The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections
Abstract
:1. Introduction
2. Salt Cavern for Hydrocarbon Storage
2.1. Storage of Gas (Gas Storage)
2.2. Salt Cavern Oil Storage
2.3. Comparison Between Gas and Oil Storage
3. Compressed Air Energy Storage
3.1. Basic Principles
3.2. CAES Salt Cavern Type Characteristics
- (1)
- Comparison of sealing mechanism
- (2)
- Mechanical response characteristics
- (3)
- Calibration of energy storage capacity
- (4)
- Economic comparison of construction cycle
3.3. Current Situation and Future Direction of CAES
- (1)
- Pressure-coupling optimization of surface–underground system
- (2)
- Thermodynamic constraint modeling of energy storage capacity
- (3)
- Geomechanical design of dynamic pressure window
4. Storage of Hydrogen and Others
4.1. Abandoned Salt Caverns for Hydrogen Storage
4.2. Indirect Hydrogen Storage Ideas
5. Waste Filling in Abandoned Salt Caverns
5.1. Disposal of Low-Level Nuclear Waste
5.2. Disposal of Industrial Waste
- (1)
- Establish standard system for salt cavern waste disposal
- (2)
- Develop a collaborative development model of waste disposal and energy storage in salt cavern
- (3)
- Break through the key technical bottleneck of waste disposal in salt caverns
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, S.; Ding, G.; Wanyan, Q.; Li, K.; Li, H. Feasibility study on transformation of abandoned salt caverns into underground gas storage in China. In Proceedings of the 56th U.S. Rock Mechanics/Geomechanics Symposium, Santa Fe, NM, USA, 26–29 June 2022. Paper Number: ARMA-2022-0810. [Google Scholar]
- Zhang, G.; Wang, T.; Shi, Q.; Liu, Y.; Zhang, H. Situations of the existing old salt cavern in China and stability of a new reconstruction scheme for underground gas storage. Environ. Earth Sci. 2024, 83, 391. [Google Scholar] [CrossRef]
- Bérest, P.; Bergues, J.; Brouard, B.; Durup, J.; Guerber, B. A salt-cavern abandonment test. Int. J. Rock Mech. Min. Sci. 2001, 38, 357–368. [Google Scholar] [CrossRef]
- Yang, C.; Li, Y.; Chen, F. Advances in researches of the mechanical behaviors of deep bedded salt rocks in China. In Proceedings of the 43rd US Rock Mechanics Symposium & 4th US—Canada Rock Mechanics Symposium, Asheville, NC, USA, 28 June–1 July 2009. [Google Scholar]
- Liang, W.; Yang, C.; Zhao, Y.; Dusseault, M.; Liu, J. Experimental investigation of mechanical properties of bedded salt rock. Int. J. Rock Mech. Min. Sci. 2007, 44, 400–411. [Google Scholar] [CrossRef]
- Li, J.; Tang, Y.; Shi, X.; Xu, W.; Yang, C. Modeling the construction of energy storage salt caverns in bedded salt. Appl. Energy 2019, 255, 113866. [Google Scholar] [CrossRef]
- Liu, W.; Dong, Y.; Zhang, Z.; Li, L.; Jiang, D.; Fan, J.; Chen, J.; Zhang, X.; Wan, J.; Li, Z. Optimization of operating pressure of hydrogen storage salt cavern in bedded salt rock with multi-interlayers. Int. J. Hydrogen Energy 2024, 58, 974–986. [Google Scholar] [CrossRef]
- Ge, X.; Huang, J.; Zhou, R. Research of interlayer dip angle effect on stability of salt cavern energy and carbon storages in bedded salt rock. Geoenergy Sci. Eng. 2024, 243, 213291. [Google Scholar] [CrossRef]
- Michael, R.; Martin, P. Terra infirma: Understanding salt tectonics. Earth-Sci. Rev. 2007, 82, 1–28. [Google Scholar]
- Duffy, O.; Hudec, M.; Peel, F.; Apps, G.; Bump, A.; Moscardelli, L.; Dooley, T.; Bhattacharya, S.; Wisian, K.; Shuster, M. The role of salt tectonics in the energy transition: An overview and future challenges. Tektonika 2023, 1, 1. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Liu, J.; Li, Y.; Cui, Z.; Zhang, H.; Wang, L.; Sui, L. Stability of the bedded key roof above abandoned horizontal salt cavern used for underground gas storage. Bull. Eng. Geol. Environ. 2020, 79, 4205–4219. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Wang, L.; Chen, Y.; Wu, Y.; Ma, D.; Zhang, K. Mechanism of collapse sinkholes induced by solution mining of salt formations and measures for prediction and prevention. Bull. Eng. Geol. Environ. 2019, 78, 1401–1415. [Google Scholar] [CrossRef]
- Bérest, P. Cases, causes and classifications of craters above salt caverns. Int. J. Rock Mech. Min. Sci. 2017, 100, 318–329. [Google Scholar] [CrossRef]
- Liu, W.; Chen, J.; Jiang, D.; Shi, X.; Li, Y.; Daemen, J.J.K.; Yang, C. Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC). Appl. Energy 2016, 178, 703–720. [Google Scholar]
- Li, Q.; Zhao, D.; Yin, J.; Zhou, X.; Li, Y.; Chi, P.; Han, Y.; Ansari, U.; Cheng, Y. Sediment instability caused by gas production from hydrate-bearing sediment in Northern South China Sea by horizontal wellbore: Evolution and mechanism. Nat. Resour. Res. 2023, 32, 1595–1620. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Qiang, L.; Wang, F.; Cheng, Y. Sediment instability caused by gas production from hydrate-bearing sediment in Northern South China Sea by horizontal wellbore: Sensitivity analysis. Nat. Resour. Res. 2025. early access. [Google Scholar]
- Thoms, R.; Gehle, R. A brief history of salt cavern use. In Proceedings of the 8th World Salt Symposium, The Hague, The Netherlands, 7–11 May 2000; pp. 207–214. [Google Scholar]
- Liu, W.; Li, Q.; Yang, C.; Shi, X.; Wan, J.; Jurado, M.J.; Li, Y.; Jiang, D.; Chen, J.; Qiao, W.; et al. The role of underground salt caverns for large-scale energy storage: A review and prospects. Energy Storage Mater. 2023, 63, 103045. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Q.; Ma, H.; Li, Y.; Zhang, C. Geomechanical investigation for abandoned salt caverns used for solid waste disposal. Bull. Eng. Geol. Environ. 2020, 80, 1205–1218. [Google Scholar] [CrossRef]
- Berlepsch, T.; Haverkamp, B. Salt as a host rock for the geological repository for nuclear waste. Elements 2016, 12, 257–262. [Google Scholar] [CrossRef]
- Li, J.; Wan, J.; Liu, H.; Jurado, M.J.; He, Y.; Yuan, G.; Xia, Y. Stability analysis of a typical salt cavern gas storage in the Jintan Area of China. Energies 2022, 15, 4167. [Google Scholar] [CrossRef]
- Minkley, W.; Knauth, M.; Fabig, T.; Farag, N. Stability and integrity of salt caverns under consideration of hydro-mechanical loading. Mech. Behav. Salt VIII 2015, 8, 217–227. [Google Scholar]
- Pajonpai, N.; Bissen, R.; Pumjan, S.; Henk, A. Shape design and safety evaluation of salt caverns for CO2 storage in northeast Thailand. Int. J. Greenh. Gas Control 2022, 120, 103773. [Google Scholar] [CrossRef]
- da Costa, A.M.; da Costa, P.V.M.; Udebhulu, O.D.; Azevedo, R.C.; Ebecken, N.F.F.; Miranda, A.C.O.; de Eston, S.M.; de Tomi, G.; Meneghini, J.R.; Nishimoto, K.; et al. Potential of storing gas with high CO2 content in salt caverns built in ultra-deep water in Brazil. Greenh. Gases-Sci. Technol. 2019, 9, 79–94. [Google Scholar] [CrossRef]
- Wei, X.; Ban, S.; Shi, X.; Li, P.; Li, Y.; Zhu, S.; Yang, K.; Bai, W.; Yang, C. Carbon and energy storage in salt caverns under the background of carbon neutralization in China. Energy 2023, 272, 127120. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, L. Analysis of the possibility of carbon dioxide storage in China’s underground salt caverns. Adv. Mater. Res. 2014, 1073–1076, 2092–2097. [Google Scholar] [CrossRef]
- Yang, C.; Wang, T.; Li, Y.; Yang, H.; Li, J.; Qu, D.; Xu, B.; Yang, Y.; Daemen, J. Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl. Energy 2015, 137, 467–481. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Fan, J.; Li, Y.; Wang, L. Evaluation of potential for salt cavern gas storage and integration of brine extraction: Cavern utilization, Yangtze River Delta Region. Nat. Resour. Res. 2020, 29, 3275–3290. [Google Scholar] [CrossRef]
- Schulze, O.; Popp, T.; Kern, H. Development of damage and permeability in deforming rock salt. Eng. Geol. 2001, 61, 163–180. [Google Scholar] [CrossRef]
- Cyran, K.; Toboa, T.; Kamiński, P. Experimental study on mechanically driven migration of fluids in rock salt. Eng. Geol. 2023, 313, 106975. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Shi, X. Cavitation Control and Safety Assessment of Salt Cavern Gas Storage; Science Press: Beijing, China, 2012. [Google Scholar]
- Zhang, H.; Yue, X.; Wanyan, Q.; Li, K.; Ran, L.; Gou, Y. Predicting the stability of the rock around a reconstructed reservoir for gas injection and production in an old brine salt mine cavity. Arab. J. Sci. Eng. 2025, 50, 5081–5100. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, Y.; Zhao, X. Prospects of and challenges to natural gas industry development in China. Nat. Gas Ind. B 2014, 1, 1–13. [Google Scholar]
- Ma, X.; Zheng, D.; Shen, R.; Wang, C.; Luo, J.; Sun, J. Key technologies and practice for gas field storage facility construction of complex geological conditions in China. Pet. Explor. Dev. 2018, 45, 507–520. [Google Scholar] [CrossRef]
- Chen, W.; Wu, G.; Dai, Y.; Yang, C. Stability analysis of abandoned salt caverns used for underground gas storage. Chin. J. Rock Mech. Eng. 2006, 25, 848–854. [Google Scholar]
- Huang, L.; Fang, Y.; Hou, Z.; Xie, Y.; Wu, L.; Luo, J.; Wang, Q.; Guo, Y.; Sun, W. A preliminary site selection system for underground hydrogen storage in salt caverns and its application in Pingdingshan, China. Deep Undergr. Sci. Eng. 2024, 3, 117–128. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, Z.; Li, T.; Zhao, Y. Mathematical principle and engineering application of end-mining technology with non-pillar. Earth Energy Sci. 2025, 1, 85–97. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.; Shi, X.; Zhao, K.; Yang, C. Prediction method for calculating the porosity of insoluble sediments for salt cavern gas storage applications. Energy 2021, 221, 119815. [Google Scholar] [CrossRef]
- NATO Bombs Libyan Oil Port, Hits Methanol Tank Causing Methanol Leak. Available online: https://www.zhiguf.com/focusnews_detail/1453264 (accessed on 16 August 2024).
- IEA 2023 Report. Available online: https://news.zgw.com/newsDetail/1763763 (accessed on 20 August 2024).
- Mortazavi, A.; Nasab, H. Analysis of the behavior of large underground oil storage caverns in salt rock. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 602–624. [Google Scholar] [CrossRef]
- Wan, M.; Ji, W.; Wan, J.; He, Y.; Li, J.; Liu, W.; Jurado, M. Compressed air energy storage in salt caverns in China: Development and outlook. Adv. Geo-Energy Res. 2023, 9, 54–67. [Google Scholar] [CrossRef]
- Wei, X.; Shi, X.; Li, Y.; Li, P.; Ban, S.; Xue, T.; Zhu, S.; Liu, H.; Yang, C. Field experimental and theoretical research on creep shrinkage mechanism of ultra-deep energy storage salt cavern. Rock Mech. Rock Eng. 2024, 57, 287–305. [Google Scholar] [CrossRef]
- Raju, M.; Khaitan, S. Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant. Appl. Energy 2012, 89, 474–481. [Google Scholar] [CrossRef]
- Nguyen, T. Integration of compressed air energy storage with wind turbine to provide energy source for combustion turbine generator. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Europe, Istanbul, Turkey, 12–15 October 2014. [Google Scholar]
- Guo, H.; Xu, Y.; Chen, H.; Zhou, X. Thermodynamic characteristics of a novel supercritical compressed air energy storage system. Energy Convers. Manag. 2016, 115, 167–177. [Google Scholar] [CrossRef]
- Shuke Group’s Wan Mingzhong Publishes Latest Research on Salt Cavern Compressed Air Energy Storage. Available online: https://www.esplaza.com.cn/article-4064-1.html (accessed on 26 August 2023).
- World’s First Non-Combustion Salt Cavern Compressed Air Energy Storage Plant, Built in China, Achieves 60% Conversion Efficiency. Available online: https://baijiahao.baidu.com/s?id=1710300009320628094&wfr=spider&for=pc (accessed on 20 October 2021).
- Fourmeau, M.; Liu, W.; Li, Z.; Nelias, D.; Fan, J.; Tian, H.; Liu, W. Research status of creep–fatigue characteristics of salt rocks and stability of compressed air storage in salt caverns. Earth Energy Sci. 2025, 1, 98–116. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, Z.; Wang, J.; Zhang, Y.; Wang, T. Creep properties and constitutive model of salt rock. Adv. Civ. Eng. 2021, 2021, 8867673. [Google Scholar] [CrossRef]
- Li, Z.; Fan, J.; Fourmeau, M.; Chen, J.; Jiang, D.; Nelias, D. Long-term deformation of rock salt under creep-fatigue stress loading paths: Modeling and prediction. Int. J. Rock Mech. Min. Sci. 2024, 181, 105861. [Google Scholar] [CrossRef]
- Honório, H.T.; Houben, M.; Bisdom, K.; van der Linden, A.; de Borst, K.; Sluys, L.J.; Hajibeygi, H. A multi-step calibration strategy for reliable parameter determination of salt rock mechanics constitutive models. Int. J. Rock Mech. Min. Sci. 2024, 183, 105922. [Google Scholar] [CrossRef]
- Caglayan, D.; Weber, N.; Heinrichs, H.; Linen, J.; Stolten, D. Technical potential of salt caverns for hydrogen storage in Europe. Int. J. Hydrogen Energy 2020, 45, 6793–6805. [Google Scholar] [CrossRef]
- El Aichouni, I.; Mridekh, A.; Nabil, N.; Rachidi, S.; El Hamraoui, H.; El Mansouri, B.; Essalih, A. A review of salt mechanical behavior, stability and site selection of underground hydrogen storage in salt cavern-Moroccan case. J. Energy Storage 2025, 114, 115813. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, X.; Yang, C.; Li, Y.; Li, H.; Yang, K.; Wei, X.; Bai, W.; Liu, X. Hydrogen loss of salt cavern hydrogen storage. Renew. Energy 2023, 218, 119267. [Google Scholar] [CrossRef]
- Debossam, J.; de Souza, G.; Souto, H.; Pires, A. Numerical simulation of single-phase two-component non-Darcy flow in naturally fractured reservoirs for enhanced gas recovery and carbon dioxide storage. Braz. J. Chem. Eng. 2024, 41, 197–219. [Google Scholar] [CrossRef]
- Hafsa, M.; Haseeb, A.; Pariyapat, N.; Shabbir, H.G. Exploring the spectrum: An environmental examination of hydrogen’s diverse colors. Energy Adv. 2024, 4, 224–238. [Google Scholar]
- Yi, W.; Li, Q.; Zhao, X.; Liu, W.; Du, J. Feasibility assessment of solution mining and gas storage in salt caverns: A case study of the Sanshui salt mine. Front. Energy Res. 2023, 11, 1301765. [Google Scholar] [CrossRef]
- Pan, G.; Bai, Y.; Song, H.; Qu, Y.; Wang, Y.; Wang, X. Hydrogen fuel cell power system-Development perspectives for hybrid topologies. Energies 2023, 16, 2680. [Google Scholar] [CrossRef]
- Yang, C.; Wang, G.; Shi, X.; Zhu, S.; Zheng, Z.; Wei, L.; Fan, J. Demands and challenges of large scale salt cavern hydrogen storage in China. Rock Soil Mech. 2024, 45, 1–19. [Google Scholar]
- Song, G.; Li, G.; Wen, Q. A review and prospect of the application history of salt caverns in the world. Nat. Gas Ind. 2004, 24, 116–118. [Google Scholar]
- Xu, Y.; Yang, C.; Chen, F.; Li, Y.; Ji, G. Experimental study on one-dimensional settlement of alkali wastes back filled to abandoned salt caverns. Chin. J. Geotech. Eng. 2014, 36, 589–596. [Google Scholar]
- Ji, G.; Yang, C.; Xu, Y.; Zong, X.; Zuo, J. Laboratory test study of sedimentation and consolidation behaviors of alkali waste backfill in salt caverns. Rock Soil Mech. 2014, 35, 407–412. [Google Scholar]
- Ji, G.; Yang, C.; Liu, W.; Zuo, J.; Lei, G. An experimental study on the engineering properties of backfilled alkali wastes reinforced by fly ash. Rock Soil Mech. 2015, 36, 2169–2176. [Google Scholar]
- Shi, X.; Li, Y.; Yang, C.; Xu, Y.; Ma, H.; Liu, W.; Ji, G. Influences of filling abandoned salt caverns with alkali wastes on surface subsidence. Environ. Earth Sci. 2015, 73, 6939–6950. [Google Scholar] [CrossRef]
- Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.; Grunewald, B. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns; Argonne National Laboratory: Washington, DC, USA, 1996. [Google Scholar]
- Veil, J.; Smith, K.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G. Disposal of NORM–Contaminated Oil Field Wastes in Salt Caverns; Argonne National Laboratory: Washington, DC, USA, 1998. [Google Scholar]
- Zhang, S.; Pu, C.; Xie, H.; Zhang, B.; Fan, H.; Wang, R.; Jia, S. Multi-field coupling effects in fractured-vuggy gas storage reservoirs: A high-precision large-scale spatiotemporal numerical simulation. Geoenergy Sci. Eng. 2025, 246, 213643. [Google Scholar] [CrossRef]
Project | Single Chamber Volume (10⁴ m3) | Pressure Range (MPa) | Equivalent Energy Storage (GWh) |
---|---|---|---|
Jintan, Jiangsu | 22 | 10–12.5 | 1.2 |
Yingcheng, Hubei Province | 40 | 7–9.5 | 2.8 |
Horizontal well cavern | ≥100 | 14–17 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Liu, W.; Wang, H.; Li, K. The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections. Energies 2025, 18, 2634. https://doi.org/10.3390/en18102634
Luo Y, Liu W, Wang H, Li K. The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections. Energies. 2025; 18(10):2634. https://doi.org/10.3390/en18102634
Chicago/Turabian StyleLuo, Yun, Wei Liu, Hongxing Wang, and Keyao Li. 2025. "The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections" Energies 18, no. 10: 2634. https://doi.org/10.3390/en18102634
APA StyleLuo, Y., Liu, W., Wang, H., & Li, K. (2025). The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections. Energies, 18(10), 2634. https://doi.org/10.3390/en18102634