Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurement of Adsorption Isotherms
2.3. Non-Linear Three-Parameter Isotherm Models
2.3.1. Langmuir–Freundlich (Sips) Model
2.3.2. Tóth Model
2.3.3. Dubinin–Astakhov Model
2.4. Error Analysis
2.5. Clausius–Clapeyron Approach for Isosteric Heat of Adsorption
3. Results and Discussion
3.1. Characteristics of the Gas Sorption Equilibrium Isotherms
3.2. Modelling of the Adsorption Isotherms
3.3. Adsorption Thermodynamics of CO2 onto the Coals
4. Conclusions
- The maximum sorption capacities show a negative temperature effect and exhibit a positive trend with the increase in coal rank and vitrinite content. Thus, Coal SK has a higher sorption capacity than Coal RL. This means that Coal SK has a great potential as a suitable candidate coal for long-term CO2 sequestration in unmineable seams based on the compatible sorption characteristics;
- Both coals have shown that the excess sorption isotherm data generated under in situ reservoir conditions can be well-modelled by the Langmuir–Freundlich (Sips) and Tóth adsorption isotherm models. However, the Dubinin–Astakhov (DA) model is unable to describe the same data under comparable conditions. Generally, the appropriateness of fit in the three models applied decreased in the following order: Tóth > Sips > DA based on their combined residual analysis. This consistency between the experimental and model results indicates that the Sips and Tóth models are the most practicable for predicting the sorption behaviour by nonlinear regression, further suggesting that these models may be practically applicable when simulating CO2–coal sorption systems using various simulation-based tools;
- From the sorption thermodynamics of the study, the isosteric heat of adsorption for CO2 on the coals exhibits an upward trend with increasing adsorption loading, suggesting that the primary interactions among the adsorbed CO2 molecules are interactive forces. This implies that the coal matrix has many molecular levels of CO2 adsorption with different energy intensities.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SK | Somkhele Coal |
RL | Ermelo Coal |
HPVAS | High-pressure volumetric adsorption system |
L-F | Langmuir–Freundlich |
DA | Dubinin–Astakhove |
D-R | Dubinin–Radushkhevich |
RMSD | Root-mean-square deviation |
EoR | Error of regression |
References
- Lutyński, M.; Kielar, J.; Gajda, D.; Mikeska, M.; Najser, J. High-Pressure Adsorption of CO2 and CH4 on Biochar—A Cost-Effective Sorbent for In Situ Applications. Materials 2023, 16, 1266. [Google Scholar] [CrossRef]
- Al-Qadri, A.A.; Nasser, G.A.; Adamu, H.; Muraza, O.; Saleh, T.A. CO2 utilization in syngas conversion to dimethyl ether and aromatics: Roles and challenges of zeolites-based catalysts. J. Energy Chem. 2023, 79, 418–449. [Google Scholar] [CrossRef]
- Arora, V.; Saran, R.K.; Kumar, R.; Yadav, S. Separation and sequestration of CO2 in geological formations. Mater. Sci. Energy Technol. 2019, 2, 647–656. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- McLaughlin, H.; Littlefield, A.A.; Menefee, M.; Kinzer, A.; Hull, T.; Sovacool, B.K.; Bazilian, M.D.; Kim, J.; Griffiths, S. Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world. Renew. Sustain. Energy Rev. 2023, 177, 113215. [Google Scholar] [CrossRef]
- Bashir, A.; Ali, M.; Patil, S.; Aljawad, M.S.; Mahmoud, M.; Al-Shehri, D.; Hoteit, H.; Kamal, M.S. Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth-Sci. Rev. 2024, 249, 104672. [Google Scholar] [CrossRef]
- DMRE. Integrated Resource Plan; DMRE: Gauteng, Pretoria, South Africa, 2019. [Google Scholar]
- Surridge, A.; Kamrajh, N.; Melamane, G.; Mosia, T.; Phakula, D.; Tshivhase, T. CCUS Progress in South Africa. In Proceedings of the CCUS Progress South Africa, Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 15–18 March 2021; pp. 15–18. [CrossRef]
- Yan, J.; Zhang, Z. Carbon Capture, Utilization and Storage (CCUS). Appl. Energy 2019, 235, 1289–1299. [Google Scholar] [CrossRef]
- Chen, S.; Liu, J.; Zhang, Q.; Teng, F.; McLellan, B.C. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew. Sustain. Energy Rev. 2022, 167, 112537. [Google Scholar] [CrossRef]
- Ding, Y.; Li, S.; Zhu, B.; Lin, H.; Zhang, J.; Tan, J.; Chen, W. Research on the feasibility of storage and estimation model of storage capacity of CO2 in fissures of coal mine old goaf. Int. J. Min. Sci. Technol. 2023, 33, 675–686. [Google Scholar] [CrossRef]
- Xu, H.; Sang, S.; Yang, J.; Liu, H. CO2 storage capacity of anthracite coal in deep burial depth conditions and its potential uncertainty analysis: A case study of the No. 3 coal seam in the Zhengzhuang Block in Qinshui Basin, China. Geosci. J. 2021, 25, 715–729. [Google Scholar] [CrossRef]
- Liu, C.; Sang, S.; Zhang, K.; Song, F.; Wang, H.; Fan, X. Effects of temperature and pressure on pore morphology of different rank coals: Implications for CO2 geological storage. J. CO2 Util. 2019, 34, 343–352. [Google Scholar] [CrossRef]
- Safaei-Farouji, M.; Misch, D.; Sachsenhofer, R.F. A review of influencing factors and study methods of carbon capture and storage (CCS) potential in coals. Int. J. Coal Geol. 2023, 277, 104351. [Google Scholar] [CrossRef]
- Viljoen, J.; Stapelberg, F.; Cloete, M. Technical Report on the Geological Storage of Carbon Dioxide in South Africa; Council for Geoscience: Pretoria, South Africa, 2010. [Google Scholar]
- Okolo, G.N.; Everson, R.C.; Neomagus, H.W.J.P.; Sakurovs, R.; Grigore, M.; Bunt, J.R. The carbon dioxide, methane and nitrogen high-pressure sorption properties of South African bituminous coals. Int. J. Coal Geol. 2019, 209, 40–53. [Google Scholar] [CrossRef]
- Mabuza, M.; Premlall, K.; Onyango, M.; Daramola, M.O. Low-high temperature flue gas direct injection in south African bituminous and anthracite coals sorption capacity assessment. Curr. Sci. 2018, 115, 682–691. [Google Scholar] [CrossRef]
- Maphala, T.; Wagner, N.J. Effects of CO2 storage in coal on coal properties. Energy Procedia 2012, 23, 426–438. [Google Scholar] [CrossRef]
- Premlall, K.; Kipyegon, L. In-situ temperature-depth profile evaluation of South African unmineable coal seams to determine CO2 sequestration potential. Can. J. Chem. Eng. 2023, 102, 1381–1394. [Google Scholar] [CrossRef]
- Mavhengere, P.; Wagner, N.; Malumbazo, N. Influences of SO2 contamination in long term supercritical CO2 treatment on the physical and structural characteristics of the Zululand Basin caprock and reservoir core samples. J. Pet. Sci. Eng. 2022, 215, 110554. [Google Scholar] [CrossRef]
- Okolo, G.N.; Neomagus, H.W.J.P.; Everson, R.C.; Roberts, M.J.; Bunt, J.R.; Sakurovs, R.; Mathews, J.P. Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques. Fuel 2015, 158, 779–792. [Google Scholar] [CrossRef]
- Mabuza, M.; Premlall, K. Alterations in the textural structural properties of coals exposed to flue gas for long-term carbon sequestration. Carbon Capture Sci. Technol. 2023, 7, 100115. [Google Scholar] [CrossRef]
- Liu, S.; Harpalani, S. Evaluation of in situ stress changes with gas depletion of coalbed methane reservoirs. J. Geophys. Res.: Solid Earth 2014, 119, 6263–6276. [Google Scholar] [CrossRef]
- Hou, X.; Liu, S.; Zhu, Y.; Yang, Y. Experimental and theoretical investigation on sorption kinetics and hysteresis of nitrogen, methane, and carbon dioxide in coals. Fuel 2020, 268, 117349. [Google Scholar] [CrossRef]
- Ozdemir, E. Role of pH on CO2 sequestration in coal seams. Fuel 2016, 172, 130–138. [Google Scholar] [CrossRef]
- Bhebhe, S. The Effect of Coal Composition on Carbon Dioxide Adsorption. University of the Witwatersrand, Johannesburg. 2008. Available online: https://wiredspace.wits.ac.za/server/api/core/bitstreams/9889914d-b08b-4f6d-9860-9e150170311e/content (accessed on 22 July 2024).
- Gertenbach, R.; May. Methane and Carbon Dioxide Sorption Studies on South African Coals. University of Stellenbosch, Stellenbosch. 2009. Available online: https://scholar.sun.ac.za/items/8de8c487-a584-4978-a5e3-ced42cf13d1a (accessed on 27 July 2024).
- Flores, R.M. Chapter 5-Coal Composition and Reservoir Characterization. In Coal and Coalbed Gas; Flores, R.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 235–299. [Google Scholar]
- Ojeda-López, R.; Domínguez-Ortiz, A.; Felipe, C.; Cervantes-Uribe, A.; Pérez-Hermosillo, I.J.; Esparza-Schulz, J.M. Isosteric Enthalpy Behavior of CO2 Adsorption on Micro-Mesoporous Materials: Carbon Microfibers (CMFs), SBA-15, and Amine-Functionalized SBA-15. J. Compos. Sci. 2021, 5, 102. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Erdogan, F.O. Freundlich, Langmuir, Temkin, DR and Harkins-Jura Isotherm Studies on the Adsorption of CO2 on Various Porous Adsorbents. Int. J. Chem. React. Eng. 2019, 17, 5. [Google Scholar] [CrossRef]
- Kumar, H.; Mishra, M.K.; Mishra, S. Sorption capacity of Indian coal and its variation with rank parameters. J. Pet. Explor. Prod. Technol. 2019, 9, 2175–2184. [Google Scholar] [CrossRef]
- Tambaria, T.N.; Sugai, Y.; Anggara, F. Examination of the Factors Inhibiting CO2 Adsorption on Coal: A Case Study from Shallow-Depth Low-Rank Coal Seams. ACS Omega 2023, 8, 42329–42339. [Google Scholar] [CrossRef]
- Jasper, E.E.; Ajibola, V.O.; Onwuka, J.C. Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Appl. Water Sci. 2020, 10, 132. [Google Scholar] [CrossRef]
- Li, D.; Liu, Q.; Weniger, P.; Gensterblum, Y.; Busch, A.; Krooss, B.M. High-pressure sorption isotherms and sorption kinetics of CH4 and CO2 on coals. Fuel 2010, 89, 569–580. [Google Scholar] [CrossRef]
- Di, C.; Wei, Y.; Wang, K.; Deng, P.; Chen, B.; Shen, L.; Chen, Z. The impact of pressurization-induced decrease of capillary pressure and residual saturation on geological carbon dioxide storage. J. Clean. Prod. 2025, 486, 144573. [Google Scholar] [CrossRef]
- Jeong, S.R.; Park, J.H.; Lee, J.H.; Jeon, P.R.; Lee, C.-H. Review of the adsorption equilibria of CO2, CH4, and their mixture on coals and shales at high pressures for enhanced CH4 recovery and CO2 sequestration. Fluid Phase Equilibria 2023, 564, 113591. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Nuhnen, A.; Janiak, C. A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal–organic frameworks, MOFs. Dalton Trans. 2020, 49, 10295–10307. [Google Scholar] [CrossRef]
- Schalkwyk, X.; Thovhogi, T. Evaluation of the Coalbed Methane Prospectivity of the Ermelo Coalfield (Amersfoort Project Area), Main Karoo Basin, South Africa. In Proceedings of the Fifth EAGE Eastern Africa Petroleum Geoscience Forum, Online, 30 March–1 April 2021; Volume 1, pp. 1–6. [Google Scholar] [CrossRef]
- Bordy, E.M.; Catuneanu, O. Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa. J. Afr. Earth Sci. 2001, 33, 605–629. [Google Scholar] [CrossRef]
- Mabuza, M.; Premlall, K.; Daramola, M.O. Physicochemical characterization of South African coals upon short-term flue gas exposure using conventional and advanced techniques. Mater. Sci. Energy Technol. 2020, 3, 25–35. [Google Scholar] [CrossRef]
- Mou, P.; Pan, J.; Niu, Q.; Wang, Z.; Li, Y.; Song, D. Coal Pores: Methods, Types, and Characteristics. Energy Fuels 2021, 35, 7467–7484. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Zhou, W.; Sun, L.; Huang, Z. Study on Pore Structure of Tectonically Deformed Coals by Carbon Dioxide Adsorption and Nitrogen Adsorption Methods. Energies 2025, 18, 887. [Google Scholar] [CrossRef]
- Premlall, K.; Mabuza, M.M.; Potgieter, J.H. Design, construction and performance reliability verification evaluation of a high pressure volumetric sorption system for CO2 sorption in South African coals. Pet. Coal 2019, 61, 813–835. [Google Scholar]
- Zhao, H.; Bai, Z.; Guo, Z.; Kong, L.; Yuchi, W.; Li, H.; Bai, J.; Li, W. In situ study of the decomposition of pyrite in coal during hydropyrolysis. J. Anal. Appl. Pyrolysis 2021, 154, 105024. [Google Scholar] [CrossRef]
- Dutta, P.; Harpalani, S.; Prusty, B. Modeling of CO2 sorption on coal. Fuel 2008, 87, 2023–2036. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, S. Experimental and theoretical characterization of methane and CO2 sorption hysteresis in coals based on Langmuir desorption. Int. J. Coal Geol. 2017, 171, 49–60. [Google Scholar] [CrossRef]
- Haifei, L.; Wenbin, W.; Shugang, L.; Min, Y.; Yang, B. Experimental study on thermodynamics characteristics of CH4 and CO2 adsorption on coal. Saf. Sci. Eng. Technol. 2018, 28, 129–134. [Google Scholar] [CrossRef]
- Tsai, S.C.; Juang, K.W. Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite. J. Radioanal. Nucl. Chem. 2000, 243, 741–746. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Azizian, S.; Eris, S. Chapter 6-Adsorption isotherms and kinetics. In Interface Science and Technology; Ghaedi, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 33, pp. 445–509. [Google Scholar]
- Babatunde, K.A.; Negash, B.M.; Jufar, S.R.; Ahmed, T.Y.; Mojid, M.R. Adsorption of gases on heterogeneous shale surfaces: A review. J. Pet. Sci. Eng. 2022, 208, 109466. [Google Scholar] [CrossRef]
- Tóth, J. Uniform interpretation of gas/solid adsorption. Adv. Colloid Interface Sci. 1995, 55, 1–239. [Google Scholar] [CrossRef]
- Serafin, J.; Dziejarski, B. Application of isotherms models and error functions in activated carbon CO2 sorption processes. Microporous Mesoporous Mater. 2023, 354, 112513. [Google Scholar] [CrossRef]
- Tóth, J. State equation of the solid-gas interface layers. Acta Chim. Hung. 1971, 69, 311–328. [Google Scholar]
- Palodkar, A.V.; Anupam, K.; Roy, Z.; Saha, B.B.; Halder, G.N. High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system. Heat Mass Transf. 2017, 53, 3155–3166. [Google Scholar] [CrossRef]
- Chakraborty, A.; Sun, B. An adsorption isotherm equation for multi-types adsorption with thermodynamic correctness. Appl. Therm. Eng. 2014, 72, 190–199. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Renaud, O.; Victoria-Feser, M.-P. A robust coefficient of determination for regression. J. Stat. Plan. Inference 2010, 140, 1852–1862. [Google Scholar] [CrossRef]
- Asuero, A.G.; Sayago, A.; González, A.G. The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Abdulsalam, J.; Mulopo, J.; Bada, S.O.; Oboirien, B. Equilibria and Isosteric Heat of Adsorption of Methane on Activated Carbons Derived from South African Coal Discards. ACS Omega 2020, 5, 32530–32539. [Google Scholar] [CrossRef]
- Askalany, A.A.; Saha, B.B. Derivation of isosteric heat of adsorption for non-ideal gases. Int. J. Heat Mass Transf. 2015, 89, 186–192. [Google Scholar] [CrossRef]
- Giraldo, L.; Rodriguez-Estupiñán, P.; Moreno-Piraján, J.C. Isosteric Heat: Comparative Study between Clausius–Clapeyron, CSK and Adsorption Calorimetry Methods. Processes 2019, 7, 203. [Google Scholar] [CrossRef]
- Tun, H.; Chen, C.-C. Isosteric heat of adsorption from thermodynamic Langmuir isotherm. Adsorption 2021, 27, 979–989. [Google Scholar] [CrossRef]
- Pan, H.; Ritter, J.A.; Balbuena, P.B. Examination of the Approximations Used in Determining the Isosteric Heat of Adsorption from the Clausius−Clapeyron Equation. Langmuir 1998, 14, 6323–6327. [Google Scholar] [CrossRef]
- Raganati, F.; Alfe, M.; Gargiulo, V.; Chirone, R.; Ammendola, P. Isotherms and thermodynamics of CO2 adsorption on a novel carbon-magnetite composite sorbent. Chem. Eng. Res. Des. 2018, 134, 540–552. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, H.; Zhang, P.; Guo, W. Investigation of the isosteric heat of adsorption for supercritical methane on shale under high pressure. Adsorpt. Sci. Technol. 2019, 37, 590–606. [Google Scholar] [CrossRef]
- Dutta, P.; Chatterjee, A.; Bhowmik, S. Isotherm characteristics and impact of the governing factors on supercritical CO2 adsorption properties of coals. J. CO2 Util. 2020, 39, 101150. [Google Scholar] [CrossRef]
- Czerw, K.; Baran, P.; Szczurowski, J.; Zarębska, K. Sorption and Desorption of CO2 and CH4 in Vitrinite- and Inertinite-Rich Polish Low-Rank Coal. Nat. Resour. Res. 2021, 30, 543–556. [Google Scholar] [CrossRef]
- Kang, J.; Elsworth, D.; Fu, X.; Liang, S.; Chen, H. Contribution of thermal expansion on gas adsorption to coal sorption-induced swelling. Chem. Eng. J. 2022, 432, 134427. [Google Scholar] [CrossRef]
- Ranathunga, A.S.; Perera, M.S.A.; Ranjith, P.G.; Rathnaweera, T.D.; Zhang, X.G. Effect of Coal Rank on CO2 Adsorption Induced Coal Matrix Swelling with Different CO2 Properties and Reservoir Depths. Energy Fuels 2017, 31, 5297–5305. [Google Scholar] [CrossRef]
- Abdulsalam, J.; Mulopo, J.; Bada, S.; Oboirien, B. Natural gas storage properties of adsorbents synthesised from three different coal waste in South Africa. Fuel 2020, 267, 117157. [Google Scholar] [CrossRef]
- Serafin, J.; Dziejarski, B.; Cruz Junior, O.F.; Sreńscek-Nazzal, J. Design of highly microporous activated carbons based on walnut shell biomass for H2 and CO2 storage. Carbon 2023, 201, 633–647. [Google Scholar] [CrossRef]
- Masum, S.A.; Sadasivam, S.; Chen, M.; Thomas, H.R. Low Subcritical CO2 Adsorption–Desorption Behavior of Intact Bituminous Coal Cores Extracted from a Shallow Coal Seam. Langmuir 2023, 39, 1548–1561. [Google Scholar] [CrossRef]
- Murphy, O.P.; Vashishtha, M.; Palanisamy, P.; Kumar, K.V. A Review on the Adsorption Isotherms and Design Calculations for the Optimization of Adsorbent Mass and Contact Time. ACS Omega 2023, 8, 17407–17430. [Google Scholar] [CrossRef]
- Belhachemi, M.; Addoun, F. Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl. Water Sci. 2011, 1, 111–117. [Google Scholar] [CrossRef]
- Dong, Z.; Zhou, J.; Kuang, N.; Zhang, J.; Tian, S.; Xian, X. Enhanced Modeling of CO2 Adsorption on Shale: Incorporating Volumetric Effects for Accurate Isotherm Predictions. Energy Fuels 2025, 39, 3188–3202. [Google Scholar] [CrossRef]
- Alexander, D.L.J.; Tropsha, A.; Winkler, D.A. Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models. J. Chem. Inf. Model. 2015, 55, 1316–1322. [Google Scholar] [CrossRef]
- Pourhakkak, P.; Taghizadeh, A.; Taghizadeh, M.; Ghaedi, M.; Haghdoust, S. Chapter 1-Fundamentals of adsorption technology. In Interface Science and Technology; Ghaedi, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 33, pp. 1–70. [Google Scholar]
- Goel, C.; Mohan, S.; Dinesha, P. CO2 capture by adsorption on biomass-derived activated char: A review. Sci. Total Environ. 2021, 798, 149296. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Du, X.; Li, K.; Zhou, J.; Zhang, D.; Abbas, N.; Cheng, Y.; Wu, T.; Liu, G.; He, C. Competitive adsorption of CO2/CH4 on coal: Insights from thermodynamics. Alex. Eng. J. 2024, 97, 114–126. [Google Scholar] [CrossRef]
- Skoczylas, N.; Pajdak, A.; Kudasik, M.; Palla Braga, L.T. CH4 and CO2 sorption and diffusion carried out in various temperatures on hard coal samples of various degrees of coalification. J. Nat. Gas Sci. Eng. 2020, 81, 103449. [Google Scholar] [CrossRef]
- Siperstein, F.R.; Avendaño, C.; Ortiz, J.J.; Gil-Villegas, A. Analytic expressions for the isosteric heat of adsorption from adsorption isotherm models and two-dimensional SAFT-VR equation of state. AIChE J. 2021, 67, e17186. [Google Scholar] [CrossRef]
Maceral Composition (vol.%, mmf) | Proximate Analysis (wt.%, adb) | Ultimate Analysis (wt.%, adb) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coal ID | Vitr. | Lipt. | Inert. | RoV% | M | A | VM | FC | C | H | N | S * | O |
RL | 12.8 | 3.3 | 74.2 | 0.64 | 4.5 | 17.9 | 49.8 | 27.8 | 75.1 | 4.6 | 1.9 | 0.6 | 17.8 |
SK | 84.0 | 0.0 | 11.5 | 2.24 | 1.0 | 17.3 | 7.6 | 74.1 | 82.0 | 3.1 | 1.9 | 0.9 | 12.1 |
Specific Surface Area (m2/g) | Micropore Specific Surface Area (m2/g) | Micropore Volume × 10−2 (cm3/g) | Average Micropore Diameter (Å) | ||
---|---|---|---|---|---|
Coal ID | BET | Langmuir | D-R | H-K | H-K |
RL | 77.4 ± 2.2 | 82.3 ± 3.3 | 116.7 | 0.0273 | 3.74 ± 0.06 |
SK | 114.3 ± 1.2 | 121.8 ± 2.2 | 181.9 | 0.039723 | 4.21 ± 0.04 |
Coal RL | Coal SK | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model | Isotherm Parameter | 30 °C | 40 °C | 50 °C | 60 °C | 30 °C | 40 °C | 50 °C | 60 °C |
Langmuir–Freundlich(Sips) | Nsm (mmol/g) | 4.030 | 3.661 | 3.177 | 2.485 | 4.859 | 4.046 | 3.336 | 2.814 |
KLF (MPa−1) | 0.443 | 0.389 | 0.373 | 0.408 | 0.390 | 0.386 | 0.410 | 0.400 | |
n | 0.674 | 0.700 | 0.540 | 0.503 | 0.614 | 0.677 | 0.600 | 0.513 | |
R2 | 0.993 | 0.986 | 0.993 | 0.991 | 0.990 | 0.995 | 0.995 | 0.993 | |
RMSD (±) | 0.070 | 0.090 | 0.066 | 0.059 | 0.107 | 0.058 | 0.051 | 0.057 | |
χ2 | 0.018 | 0.040 | 0.036 | 0.037 | 0.048 | 0.014 | 0.016 | 0.033 | |
EoR (%) | 2.512 | 3.805 | 3.107 | 3.398 | 3.295 | 2.197 | 2.262 | 2.923 | |
Tóth | Nsm (mmol/g) | 3.806 | 3.179 | 2.822 | 2.246 | 4.266 | 3.619 | 3.008 | 2.549 |
KT (MPa−1) | 0.062 | 0.011 | 0.000 | 0.000 | 0.002 | 0.018 | 0.005 | 0.000 | |
nT | 2.105 | 3.091 | 5.483 | 6.720 | 4.181 | 2.716 | 3.584 | 5.540 | |
R2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | |
RMSD (±) | 0.054 | 0.065 | 0.024 | 0.017 | 0.042 | 0.033 | 0.019 | 0.028 | |
χ2 | 0.009 | 0.031 | 0.003 | 0.002 | 0.010 | 0.005 | 0.001 | 0.005 | |
EoR (%) | 1.956 | 2.745 | 1.109 | 0.981 | 1.307 | 1.262 | 0.863 | 1.463 | |
Dubinin–Astakhov | W0 (mmol/g) | 3.447 | 3.091 | 2.953 | 2.479 | 4.115 | 3.448 | 3.081 | 2.781 |
E (kJ/mol) | 5.426 | 5.243 | 4.690 | 5.087 | 4.799 | 5.107 | 5.204 | 5.058 | |
n | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
R2 | 0.994 | 0.994 | 0.991 | 0.989 | 0.992 | 0.995 | 0.993 | 0.990 | |
RMSD (±) | 0.224 | 0.196 | 0.219 | 0.197 | 0.298 | 0.203 | 0.205 | 0.210 | |
χ2 | 0.199 | 0.164 | 0.260 | 0.262 | 0.303 | 0.176 | 0.219 | 0.266 | |
EoR (%) | 8.065 | 8.245 | 10.305 | 11.335 | 9.208 | 7.692 | 9.042 | 10.680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabuza, M.M.; Mahlobo, M.G.R. Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov. Energies 2025, 18, 2646. https://doi.org/10.3390/en18102646
Mabuza MM, Mahlobo MGR. Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov. Energies. 2025; 18(10):2646. https://doi.org/10.3390/en18102646
Chicago/Turabian StyleMabuza, Major Melusi, and Mandlenkosi George Robert Mahlobo. 2025. "Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov" Energies 18, no. 10: 2646. https://doi.org/10.3390/en18102646
APA StyleMabuza, M. M., & Mahlobo, M. G. R. (2025). Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov. Energies, 18(10), 2646. https://doi.org/10.3390/en18102646