Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = abandoned salt cavern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6297 KB  
Review
Artificial Intelligence for Underground Gas Storage Engineering: A Review with Bibliometric and Knowledge-Graph Insights
by Jiasong Chen, Guijiu Wang, Xuefeng Bai, Chong Duan, Jun Lu, Luokun Xiao, Xinbo Ge, Guimin Zhang and Jinlong Li
Energies 2025, 18(23), 6354; https://doi.org/10.3390/en18236354 - 3 Dec 2025
Viewed by 321
Abstract
Underground gas storage (UGS), encompassing hydrogen, natural gas, and compressed air, is a cornerstone of large-scale energy transition strategies, offering seasonal balancing, security of supply, and integration with renewable energy systems. However, the complexity of geological conditions, multiphysics coupling, and operational uncertainties pose [...] Read more.
Underground gas storage (UGS), encompassing hydrogen, natural gas, and compressed air, is a cornerstone of large-scale energy transition strategies, offering seasonal balancing, security of supply, and integration with renewable energy systems. However, the complexity of geological conditions, multiphysics coupling, and operational uncertainties pose significant challenges for UGS design, monitoring, and optimization. Artificial intelligence (AI)—particularly machine learning and deep learning—has emerged as a powerful tool to overcome these challenges. This review systematically examines AI applications in underground storage types such as salt caverns, depleted hydrocarbon reservoirs, abandoned mines, and lined rock caverns using bibliometric and knowledge-graph analysis of 176 publications retrieved from the Web of Science Core Collection. The study revealed a rapid surge in AI-related research on UGS since 2017, with underground hydrogen storage emerging as the most dynamic and rapidly expanding research frontier. The results reveal six dominant research frontiers: (i) AI-assisted geological characterization and property prediction; (ii) physics-informed proxy modeling and multi-physics simulation; (iii) gas–rock–fluid interaction, wettability, and interfacial behavior prediction; (iv) injection-production process optimization; (v) intelligent design and construction of underground storage, especially salt caverns; and (vi) intelligent monitoring, optimization, and risk management. Despite these advances, challenges persist in data scarcity, physical consistency, and generalization. Future efforts should focus on hybrid physics-informed AI, digital twin-enabled operation, and multi-gas comparative frameworks to achieve safe, efficient, and intelligent underground storage systems aligned with global carbon neutrality. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

24 pages, 4083 KB  
Review
The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections
by Yun Luo, Wei Liu, Hongxing Wang and Keyao Li
Energies 2025, 18(10), 2634; https://doi.org/10.3390/en18102634 - 20 May 2025
Cited by 1 | Viewed by 1897
Abstract
The existence of a large number of abandoned salt caverns in China has posed a great threat to geological safety and environmental protection, and it also wasted enormous underground space resources. To address such problems, comprehensive utilization of these salt caverns has been [...] Read more.
The existence of a large number of abandoned salt caverns in China has posed a great threat to geological safety and environmental protection, and it also wasted enormous underground space resources. To address such problems, comprehensive utilization of these salt caverns has been proposed both currently and in the future, mainly consisting of energy storage and waste disposal. Regarding energy storage in abandoned salt caverns, the storage media, such as gas, oil, compressed air and hydrogen, have been introduced respectively in terms of the current development and future implementation, with site-selection criteria demonstrated in detail. The recommended burial depth of abandoned salt caverns for gas storage is 1000–1500 m, while it should be less than 1000 m for oil storage. Salt cavern compressed air storage has more advantages in construction and energy storage economics. Salt cavern hydrogen storage imposes stricter requirements on surrounding rock tightness, and its location should be near the hydrogen production facilities. The technical idea of storing ammonia in abandoned salt caverns (indirect hydrogen storage) has been proposed to enhance the energy storage density. For the disposal of wastes, including low-level nuclear waste and industrial waste, the applicable conditions, technical difficulties, and research prospects in this field have been reviewed. The disposal of nuclear waste in salt caverns is not currently recommended due to the complex damage mechanism of layered salt rock and the specific locations of salt mines in China. Industrial waste disposal is relatively mature internationally, but in China, policy and technical research require strengthening to promote its application. Furthermore, considering the recovery of salt mines and the development of salt industries, the cooperation between energy storage regions and salt mining regions has been discussed. The economic and environmental benefits of utilizing abandoned salt caverns have been demonstrated. This study provides a solution to handle the abandoned salt caverns in China and globally. Full article
Show Figures

Figure 1

35 pages, 9411 KB  
Review
A Review of Evaporite Beds Potential for Storage Caverns: Uncovering New Opportunities
by Sheida Sheikheh, Minou Rabiei and Vamegh Rasouli
Appl. Sci. 2025, 15(9), 4685; https://doi.org/10.3390/app15094685 - 23 Apr 2025
Cited by 2 | Viewed by 2505
Abstract
Salt caverns serve as underground storage for crude oil, natural gas, compressed air, carbon dioxide, and hydrogen. Key stages of cavern development for storage purposes include design, construction, storage, and abandonment. The design phase addresses optimal cavern shape, size, pillar dimensions, number of [...] Read more.
Salt caverns serve as underground storage for crude oil, natural gas, compressed air, carbon dioxide, and hydrogen. Key stages of cavern development for storage purposes include design, construction, storage, and abandonment. The design phase addresses optimal cavern shape, size, pillar dimensions, number of caverns, the impact of interbeds, and cyclic loading while considering the creep behavior of salt and the mechanical behavior of surrounding layers. During this phase, geological factors such as depth, thickness, and the quality of salt are considered. For construction, two main methods—direct leaching and reverse leaching—are chosen based on design specifications. The storage stage includes the injection and withdrawal of gases in a cyclic manner with specific injection rates and pressures. After 30 to 50 years, the caverns are plugged and abandoned. The geological limitation of salt domes makes it essential to look for more bedded evaporites. This study provides a comprehensive review of bedded evaporites, including their origin and depositional environment. The stability of caverns in all these stages heavily relies on geomechanical analysis. Factors affecting the geomechanics of bedded salts such as mineralogy, physical properties, and mechanical properties are reviewed. A list of bedded evaporites in the U.S. and Canada, including their depth, thickness, and existing caverns, is provided. Additionally, this study discusses the main geomechanical considerations influencing design, solution mining, cyclic loading, and abandonment of caverns in bedded salt caverns. Full article
Show Figures

Figure 1

24 pages, 40689 KB  
Article
Research on the Seismic Response Law of Complete Morphology of Butted Well Salt Cavern for Large-Scale Underground Energy Storage
by Haitao Li, Dewen Zheng, Kang Li, Qiqi Wanyan, Lina Ran, Yanxia Kou, Song Bai, Jianan Wu, Jianchao Jia, Yunfei Wen, Yuanqing Wang, Hongyan Xing, Kuoyuan Zhu and Jingen Deng
Appl. Sci. 2025, 15(2), 564; https://doi.org/10.3390/app15020564 - 9 Jan 2025
Cited by 1 | Viewed by 1497
Abstract
The conversion of abandoned butted well salt cavities into underground storage facilities holds immense significance for safeguarding energy security and improving the ecological environment. A significant barrier to the reconstruction of these old cavities is the limited comprehension of their complete morphology, caused [...] Read more.
The conversion of abandoned butted well salt cavities into underground storage facilities holds immense significance for safeguarding energy security and improving the ecological environment. A significant barrier to the reconstruction of these old cavities is the limited comprehension of their complete morphology, caused by residue coverage. The three-dimensional seismic techniques excel in identifying complex geological structures but have a limited understanding of underground old salt cavity morphology, thus the seismic forward simulation method is utilized to study their seismic response patterns. Based on 3D seismic data, well logging data, and measured cavity shape parameters from the Yexian salt mine region in Henan Province, China, a geological model and observation system were established. The seismic response characteristics of the butted well salt cavern model, encompassing five distinct morphological attributes such as cavity spacing, cavity diameter, cavity height, sediment height, and horizontal connection channel height, were thoroughly investigated. The findings show that the cavity roof exhibits a distinctive “two peaks sandwiching a strong valley” feature, with the positions of the valley and roof remaining aligned and serving as a reliable indicator for identifying the cavity’s top surface. The width of the roof waveform exhibits an exponential amplification effect relative to the cavern width. The residue’s top surface presents an “upward-opening arc” wave peak with a downward shift that diminishes as the residue’s height increases. This peak forms a circular feature with the cavity roof reflection waveform, and the residue’s top surface is always located in the upper half of this circular waveform. The horizontal connection channel’s top and bottom surfaces exhibit contrasting reflection patterns, with the top position aligning with the reflection trough and the bottom reflection waveform shifting downward as the channel height increases. The brine cavern, residue, and bottom of the salt cavern mainly exhibit chaotic reflections. There are distinct identification characteristics on the cavity top, residue top, and connecting channel top in forward simulation. The research findings provide valuable guidance for identifying the morphology of the underground real butted well salt cavity based on 3D seismic data and accelerating the construction of underground energy storage facilities. Full article
(This article belongs to the Special Issue Applied Research on Energy Harvesting and Storage)
Show Figures

Figure 1

33 pages, 7015 KB  
Article
A Novel Polymerized Sulfur Concrete for Underground Hydrogen Storage in Lined Rock Caverns
by Abdel-Mohsen O. Mohamed and Maisa El Gamal
Sustainability 2024, 16(19), 8595; https://doi.org/10.3390/su16198595 - 3 Oct 2024
Cited by 4 | Viewed by 2693
Abstract
Hydrogen is increasingly recognized as a viable solution to meet the growing global energy demand, making large-scale hydrogen storage essential for successfully realizing a full-scale hydrogen economy. Geological formations, such as depleted oil and gas reservoirs, salt caverns, and aquifers, have been identified [...] Read more.
Hydrogen is increasingly recognized as a viable solution to meet the growing global energy demand, making large-scale hydrogen storage essential for successfully realizing a full-scale hydrogen economy. Geological formations, such as depleted oil and gas reservoirs, salt caverns, and aquifers, have been identified as potential storage options. Additionally, unconventional methods like manufactured lined rock caverns and abandoned coal mines are gaining interest. This study introduces polymerized sulfur concrete (PSC) as a promising alternative to replace the current construction systems, which rely on Portland cement concrete and lining materials like stainless steel or polypropylene plastic liners. The paper presents the formulation of PSC, optimization of its compositional design, and evaluation of its physico-mechanical-chemical properties. The results demonstrate that PSC offers excellent mechanical strength, chemical resistance, and low permeability, making it highly suitable for underground hydrogen storage in lined rock caverns. The results showed that the manufactured PSC exhibits excellent physicochemical properties in terms of compressive strength (35–58 MPa), density (2.277–2.488 g/cm3), setting time (30–60 min), curing time (24 h), air content (4–8%), moisture absorption potential (0.17–0.3%), maximum volumetric shrinkage (1.69–2.0%), and maximum service temperature (85–90 °C). Moreover, the PSC is nonconductive and classified with zero flame spread classification and fuel contribution. In addition, the SPC was found to be durable in harsh environmental conditions involving pressure, humidity, and pH variations. It is also capable of resisting corrosive environments. In addition, the statistical modeling indicates that an overall mixture proportion of 32.5 wt.% polymerized sulfur, 32.5 wt.% dune sands, 17.5 wt. % LFS, and 17.5 wt.% GGBFS appear optimal for density values ranging from 2.43 to 2.44 g/cm3 and compressive strength ranging from 52.0 to 53.2 MPa, indicating that the PSC can sustain formation pressure up to about 5.3 km below the ground surface. Therefore, by addressing the critical limitations of traditional materials, PSC proves to be a durable, environmentally sustainable solution for lined rock caverns, reducing the risk of hydrogen leakage and ensuring the integrity of storage systems. Full article
Show Figures

Figure 1

19 pages, 5407 KB  
Review
Utilization Methods and Practice of Abandoned Mines and Related Rock Mechanics under the Ecological and Double Carbon Strategy in China—A Comprehensive Review
by Kun Du, Junjie Xie, Manoj Khandelwal and Jian Zhou
Minerals 2022, 12(9), 1065; https://doi.org/10.3390/min12091065 - 24 Aug 2022
Cited by 13 | Viewed by 4885
Abstract
Governance of abandoned mines has become a pressing issue for China. The utilization of abandoned mines is a technology that can solve the problem of governance and recreate the value of mines, which is in line with the current strategic goals of ecological [...] Read more.
Governance of abandoned mines has become a pressing issue for China. The utilization of abandoned mines is a technology that can solve the problem of governance and recreate the value of mines, which is in line with the current strategic goals of ecological protection and double carbon in China. In this paper, the various utilization models and the advances in rock mechanics of abandoned mines across the globe are summarized and reviewed. The utilization models of abandoned mines can be categorized into four aspects: Energy storage, Waste treatment, Ecological restoration, and carbon dioxide (CO2) sequestration. There are a number of applications and uses of abandoned mines, such as pumped storage, compressed air storage, salt cavern gas/oil storage construction, carbon dioxide storage and utilization, radioactive waste disposal and treatment, and tourism development. Various progress practices of abandoned mines are discussed in detail with emphasis on the national conditions of China. The basic rock mechanics problems and advances involved in the construction of the facilities related to the utilization of abandoned mines are discussed and evaluated. The establishment of relevant research and experimental platforms will contribute to the sustainable development of China’s mining industry and the improvement of clean technologies. Full article
(This article belongs to the Topic Green Mining)
Show Figures

Figure 1

Back to TopTop