag. 2024, 22, 1–13. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, L. Environmental regulation, market power and low-carbon development of China’s coal power industry chain —Based on both strategy and return perspectives. Energy Strategy Rev. 2025, 58, 101651. [Google Scholar] [CrossRef]
- Kao, X.; Liu, Y.; Wang, W.; Wen, Q.; Zhang, P. The pressure of coal consumption on China’s carbon dioxide emissions: A spatial and temporal perspective. Atmos. Pollut. Res. 2024, 15, 102188. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. Possibilities of reducing CO2 emissions in the cement industry. Energy Policy 2004, 7, 555–564. [Google Scholar]
- Leonov, S.V.; Vasilieva, T.A.; Buryak, A.V. Performance of Ukrainian banking business: Stochastic frontier analysis. Visnyk Natl. Bank Ukr. 2013, 6, 19–25. [Google Scholar]
- Bouramdane, A.-A. Multi-criteria evaluation of carbon capture technologies in steel, cement, petrochemical, and fertilizer industries: Insights for emerging and developed countries. Sci. Total Environ. 2024, 957, 177754. [Google Scholar] [CrossRef]
- Priya, S.; Inman, D.J. (Eds.) Energy Harvesting Technologies; Springer: New York, NY, USA, 2009; Volume 21, p. 2. [Google Scholar]
- Barr, S.; Gilg, A. Sustainable lifestyles: Framing environmental action in and around the home. Geoforum 2006, 37, 906–920. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I.; Grebski, W. Post-restructuring productivity of the Polish hard coal mining industry. Does it create an opportunity for survival or a threat of closure? Resour. Policy 2025, 100, 105456. [Google Scholar] [CrossRef]
- Kauko, H.; Delgado, B.M.; Backe, S.; Sartori, I. Reducing electricity demand and enhancing heat supply flexibility through energy efficiency and district heating. Energy 2025, 322, 135310. [Google Scholar] [CrossRef]
- Vera, I.; Langlois, L. Energy indicators for sustainable development. Energy 2007, 32, 875–882. [Google Scholar] [CrossRef]
- Hart, G.W. Residential energy monitoring and computerized surveillance via utility power flows. IEEE Technol. Soc. Mag. 1989, 8, 12–16. [Google Scholar] [CrossRef]
- Burgess, J.; Nye, M. Re-materialising energy use through transparent monitoring systems. Energy Policy 2008, 36, 4454–4459. [Google Scholar] [CrossRef]
- Akram, R.; Chen, F.; Khalid, F.; Ye, Z.; Majeed, M.T. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: Evidence from developing countries. J. Clean. Prod. 2020, 247, 119122. [Google Scholar] [CrossRef]
- Kuzemko, C. The energy security-climate nexus: Institutional change in the UK and beyond. In The Energy Security-Climate Nexus; International Political Economy Series; Palgrave Macmillan: London, UK, 2013. [Google Scholar] [CrossRef]
- Lim, S.S.; Allen, K.; Bhutta, Z.A.; Dandona, L.; Forouzanfar, M.H.; Fullman, N.; Gething, P.W.; Goldberg, E.M.; Hay, S.I.; Holmberg, M. Measuring the health-related Sustainable Development Goals in 188 countries: A baseline analysis from the Global Burden of Disease Study 2015. Lancet 2016, 388, 1813–1850. [Google Scholar] [CrossRef]
- Nowak, B. Energy Policy of the European Union; WaiP: Warsaw, Poland, 2009. [Google Scholar]
- Perrini, F. Developing Corporate Social Responsibility: A European Perspective; Edward Elgar Publishing: Cheltenham, UK, 2006. [Google Scholar]
- Noorollahi, Y.; Zahedi, R.; Ahmadi, E.; Khaledi, A. Low carbon solar-based sustainable energy system planning for residential buildings. Renew. Sustain. Energy Rev. 2025, 207, 114942. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Helm, D. (Ed.) The New Energy Paradigm; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Prandecki, K. Theoretical aspects of sustainable energy. Energy Environ. Eng. 2014, 2, 83–90. [Google Scholar] [CrossRef]
- Skrodzka, W.; Kiriliuk, O. Sustainability indicators and environmental safety management as illustrated with an example of the Polish energy sector. Syst. Saf. Hum.-Tech. Facil.-Environ. 2019, 1, 389–405. [Google Scholar] [CrossRef]
- Rabe, M.; Streimikiene, D.; Bilan, Y. The Concept of Risk and Possibilities of Application of Mathematical Methods in Supporting Decision Making for Sustainable Energy Development. Sustainability 2019, 11, 1018. [Google Scholar] [CrossRef]
- Kurian, A.; Prasad, S.; Dhinojwala, A. Direct Measurement of Acid-Base Interaction Energy at Solid Interfaces. Langmuir 2010, 26, 17804–17807. [Google Scholar] [CrossRef]
- Jefferson, M. Sustainable energy development: Performance and prospects. Renew. Energy 2006, 31, 571–582. [Google Scholar] [CrossRef]
- Kuzemko, C.; Lockwood, M.; Mitchell, C.; Hoggett, R. Governing for sustainable energy system change: Politics, contexts and contingency. Energy Res. Soc. Sci. 2016, 12, 96–105. [Google Scholar] [CrossRef]
- Lockwood, M.; Kuzemko, C.; Mitchell, C.; Hoggett, R. Historical institutionalism and the politics of sustainable energy transitions: A research agenda. Environ. Plan. C Politics Space 2017, 35, 312–333. [Google Scholar] [CrossRef]
- Lund, H.; Salgi, G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers. Manag. 2009, 50, 1172–1179. [Google Scholar] [CrossRef]
- Nagaj, R.; Žuromskaitė, B. Young Travellers and Green Travel in the Post-COVID Era. Sustainability 2023, 15, 13822. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Yang, A.; Zhou, H.; Fan, C. Digitization and industrial low-carbon energy transition in China. Energy 2025, 322, 135545. [Google Scholar] [CrossRef]
- Kunz, T.H.; Arnett, E.B.; Erickson, W.P.; Hoar, A.R.; Johnson, G.D.; Larkin, R.P.; Strickland, M.D.; Thresher, R.W.; Tuttle, M.D. Ecological impacts of wind energy development on bats: Questions, research needs, and hypotheses. Front. Ecol. Environ. 2007, 5, 315–324. [Google Scholar] [CrossRef]
- Kuvlesky, W.P., Jr.; Brennan, L.A.; Morrison, M.L.; Boydston, K.K.; Ballard, B.M.; Bryant, F.C. Wind energy development and wildlife conservation: Challenges and opportunities. J. Wildl. Manag. 2007, 71, 2487–2498. Available online: http://www.jstor.org/stable/4496368 (accessed on 24 January 2007). [CrossRef]
- Leung, D.Y.; Yang, Y. Wind energy development and its environmental impact: A review. Renew. Sustain. Energy Rev. 2012, 16, 1031–1039. [Google Scholar] [CrossRef]
- Krawiec, F. Energia Resources, Processes, Technologies, Markets, Transformations, Business Models, Development Planning; Difin: Warsaw, Poland, 2015. [Google Scholar]
- Petroleum, B. Statistical Review of World Energy 2009; BP: London, UK, 2009. [Google Scholar]
- Rowlands, I.H.; Parker, P.; Scott, D. Consumer perceptions of “green power”. J. Consum. Mark. 2002, 19, 112–129. [Google Scholar] [CrossRef]
- Jaccard, M. Sustainable Fossil Fuels: The Unusual Suspect in the Quest for Clean and Enduring Energy; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Goiri, Í.; Le, K.; Haque, M.E.; Beauchea, R.; Nguyen, T.D.; Guitart, J.; Torres, J.; Bianchini, R. GreenSlot: Scheduling energy consumption in green datacenters. In Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, Seattle, WA, USA, 12–18 November 2011; pp. 1–11. [Google Scholar] [CrossRef]
- Skoczkowski, T. Development of Polish legal regulations in the aspect of distributed energy sources. In Proceedings of the Seminar “Integration of distributed generation with the Polish Power System”, Warsaw, Poland, 19 April 2007. [Google Scholar]
- Baldwin, N. The Effect of Electricity Deregulation on the Coal Industry: Future Role of Coal-Markets, Supply and the Environment; International Energy Agency Coal Industry Advisory Board: Paris, France, 1998. [Google Scholar]
- Ferguson, A.R. The logical foundations of ecological footprints. Environ. Dev. Sustain. 1999, 1, 149–156. [Google Scholar] [CrossRef]
- Lin, C.C.; Shen, H.Y.; Peng, Y.C.; Liu, W.Y. Residential energy considering renewable portfolio standards and tradable green certificates. Renew. Sustain. Energy Rev. 2025, 207, 114981. [Google Scholar] [CrossRef]
- Bera, S.; Syed, Q.R. Drivers of residential energy intensity convergence: A dynamic panel data analysis. Energy 2025, 316, 134384. [Google Scholar] [CrossRef]
- Bird, L.; Wüstenhagen, R.; Aabakken, J. A review of international green power markets: Recent experience, trends, and market drivers. Renew. Sustain. Energy Rev. 2002, 6, 513–536. [Google Scholar] [CrossRef]
- Ciupuliga, A.R.; Cuppen, E. The role of dialogue in fostering acceptance of transmission lines: The case of a France–Spain interconnection project. Energy Policy 2013, 60, 224–233. [Google Scholar] [CrossRef]
- Madlener, R.; Kowalski, K.; Stagl, S. New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria. Energy Policy 2007, 35, 6060–6074. [Google Scholar] [CrossRef]
- Kazemzadeh, E.; Salehnia, N.; Yu, Y.; Radulescu, M. Drivers of Green Growth: Roles of Innovation and Fragility. Sustainability 2025, 17, 735. [Google Scholar] [CrossRef]
- Tanaka, T.; Camerer, C.F.; Nguyen, Q. Risk and time preferences: Linking experimental and household survey data from Vietnam. Am. Econ. Rev. 2010, 100, 557–571. [Google Scholar] [CrossRef]
- Sotnyk, I.; Kurbatova, T.; Trypolska, G.; Sokhan, I.; Koshel, V. Research trends on development of energy efficiency and renewable energy in households: A bibliometric analysis. Environ. Econ. 2023, 14, 13–27. [Google Scholar] [CrossRef]
- Grosh, M.; Glewwe, P. Designing Household Survey Questionnaires for Developing Countries: Lessons from 15 Years of the Living Standards Measurement Study; World Bank: Washington, DC, USA, 2000; Volume 3, Available online: https://openknowledge.worldbank.org/handle/10986/15195 (accessed on 15 January 2023).
- Streimikiene, D.; Stankunienen, G. Climate change mitigation measure in households. Econ. Sociol. 2024, 17, 82–102. [Google Scholar] [CrossRef]
- Kuzior, A.; Vakulenko, I.; Kolosok, S.; Saher, L.; Lyeonov, S. Managing the EU energy crisis and greenhouse gas emissions: Seasonal ARIMA forecast. Probl. Perspect. Manag. 2023, 21, 383–399. [Google Scholar] [CrossRef]
- Van de Graaf, T. The Politics and Institutions of Global Energy Governance; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Cheng, Q.; Zhang, Z.; Wang, Y.; Zhang, L. A Review of Distributed Energy Systems: Technologies, Classification, and Applications. Sustainability 2025, 17, 1346. [Google Scholar] [CrossRef]
- Li, R.Y.M.; Li, H.; Mak, C.; Tang, T. Sustainable smart home and home automation: Big data analytics approach. Int. J. Smart Home 2016, 10, 177–187. [Google Scholar] [CrossRef]
- Cherdymova, E.I.; Afanasjeva, S.A.; Parkhomenko, A.G.; Ponyavina, M.B.; Yulova, E.S.; Nesmeianova, I.A.; Skutelnik, O.A. Student ecological consciousness as determining component of ecological-oriented activity. Eurasian J. Biosci. 2018, 12, 167–174. [Google Scholar]
- Saxena, V.; Kumar, N.; Manna, S.; Rajput, S.K.; Agarwal, K.L.; Diwania, S.; Gupta, V. Modelling, solution and application of optimization techniques in HRES: From conventional to artificial intelligence. Appl. Energy 2025, 380, 125047. [Google Scholar] [CrossRef]
- Rosindell, J.; Hubbell, S.P.; He, F.; Harmon, L.J.; Etienne, R.S. The case for ecological neutral theory. Trends Ecol. Evol. 2012, 27, 203–208. [Google Scholar] [CrossRef]
- Kern, F.; Smith, A. Restructuring energy systems for sustainability? Energy transition policy in the Netherlands. Energy Policy 2008, 36, 4093–4103. [Google Scholar] [CrossRef]
- Warren-Hicks, W.J.; Moore, D.R.J. Uncertainty Analysis in Ecological Risk Assessment; SETAC: Pensacola, FL, USA, 1998. [Google Scholar]
- Sutherland, W.J. Predicting the ecological consequences of environmental change: A review of the methods. J. Appl. Ecol. 2006, 43, 599–616. [Google Scholar] [CrossRef]
- Bilan, Y.; Raišiene, A.G.; Vasilyeva, T.; Lyulyov, O.; Pimonenko, T. Public governance efficiency and macroeconomic stability: Examining convergence of social and political determinants. Public Policy Adm. 2019, 18, 241–255. [Google Scholar] [CrossRef]
- Christensen, R. Log-Linear Models and Logistic Regression; Springer: New York, NY, USA, 1997. [Google Scholar]
- Kühn, M.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.; Cockerill, T.T.; Harrison, R.; Ferguson, M.C.; Göransson, B.; Harland, L.A.; Vugts, J.H.; Wiecherink, R. Towards a mature offshore wind energy technology—Guidelines from the opti-OWECS project. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 1999, 2, 25–58. [Google Scholar] [CrossRef]
- Salamaga, M. The use of log-linear analysis to select actions describing the economic situation of households. Stat. Rev. 2008, 55, 40–51. [Google Scholar]
- Mishczak, W. Sample Design; Oskar Lange University of Economics in Wrocław: Wrocław, Poland, 2004. [Google Scholar]
- Goodman, L. Analyzing Qualitative/Categorial Data: Log-Linear Models and Latent-Strukture Analysis; Jay Magidson: Cambridge, UK, 1978. [Google Scholar]
- Bartlett, M. Contingency table interactions. Suppl. J. R. Stat. Soc. 1935, 2, 248–252. [Google Scholar] [CrossRef]
- Zaborowski, M.; Walczak, M. Energy Efficiency in Poland. 2017 Review; Institute of Environmental Economics: Kraków, Poland, 2017. [Google Scholar]
- Roy, S.; Kastenbaum, M. On the hypothesis of no “interaction” in a multi-way contingency table. Ann. Math. Stat. 1956, 27, 749–757. [Google Scholar] [CrossRef]
- Rószkiewicz, M.; Perek-Białąs, J.; Węziak-Białowolska, D.; Zięba-Pietrzyk, A. Designing Social Research; Polskie Wydawnictwo Naukowe: Warsaw, Poland, 2013. [Google Scholar]
- World Business Council for Sustainable Development. Mobility 2030: Meeting the Challenges to Sustainability; World Business Council for Sustainable Development: Geneva, Switzerland, 2004. [Google Scholar]
- Czembor, C.A.; Morris, W.K.; Wintle, B.A.; Vesk, P.A. Quantifying variance components in ecological models based on expert opinion. J. Appl. Ecol. 2011, 48, 736–745. Available online: https://www.jstor.org/stable/20869996 (accessed on 16 June 2011). [CrossRef]
Designation | Specify a Variable in Detail |
---|---|
Y | Please specify how important it is for you that the heating device is environmentally friendly? |
X1 | Sex |
X2 | Age |
X3 | Voivodeship |
X4 | Size of the village |
X5 | Education |
Degree of Interaction | Degrees of Freedom | Value χ2 ML | p-Value | Value χ2 Pearson | p-Value |
---|---|---|---|---|---|
1 | 6 | 577,5800 | 0,000000 | 739,9070 | 0,000000 |
2 | 11 | 31,4254 | 0,000943 | 30,0168 | 0,001575 |
3 | 6 | 5,5179 | 0,479294 | 5,0714 | 0,534690 |
Degree of Interaction | Degrees of Freedom | Value χ2 ML | p-Value | Value χ2 Pearson | p-Value |
---|---|---|---|---|---|
1 | 9 | 768,7878 | 0,000000 | 1298,250 | 0,000000 |
2 | 26 | 44,5118 | 0,013308 | 51,954 | 0,001824 |
3 | 24 | 14,9541 | 0,922096 | 14,760 | 0,927595 |
Factors | Degrees of Freedom | Partial Dependence χ2 | p-Value | Marginal Dependence χ2 | p-Value |
---|---|---|---|---|---|
Y | 2 | 445,0925 | 0,000000 | ||
X1 | 1 | 27,1762 | 0,000000 | ||
X2 | 3 | 105,3114 | 0,000000 | ||
Y X1 | 2 | 2,6706 | 0,263077 | 1,09283 | 0,579021 |
Y X2 | 6 | 19,3089 | 0,003673 | 17,73101 | 0,006941 |
X1X2 | 3 | 12,6015 | 0,005583 | 11,02371 | 0,011598 |
Factors | Degrees of Freedom | Partial Dependence χ2 | p-Value | Marginal Dependence χ2 | p-Value |
---|---|---|---|---|---|
Y | 2 | 423,9965 | 0,000000 | ||
X4 | 4 | 99,2328 | 0,000000 | ||
X5 | 3 | 245,5587 | 0,000000 | ||
Y X4 | 8 | 3,6808 | 0,884716 | 3,14270 | 0,925086 |
Y X5 | 6 | 17,9896 | 0,006258 | 17,45155 | 0,007759 |
X4X5 | 12 | 23,9176 | 0,020872 | 23,37958 | 0,024671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźmiński, Ł.; Dynowska, J.; Nagaj, R.; Kozmenko, S.; Norek, T.; Rabe, M.; Gawlik, A.; Widera, K. Determinants of Ecological Decisions of Users of Single-Family Houses in Poland in the Field of Energy Generation. Energies 2025, 18, 2694. https://doi.org/10.3390/en18112694
Kuźmiński Ł, Dynowska J, Nagaj R, Kozmenko S, Norek T, Rabe M, Gawlik A, Widera K. Determinants of Ecological Decisions of Users of Single-Family Houses in Poland in the Field of Energy Generation. Energies. 2025; 18(11):2694. https://doi.org/10.3390/en18112694
Chicago/Turabian StyleKuźmiński, Łukasz, Joanna Dynowska, Rafał Nagaj, Sergiy Kozmenko, Tomasz Norek, Marcin Rabe, Andrzej Gawlik, and Katarzyna Widera. 2025. "Determinants of Ecological Decisions of Users of Single-Family Houses in Poland in the Field of Energy Generation" Energies 18, no. 11: 2694. https://doi.org/10.3390/en18112694
APA StyleKuźmiński, Ł., Dynowska, J., Nagaj, R., Kozmenko, S., Norek, T., Rabe, M., Gawlik, A., & Widera, K. (2025). Determinants of Ecological Decisions of Users of Single-Family Houses in Poland in the Field of Energy Generation. Energies, 18(11), 2694. https://doi.org/10.3390/en18112694