Trigeneration Systems: A State-of-the-Art Review
Abstract
:1. Introduction
Scale | Application | Power Range | References |
---|---|---|---|
Micro-scale | Residential homes, small businesses, small-scale commercial buildings | <20 kW | [4,5,6] |
Small-scale | Small to medium-sized commercial buildings, hospitals, office buildings, and schools | 20 kW to 1 MW | [3,7,8,9,10,11] |
Medium-scale | Large universities, manufacturing facilities, or commercial buildings with substantial energy needs | 1 to 10 MW | [12] |
Large-scale | Large industrial plants, multi-building campus systems, or district cooling/heating networks. Possible connection to national energy grids or district systems | >10 MW | [13] |
2. Usual Components Depending on the Type of Trigeneration System
2.1. Combustion Based/High-Temperature Prime Movers
2.2. Low-Temperature Prime Movers
2.3. Prime Mover Combinations
2.4. Cooling Systems and Thermally Activated Equipment
2.5. Other Multi-Generation Systems
3. Performance Indicators
3.1. Energy Efficiency
3.2. Exergetic Efficiency
3.3. Economic Performance
3.4. Environmental Performance
3.5. Energy Storage Performance Indicators
4. Comparison Between Different Plant Configurations and Technologies
4.1. Combustion Prime Mover Comparison
4.2. Comparison of Plant Configurations for Low-Grade Heat-Based Prime Movers
4.2.1. Serial Systems
4.2.2. Parallel Systems
4.2.3. Serial–Parallel Systems
5. Possible Improvements for CCHP Systems
5.1. Operating Strategies and Analyses
5.2. Renewable Energy Sources and ESSs (Energy Storage Systems)
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
- The following abbreviations, greek letters, indices and symbols are used in this manuscript:
AC | Absorption chiller |
AFC | Alkaline Fuel Cell |
AGE | Avoided Green house gases Emissions |
CCHP | Combined Cooling Heat and Power |
CHP | Combined Heat and Power |
COP | Coefficient Of Performance |
GC | Goswami Cycle |
GHG | Green House Gases |
GT | Gas Turbine |
ICE | Internal Combustion Engine |
KC | Kalina Cycle |
LCA | Life Cycle Analysis |
LCE | Levelized Cost of Electricity |
LCOA | Levelized Cost Of Ammonia |
LCOE | Levelized Cost Of Energy |
LCOH | Levelized Cost Of green Hydrogen |
LCOP | Levelized cost Of electricity Production |
LExCOE | Levelized Exergy Cost Of Electricity |
MCFC | Molten Carbonate Fuel Cell |
ORC | Organic Rankine Cycle |
PAFC | Phosphoric Acid Fuel Cell |
PEMFC | Proton Exchange Membrane Fuel Cell |
PES | Primary Energy Savings |
SOFC | Solid Oxyde Fuel Cell |
SRC | Steam Rankine Cycle |
Greek letters | |
efficiency | |
Exergetic efficiency | |
operating efficiency | |
Maintenance factor | |
D | Destroyed |
DI | Disposal |
elec | Electricity |
F | Fuel |
irr | Irreversibilty |
OM | Operation and maintenance |
P | Product |
PF | Pollutant formation |
R | Reference |
Symbols | |
Exergy rate, W | |
Mass, kg/s | |
Heat transfer rate, W | |
Entropy rate, W/K | |
Power, W | |
Cost rate, €/h | |
A | Exchange area, m2 |
Ex | Exergy, J |
ex | Specific exergy, J/kg |
h | Specific enthalpy, J/kg |
m | Mass, kg |
Q | Heat, J |
s | Entropy, J/K.kg |
T | Temperature, K |
t | time, s |
Z | Investment cost, € |
N | Number of yearly operating hours, h |
References
- Wu, D.W.; Wang, R.Z. Combined cooling, heating and power: A review. Prog. Energy Combust. Sci. 2006, 32, 459–495. [Google Scholar] [CrossRef]
- Liu, M.; Shi, Y.; Fang, F. Combined cooling, heating and power systems: A survey. Renew Sustain. Energy Rev. 2014, 35, 1–22. [Google Scholar] [CrossRef]
- Wegener, M.; Malmquist, A.; Isalgué, A.; Martin, A. Biomass-fired combined cooling, heating and power for small scale applications—A review. Renew. Sustain. Energy Rev. 2018, 96, 392–410. [Google Scholar] [CrossRef]
- Nondy, J. 4E analyses of a micro-CCHP system with a polymer exchange membrane fuel cell and an absorption cooling system in summer and winter modes. Int. J. Hydrogen Energy 2024, 52, 886–904. [Google Scholar] [CrossRef]
- Cozzolino, R. Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller. Energies 2018, 11, 315. [Google Scholar] [CrossRef]
- Romdhane, J.; Louahlia-Gualous, H. Energy assessment of PEMFC based MCCHP with absorption chiller for small scale French residential application. Int. J. Hydrogen Energy 2018, 43, 19661–19680. [Google Scholar] [CrossRef]
- Wang, J.-J.; Mao, T. Cost allocation and sensitivity analysis of multi-products from biomass gasification combined cooling heating and power system based on the exergoeconomic methodology. Energy Convers Manag. 2015, 105, 230–239. [Google Scholar] [CrossRef]
- Wang, J.-J.; Yang, K.; Xu, Z.-L.; Fu, C. Energy and exergy analyses of an integrated CCHP system with biomass air gasification. Appl. Energy 2015, 142, 317–327. [Google Scholar] [CrossRef]
- Gao, P.; Li, W.; Cheng, Y.; Tong, Y.; Dai, Y.; Wang, R. Thermodynamic performance assessment of a CCHP system driven by different composition gas. Appl. Energy 2014, 136, 599–610. [Google Scholar] [CrossRef]
- Gao, P.; Dai, Y.; Tong, Y.; Dong, P. Energy matching and optimization analysis of waste to energy CCHP (combined cooling, heating and power) system with exergy and energy level. Energy 2015, 79, 522–535. [Google Scholar] [CrossRef]
- Hossain, A.K.; Thorpe, R.; Vasudevan, P.; Sen, P.K.; Critoph, R.E.; Davies, P.A. Omnigen: Providing electricity, food preparation, cold storage and pure water using a variety of local fuels. Renew Energy 2013, 49, 197–202. [Google Scholar] [CrossRef]
- Abbasi, M.H.; Sayyaadi, H.; Tahmasbzadebaie, M. A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application. Appl. Therm. Eng. 2018, 135, 389–405. [Google Scholar] [CrossRef]
- Lucarelli, G.; Genovese, M.; Florio, G.; Fragiacomo, P. 3E (energy, economic, environmental) multi-objective optimization of CCHP industrial plant: Investigation of the optimal technology and the optimal operating strategy. Energy 2023, 278, 127837. [Google Scholar] [CrossRef]
- Dincer, I.; Rosen, M.A. Chapter 1—Thermodynamic fundamentals. In Exergy, 3rd ed.; Dincer, I., Rosen, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–22. ISBN 9780128243725. [Google Scholar] [CrossRef]
- Ma, Z.; Dong, F.; Wang, J.; Zhou, Y.; Feng, Y. Optimal design of a novel hybrid renewable energy CCHP system considering long and short-term benefits. Renew. Energy 2023, 206, 72–85. [Google Scholar] [CrossRef]
- Schifflechner, C.; Kuhnert, L.; Irrgang, L.; Dawo, F.; Kaufmann, F.; Wieland, C.; Spliethoff, H. Geothermal trigeneration systems with Organic Rankine Cycles: Evaluation of different plant configurations considering part load behaviour. Renew. Energy 2023, 207, 218–233. [Google Scholar] [CrossRef]
- Ramos, A.; Chatzopoulou, M.A.; Guarracino, I.; Freeman, J.; Markides, C.N. Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment. Energy Convers. Manag. 2017, 150, 838–850. [Google Scholar] [CrossRef]
- Calise, F.; d’Accadia, M.D.; Vanoli, L. Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT). Energy Convers. Manag. 2012, 60, 214–225. [Google Scholar] [CrossRef]
- Wei, R.; Li, H.; Chen, Y.; Hu, Y.; Long, H.; Li, J.; Xu, C.C. 9.07—Environmental Issues Related to Bioenergy. In Comprehensive Renewable Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 92–106. ISBN 9780128197349. [Google Scholar] [CrossRef]
- Hussain, C.M.I.; Norton, B.; Duffy, A. Technological assessment of different solar-biomass systems for hybrid power generation in Europe. Renew. Sustain. Energy Rev. 2017, 68, 1115–1129. [Google Scholar] [CrossRef]
- Sánchez-Lozano, D.; Aguado, R.; Escámez, A.; Awaafo, A.; Jurado, F.; Vera, D. Techno-economic assessment of a hybrid PV-assisted biomass gasification CCHP plant for electrification of a rural area in the Savannah region of Ghana. Appl. Energy 2025, 377, 124446. [Google Scholar] [CrossRef]
- Aguado, R.; Vera, D.; López-García, D.A.; Torreglosa, J.P.; Jurado, F. Techno-Economic Assessment of a Gasification Plant for Distributed Cogeneration in the Agrifood Sector. Appl. Sci. 2021, 11, 660. [Google Scholar] [CrossRef]
- Aguado, R.; Escámez, A.; Jurado, F.; Vera, D. Experimental assessment of a pilot-scale gasification plant fueled with olive pomace pellets for combined power, heat and biochar production. Fuel 2023, 344, 128127. [Google Scholar] [CrossRef]
- Aguado, R.; Vera, D.; Jurado, F.; Beltrán, G. An integrated gasification plant for electric power generation from wet biomass: Toward a sustainable production in the olive oil industry. Biomass Conv. Bioref. 2022, 1–20. [Google Scholar] [CrossRef]
- Basu, P. Chapter 1—Introduction. In Biomass Gasification, Pyrolysis and Torrefaction, 2nd ed.; Basu, P., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 1–27. ISBN 9780123964885. [Google Scholar] [CrossRef]
- Gluesenkamp, K.; Radermacher, R. 11—Heat-activated cooling technologies for small and micro combined heat and power (CHP) applications. In Woodhead Publishing Series in Energy, Small and Micro Combined Heat and Power (CHP) Systems; Beith, R., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 262–306. ISBN 9781845697952. [Google Scholar] [CrossRef]
- Sonar, D. Chapter 4—Renewable energy based trigeneration systems—Technologies, challenges and opportunities. In Renewable-Energy-Driven Future; Ren, J., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 125–168. ISBN 9780128205396. [Google Scholar] [CrossRef]
- Moussawi, H.A.; Fardoun, F.; Louahlia-Gualous, H. Review of tri-generation technologies: Design evaluation, optimization, decision-making, and selection approach. Energy Convers. Manag. 2016, 120, 157–196. [Google Scholar] [CrossRef]
- Hervé, P.L.; Michael, T.T.; Salomon, N.P.; Joseph, K.; Raphael, M.K.; Jean, N. Energy and exergy analyses of CCHP (combined cooling, heating and power) system based on co-firing of biogas and syngas produced from biomass. Heliyon 2023, 9, e21753. [Google Scholar] [CrossRef]
- Jia, J.; Paul, M.C. Thermodynamic and economic evaluation of a CCHP system with biomass gasifier, Stirling engine, internal combustion engine and absorption chiller. Energy Convers. Manag. 2024, 299, 117803. [Google Scholar] [CrossRef]
- Wang, J.-J.; Xu, Z.-L.; Jin, H.-G.; Shi, G.; Fu, C.; Yang, K. Design optimization and analysis of a biomass gasification based BCHP system: A case study in Harbin, China. Renew Energy 2014, 71, 572–583. [Google Scholar] [CrossRef]
- Wu, D.; Yu, H.; Harvey, A.; Roskilly, A.P. Micro distributed energy system driven with preheated Croton megalocarpus oil—A performance and particulate emission study. Appl. Energy 2013, 112, 1383–1392. [Google Scholar] [CrossRef]
- Coronado, C.R.; Yoshioka, J.T.; Silveira, J.L. Electricity, hot water and cold water production from biomass. Energetic and economical analysis of the compact system of cogeneration run with woodgas from a small downdraft gasifier. Renew Energy 2011, 36, 1861–1868. [Google Scholar] [CrossRef]
- Parise, J.A.R.; Castillo Martínez, L.C.; Marques, R.P.; Mena, J.B.; Vargas, J.V.C. A study of the thermodynamic performance and CO2 emissions of a vapour compression bio-trigeneration system. Appl. Therm. Eng. 2011, 31, 1411–1420. [Google Scholar] [CrossRef]
- Qian, Y.; Sun, S.; Ju, D.; Shan, X.; Lu, X. Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines. Renew Sustain. Energy Rev. 2017, 69, 50–58. [Google Scholar] [CrossRef]
- Sui, L.; Zhou, Q.; Alsenani, T.R.; Ahmad, S.F.; Muhammad, T.; Pourtadayyon, M. Multi-level eco-friendly heat recovery process integrated into a gas turbine cycle of an innovative CCHP-desalination system: Assessment and optimization of the thermo-economic-environmental aspects. Desalination 2025, 597, 118323. [Google Scholar] [CrossRef]
- Nondy, J.; Gogoi, T.K. Tri-objective optimization of two recuperative gas turbine-based CCHP systems and 4E analyses at optimal conditions. Appl. Energy 2022, 323, 119582. [Google Scholar] [CrossRef]
- Nondy, J.; Gogoi, T.K. 4E analyses of an intercooled-recuperative gas turbine-based CCHP system: Parametric analysis and tri-objective optimization. Therm. Sci. Eng. Prog. 2023, 39, 101719. [Google Scholar] [CrossRef]
- Jana, K.; De, S. Polygeneration using agricultural waste: Thermodynamic and economic feasibility study. Renew Energy 2015, 74, 648–660. [Google Scholar] [CrossRef]
- Fan, J.; Hong, H.; Zhu, L.; Jiang, Q.; Jin, H. Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production. Appl Energy 2017, 195, 861–876. [Google Scholar] [CrossRef]
- Chu, S.; Liu, Y.; Xu, Z.; Zhang, H.; Chen, H.; Gao, D. Multi-objective optimization of micro-gas turbine coupled with LCPV/T combined cooling, heating and power (CCHP) system based on following electric load strategy. Energy Convers. Manag. 2024, 299, 117860. [Google Scholar] [CrossRef]
- Velumani, S.; Enrique Guzmán, C.; Peniche, R.; Vega, R. Proposal of a hybrid CHP system: SOFC/microturbine/absorption chiller. Int. J. Energy Res. 2010, 34, 1088–1095. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Keshavarz, A. Prime mover selection for a residential micro-CCHP by using two multi-criteria decision-making methods. Energy Build. 2012, 55, 322–331. [Google Scholar] [CrossRef]
- Roman, K.K.; Alvey, J.B. Selection of prime mover for combined cooling, heating, and power systems based on energy savings, life cycle analysis and environmental consideration. Energy Build. 2016, 110, 170–181. [Google Scholar] [CrossRef]
- Kong, X.Q.; Wang, R.Z.; Huang, X.H. Energy efficiency and economic feasibility of CCHP driven by stirling engine. Energy Convers. Manag. 2004, 45, 1433–1442. [Google Scholar] [CrossRef]
- Singh, U.R.; Kumar, A. Review on solar Stirling engine: Development and performance. Therm. Sci. Eng. Prog. 2018, 8, 244–256. [Google Scholar] [CrossRef]
- Chahartaghi, M.; Sheykhi, M. Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases. Energy 2019, 174, 1251–1266. [Google Scholar] [CrossRef]
- Perozziello, C.; Grosu, L.; Vaglieco, B.M. Free-Piston Stirling Engine Technologies and Models: A Review. Energies 2021, 14, 7009. [Google Scholar] [CrossRef]
- Moghadam, R.S.; Sayyaadi, H.; Hosseinzade, H. Sizing a solar dish Stirling micro-CHP system for residential application in diverse climatic conditions based on 3E analysis. Energy Convers. Manag. 2013, 75, 348–365. [Google Scholar] [CrossRef]
- Bataineh, K. Hybrid fuel-assisted solar-powered stirling engine for combined cooling, heating, and power systems: A review. Energy 2024, 300, 131506. [Google Scholar] [CrossRef]
- Jradi, M.; Riffat, S. Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies. Renew. Sustain. Energy Rev. 2014, 32, 396–415. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, G.; Liang, K.; Dai, W.; Luo, E. A review of Stirling-engine-based combined heat and power technology. Appl. Energy 2021, 294, 116965. [Google Scholar] [CrossRef]
- Lavinia, G.; Cătălina, D.; Stoian, P. Study of a Stirling engine used for domestic micro-cogeneration. Thermodynamic analysis and experiment. Int. J. Energy Res. 2015, 39, 1280–1294. [Google Scholar] [CrossRef]
- Sheykhi, M.; Chahartaghi, M.; Balakheli, M.M.; Kharkeshi, B.A.; Miri, S.M. Energy, exergy, environmental, and economic modeling of combined cooling, heating and power system with Stirling engine and absorption chiller. Energy Convers. Manag. 2019, 180, 183–195. [Google Scholar] [CrossRef]
- Murugan, S.; Horák, B. Tri and polygeneration systems—A review. Renew Sustain. Energy Rev. 2016, 60, 1032–1051. [Google Scholar] [CrossRef]
- Angrisani, G.; Roselli, C.; Sasso, M. Distributed micro trigeneration systems. Prog. Energy Combust. Sci. 2012, 38, 502–521. [Google Scholar] [CrossRef]
- Harrod, J.; Mago, P.J.; Luck, R. Sizing analysis of a combined cooling, heating, and power system for a small office building using a wood waste biomass-fired Stirling engine. Int. J. Energy Res. 2012, 36, 64–74. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.D.; Chen, H.; Zhang, X.; Mondol, J.; Shah, N.; Hewitt, N.J. Performance analysis of biofuel fired trigeneration systems with energy storage for remote households. Appl. Energy 2017, 186, 530–538. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Dai, Y.; Wang, C.-H. Energetic, economic, and environmental assessment of a Stirling engine based gasification CCHP system. Appl. Energy 2021, 281, 116067. [Google Scholar] [CrossRef]
- Udeh, G.T.; Michailos, S.; Ingham, D.; Hughes, K.J.; Ma, L.; Pourkashanian, M. A techno-enviro-economic assessment of a biomass fuelled micro-CCHP driven by a hybrid Stirling and ORC engine. Energy Convers. Manag. 2021, 227, 113601. [Google Scholar] [CrossRef]
- Coralli, A.; Sarruf, B.J.M.; de Miranda, P.E.V.; Osmieri, L.; Specchia, S.; Minh, N.Q. Chapter 2—Fuel Cells. In Science and Engineering of Hydrogen-Based Energy Technologies; de Miranda, P.E.V., Ed.; Academic Press: ambridge, MA, USA, 2019; pp. 39–122. ISBN 9780128142516. [Google Scholar] [CrossRef]
- Soleimani, M.; Mosaffa, A.H.; Fallah, M. Energy, exergy, environmental, and economic evaluations of a proposed CCHP system based on solar, biomass, SOFC, micro-turbine, and LiBr/water absorption chiller. Biomass Bioenergy 2024, 190, 107419. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Yu, Y.; Liu, Z.; Deng, C.; Xie, N. Thermodynamic and parametric analyses of a zero-carbon emission SOFC-based CCHP system using LNG cold energy. Energy 2024, 307, 132748. [Google Scholar] [CrossRef]
- Kazempoor, P.; Dorer, V.; Ommi, F. Evaluation of hydrogen and methane-fuelled solid oxide fuel cell systems for residential applications: System design alternative and parameter study. Int. J. Hydrogen Energy 2009, 34, 8630–8644. [Google Scholar] [CrossRef]
- Malico, I.; Carvalhinho, A.P.; Tenreiro, J. Design of a trigeneration system using a high-temperature fuel cell. Int. J. Energy Res. 2009, 33, 144–151. [Google Scholar] [CrossRef]
- Liu, Z.; Tao, T.; Deng, C.; Yang, S. Proposal and analysis of a novel CCHP system based on SOFC for coalbed methane recovery. Energy 2023, 283, 128996. [Google Scholar] [CrossRef]
- Ozcan, H.; Dincer, I. Performance evaluation of an SOFC based trigeneration system using various gaseous fuels from biomass gasification. Int. J. Hydrogen Energy 2015, 40, 7798–7807. [Google Scholar] [CrossRef]
- Dincer, I.; Bicer, Y. 4.22 Electrochemical Energy Conversion. In Comprehensive Energy Systems; Dincer, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 856–894. ISBN 9780128149256. [Google Scholar] [CrossRef]
- Zhang, T.; Li, M.; Ni, J.; Qian, C. Study of dynamic performance of PEMFC-based CCHP system in a data center based on real-time load and a novel synergistic control method with variable working conditions. Energy 2024, 300, 131637. [Google Scholar] [CrossRef]
- Zhao, J.; Cai, S.; Luo, X.; Tu, Z. Dynamic characteristics and economic analysis of PEMFC-based CCHP systems with different dehumidification solutions. Int. J. Hydrogen Energy 2022, 47, 11644–11657. [Google Scholar] [CrossRef]
- Zhao, J.; Chang, H.; Luo, X.; Tu, Z.; Chan, S.H. A novel type of PEMFC-based CCHP system with independent control of refrigeration and dehumidification. Appl. Therm. Eng. 2022, 204, 117915. [Google Scholar] [CrossRef]
- Chen, X.; Gong, G.; Wan, Z.; Luo, L.; Wan, J. Performance analysis of 5 kW PEMFC-based residential micro-CCHP with absorption chiller. Int. J. Hydrogen Energy 2015, 40, 10647–10657. [Google Scholar] [CrossRef]
- Mahapatra, M.K.; Singh, P. Chapter 24—Fuel Cells: Energy Conversion Technology. In Future Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 511–547. ISBN 9780080994246. [Google Scholar] [CrossRef]
- Choudhury, A.; Chandra, H.; Arora, A. Application of solid oxide fuel cell technology for power generation—A review. Renew. Sustain. Energy Rev. 2013, 20, 430–442. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Fazli, M.; Morad, M.R. A recent review of waste heat recovery by Organic Rankine Cycle. Appl. Therm. Eng. 2018, 143, 660–675. [Google Scholar] [CrossRef]
- Campanari, S.; Fergnani, N. Chapter 1—Cogeneration plants for district heating (and cooling). In Current Trends and Future Developments on (Bio-) Membranes; Basile, A., Spazzafumo, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–30. ISBN 9780128178072. [Google Scholar] [CrossRef]
- Kasaeian, A.; Shamaeizadeh, A.; Jamjoo, B. Combinations of Rankine with ejector refrigeration cycles: Recent progresses and outlook. Appl. Therm. Eng. 2022, 211, 118382. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Peng, Z.; Shu, G. A review of researches on thermal exhaust heat recovery with Rankine cycle. Renew. Sustain. Energy Rev. 2011, 15, 2862–2871. [Google Scholar] [CrossRef]
- Abam, F.I.; Ekwe, E.B.; Effiom, S.O.; Ndukwu, M.C.; Briggs, T.A.; Kadurumba, C.H. Optimum exergetic performance parameters and thermo-sustainability indicators of low-temperature modified organic Rankine cycles (ORCs). Sustain. Energy Technol. Assessments 2018, 30, 91–104. [Google Scholar] [CrossRef]
- Khan, Y.; Singh, P.K. Thermo-economic and environmental evaluation of a novel SOFC based trigeneration system using organic Rankine cycle and cascaded vapor compression-absorption refrigeration system. Therm. Sci. Eng. Prog. 2025, 57, 103097. [Google Scholar] [CrossRef]
- Dincer, I.; Bicer, Y. Chapter 4—Integration of conventional energy systems for multigeneration. In Integrated Energy Systems for Multigeneration; Dincer, I., Bicer, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–221. ISBN 9780128099438. [Google Scholar] [CrossRef]
- Zare, V. A comparative thermodynamic analysis of two tri-generation systems utilizing low-grade geothermal energy. Energy Convers. Manag. 2016, 118, 264–274. [Google Scholar] [CrossRef]
- Kalina, A.I.; Leibowitz, H.M. System Design and Experimental Development of the Kalina Cycle Technology; Energy Systems Laboratory: Bryan, TX, USA, 1987. [Google Scholar]
- Madhawa Hettiarachchi, H.D.; Golubovic, M.; Worek, W.M.; Ikegami, Y. The Performance of the Kalina Cycle System 11(KCS-11) With Low-Temperature Heat Sources. J. Energy Resour. Technol. 2007, 129, 243–247. [Google Scholar] [CrossRef]
- Desideri, U.; Bidini, G. Study of possible optimisation criteria for geothermal power plants. Energy Convers. Manag. 1997, 38, 1681–1691. [Google Scholar] [CrossRef]
- Nasruddin; Usvika, R.; Rifaldi, M.; Noor, A. Energy and exergy analysis of kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation. J. Mech. Sci. Technol. 2009, 23, 1871–1876. [Google Scholar] [CrossRef]
- Madhlopa, A. Chapter 1—Introduction to concentrating solar power. In Solar Receivers for Thermal Power Generation; Madhlopa, A., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–45. ISBN 9780323852715. [Google Scholar] [CrossRef]
- Pastor-Martinez, E.; Rubio-Maya, C.; Ambriz-Díaz, V.M.; Belman-Flores, J.M.; Pacheco-Ibarra, J.J. Energetic and exergetic performance comparison of different polygeneration arrangements utilizing geothermal energy in cascade. Energy Convers. Manag. 2018, 168, 252–269. [Google Scholar] [CrossRef]
- Mohammadi, A.; Mehrpooya, M. Energy and exergy analyses of a combined desalination and CCHP system driven by geothermal energy. Appl. Therm. Eng. 2017, 116, 685–694. [Google Scholar] [CrossRef]
- Bamisile, O.; Huang, Q.; Dagbasi, M.; Adebayo, V.; Okonkwo, E.C.; Ayambire, P.; Al-Ansari, T.; Ratlamwala, T.A.H. Thermo-environ study of a concentrated photovoltaic thermal system integrated with Kalina cycle for multigeneration and hydrogen production. Int. J. Hydrogen Energy 2020, 45, 26716–26732. [Google Scholar] [CrossRef]
- Besarati, S.M.; Goswami, D.Y. 8—Supercritical CO2 and other advanced power cycles for concentrating solar thermal (CST) systems. In Woodhead Publishing Series in Energy, Advances in Concentrating Solar Thermal Research and Technology; Blanco, M.J., Santigosa, L.R., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 157–178. ISBN 9780081005163. [Google Scholar] [CrossRef]
- Ayou, D.S.; Bruno, J.C.; Saravanan, R.; Coronas, A. An overview of combined absorption power and cooling cycles. Renew. Sustain. Energy Rev. 2013, 21, 728–748. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Wang, M. Multi-aspect assessment of a novel geothermal-driven polygeneration arrangement using water electrolyzer, methanol synthesis unit, and Goswami cycle. Appl. Therm. Eng. 2024, 249, 123360. [Google Scholar] [CrossRef]
- Zhou, X.; Cai, Y.; Li, X. Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalination cycles. Energy 2024, 299, 131381. [Google Scholar] [CrossRef]
- Ambriz-Diaz, V.M.; Rubio-Maya, C.; Ruiz-Casanova, E.; Martínez-Patino, J.; PastorMartínez, E. Advanced exergy and exergoeconomic analysis for a polygeneration plant operating in geothermal cascade. Energy Convers. Manag. 2020, 203, 112227. [Google Scholar] [CrossRef]
- Ozcan, H.; Dincer, I. Thermodynamic analysis of an integrated SOFC, solar ORC and absorption chiller for tri-generation applications. Fuel Cells 2013, 13, 781–793. [Google Scholar] [CrossRef]
- Lombardo, W.; Sapienza, A.; Ottaviano, S.; Branchini, L.; Pascale, A.D.; Vasta, S. A CCHP system based on ORC cogenerator and adsorption chiller experimental prototypes: Energy and economic analysis for NZEB applications. Appl. Therm. Eng. 2021, 183, 116119. [Google Scholar] [CrossRef]
- Yousefi, H.; Ghodusinejad, M.H.; Kasaeian, A. Multi-objective optimal component sizing of a hybrid ICE+PV/T driven CCHP microgrid. Appl. Therm. Eng. 2017, 122, 126–138. [Google Scholar] [CrossRef]
- Abbasi, M.; Chahartaghi, M.; Hashemian, S.M. Energy, exergy, and economic evaluations of a CCHP system by using the internal combustion engines and gas turbine as prime movers. Energy Convers. Manag. 2018, 173, 359–374. [Google Scholar] [CrossRef]
- Beigzadeh, M.; Pourfayaz, F.; Ghazvini, M.; Ahmadi, M.H. Energy and exergy analyses of solid oxide fuel cell-gas turbine hybrid systems fed by different renewable biofuels: A comparative study. J. Clean. Prod. 2021, 280, 124383. [Google Scholar] [CrossRef]
- Chinda, P.; Brault, P. The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling. Int. J. Hydrogen Energy 2012, 37, 9237–9248. [Google Scholar] [CrossRef]
- Huang, Z.; You, H.; Chen, D.; Hu, B.; Liu, C.; Xiao, Y.; Prokazov, A.; Lysyakov, A. Thermodynamic, economic, and environmental analyses and multi-objective optimization of a CCHP system based on solid oxide fuel cell and gas turbine hybrid power cycle. Fuel 2024, 368, 131649. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Zhang, H.; Weng, S. Comparison of different fuel cell temperature control systems in an anode and cathode ejector-based SOFC-GT hybrid system. Energy Convers. Manag. 2021, 243, 114353. [Google Scholar] [CrossRef]
- Huang, Y.; Turan, A. Mechanical equilibrium operation integrated modelling of recuperative solid oxide fuel cell—gas turbine hybrid systems: Design conditions and off-design analysis. Appl. Energy 2021, 283, 116237. [Google Scholar] [CrossRef]
- Duong, P.A.; Ryu, B.; Kim, C.; Lee, J.; Kang, H. Energy and Exergy Analysis of an Ammonia Fuel Cell Integrated System for Marine Vessels. Energies 2022, 15, 3331. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A.; Dincer, I.; Hamdullahpur, F. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. J. Power Sources 2010, 195, 2346–2354. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A.; Dincer, I.; Hamdullahpur, F. Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle. Int. J. Hydrogen Energy 2010, 35, 5104–5113. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Pan, J.; Zhao, B.; Yi, Z.; He, X.; Liu, Y.; Li, H. Comprehensive performance assessment of a novel biomass-based CCHP system integrated with SOFC and HT-PEMFC. Energy 2024, 295, 131112. [Google Scholar] [CrossRef]
- You, H.; Zhou, X.; Chen, D.; Xiao, Y.; Hu, B.; Li, G.; Han, J.; Lysyakov, A. Techno-economic assessment of a novel combined cooling, heating, and power (CCHP) system driven by solid oxide fuel cell and solar thermal utilization. Renew. Energy 2025, 240, 122290. [Google Scholar] [CrossRef]
- Chahartaghi, M.; Sheykhi, M. Thermal modeling of a trigeneration system based on beta-type Stirling engine for reductions of fuel consumption and pollutant emission. J. Clean. Prod. 2018, 205, 145–162. [Google Scholar] [CrossRef]
- Chahartaghi, M.; Baghaee, A. Technical and economic analyses of a combined cooling, heating and power system based on a hybrid microturbine (solar-gas) for a residential building. Energy Build. 2020, 217, 110005. [Google Scholar] [CrossRef]
- Deng, J.; Wang, R.Z.; Han, G.Y. A review of thermally activated cooling technologies for combined cooling, heating and power systems. Prog. Energy Combust. Sci. 2011, 37, 172–203. [Google Scholar] [CrossRef]
- She, X.; Cong, L.; Nie, B.; Leng, G.; Peng, H.; Chen, Y.; Zhang, X.; Wen, T.; Yang, H.; Luo, Y. Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review. Appl. Energy 2018, 232, 157–186. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.; Bahadori, M.N. Chapter 3—Artificial production of ice. In Ice-Houses; Dehghani-Sanij, A., Bahadori, M.N., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 89–130. ISBN 9780128222751. [Google Scholar] [CrossRef]
- Paiho, S.; Saastamoinen, H.; Hakkarainen, E.; Similä, L.; Pasonen, R.; Ikäheimo, J.; Rämä, M.; Tuovinen, M.; Horsmanheimo, S. Increasing flexibility of Finnish energy systems—A review of potential technologies and means. Sustain. Cities Soc. 2018, 43, 509–523. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I. 1.28 Energy Optimization. In Comprehensive Energy Systems; Dincer, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1085–1143. ISBN 9780128149256. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, J. Solar Cogeneration/Trigeneration. In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 357–366. ISBN 9780128047927. [Google Scholar] [CrossRef]
- Venegas, M.; de Vega, M.; García-Hernando, N. Performance improvement of absorption chillers: A review on nanoparticle addition. Renew. Sustain. Energy Rev. 2025, 208, 115008. [Google Scholar] [CrossRef]
- Assad, M.E.H.; Nazari, M.A.; Ehyaei, M.A.; Rosen, M.A. Chapter 11—Heat pumps and absorption chillers. In Design and Performance Optimization of Renewable Energy Systems; Assad, M.E.H., Rosen, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 163–180. ISBN 9780128216026. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, X.; Tu, Z. 4E analysis of a SOFC-CCHP system with a LiBr absorption chiller. Energy Rep. 2022, 8, 5284–5295. [Google Scholar] [CrossRef]
- Gimelli, A.; Iossa, R.; Karimi, A.; Muccillo, M.; Braccio, S.; Phan, H.T. Energy-saving and economic feasibility of a battery-integrated combined cooling, heating and power (CCHP) plant through waste heat recovery for H2O-NH3 based absorption, power and cooling (APC) system. Energy 2025, 317, 134640. [Google Scholar] [CrossRef]
- Hassan, A.A.; Elwardany, A.E.; Ookawara, S.; Ahmed, M.; El-Sharkawy, I.I. Integrated adsorption-based multigeneration systems: A critical review and future trends. Int. J. Refrig. 2020, 116, 129–145. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.Y. Theoretical research of a silica gel–water adsorption chiller in a micro combined cooling, heating and power (CCHP) system. Appl. Energy 2009, 86, 958–967. [Google Scholar] [CrossRef]
- Wang, R.Z.; Wu, J.Y.; Xu, Y.X.; Wang, W. Performance researches and improvements on heat regenerative adsorption refrigerator and heat pump. Energy Convers. Manag. 2001, 42, 233–249. [Google Scholar] [CrossRef]
- Li, Y.; Ruzhu, W.Z. Adsorption Refrigeration: A Survey of Novel Technologies. Recent Patents Eng. 2007, 1, 1–21. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Keshavarz, A. 2—CCHP Technology. In Heating and Power; Ebrahimi, M., Keshavarz, A., Cooling, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 35–91. ISBN 9780080999852. [Google Scholar] [CrossRef]
- Hou, X.; Sun, R.; Huang, J.; Geng, W.; Li, X.; Zhang, X. 4E evaluation and optimization of a hybrid CCHP system integrated PEM fuel cell and adsorption chiller. Renew. Energy 2024, 231, 120981. [Google Scholar] [CrossRef]
- Burer, M.; Tanaka, K.; Favrat, D.; Yamada, K. Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers. Energy 2003, 28, 497–518. [Google Scholar] [CrossRef]
- Rey, G.; Ulloa, C.; Cacabelos, A.; Barragáns, B. Performance analysis, model development and validation with experimental data of an ICE-based micro-CCHP system. Appl. Therm. Eng. 2015, 76, 233–244. [Google Scholar] [CrossRef]
- Rybach, L. 7.06—Shallow Systems: Geothermal Heat Pumps. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 189–207. ISBN 9780080878737. [Google Scholar] [CrossRef]
- Chwieduk, D.A. 3.15—Solar-Assisted Heat Pumps. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 495–528. ISBN 9780080878737. [Google Scholar] [CrossRef]
- Urchueguia, J.F. 5—Shallow geothermal and ambient heat technologies for renewable heating. In Renewable Heating and Cooling; Stryi-Hipp, G., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 89–118. ISBN 9781782422136. [Google Scholar] [CrossRef]
- Wegener, M.; Isalgue, A.; Malmquist, A.; Martin, A.; Santarelli, M.; Arranz, P.; Camarra, O. Exergetic model of a small-scale, biomass-based CCHP/HP system for historic building structures. Energy Convers. Manag. X 2021, 12, 100148. [Google Scholar] [CrossRef]
- Ameri, M.; Behbahaninia, A.; Tanha, A.A. Thermodynamic analysis of a tri-generation system based on micro-gas turbine with a steam ejector refrigeration system. Energy 2010, 35, 2203–2209. [Google Scholar] [CrossRef]
- Alexis, G.K. Performance parameters for the design of a combined refrigeration and electrical power cogeneration system. Int. J. Refrig. 2007, 30, 1097–1103. [Google Scholar] [CrossRef]
- Besagni, G.; Mereu, R.; Inzoli, F. Ejector refrigeration: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 53, 373–407. [Google Scholar] [CrossRef]
- Moghimi, M.; Emadi, M.; Ahmadi, P.; Moghadasi, H. 4E analysis and multi-objective optimization of a CCHP cycle based on gas turbine and ejector refrigeration. Appl. Therm. Eng. 2018, 141, 516–530. [Google Scholar] [CrossRef]
- Sadeghi, S.; Ahmadi, P. Thermo-economic optimization of a high-performance CCHP system integrated with compressed air energy storage (CAES) and carbon dioxide ejector cooling system. Sustain. Energy Technol. Assessments 2021, 45, 101112. [Google Scholar] [CrossRef]
- Saladi, J.K.; Suresh, R.; Datta, S.P. Diurnal performance investigation of solar integrated ejector-based Combined Cooling, Heating, and Power (CCHP) system for Indian climate. Appl. Therm. Eng. 2025, 263, 125250. [Google Scholar] [CrossRef]
- Dincer, I.; Rosen, M.A. Chapter 5—Cogeneration, Multigeneration, and Integrated Energy Systems. In Exergy Analysis of Heating, Refrigerating and Air Conditioning; Dincer, I., Rosen, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 169–219. ISBN 9780124172036. [Google Scholar] [CrossRef]
- Khalid, F.; Suhail, S.A.; Akbulut, U. In-depth exergoeconomic analysis and optimization of a solar-wind hybrid trigeneration system for green hydrogen, power, and cooling. Int. J. Hydrogen Energy 2025, In Press. [Google Scholar] [CrossRef]
- Sharifishourabi, M.; Dincer, I.; Mohany, A. A novel trigeneration energy system with two modes of operation for thermal energy storage and hydrogen production. Energy 2024, 304, 132121. [Google Scholar] [CrossRef]
- Yousef, M.S.; Santana, D. Optimizing power, cooling, and hydrogen generation: A thermodynamic and exergoeconomic study of an advanced sCO2 trigeneration system. Case Stud. Therm. Eng. 2024, 53, 103902. [Google Scholar] [CrossRef]
- Şevik, S. Techno-economic evaluation of a grid-connected PV-trigeneration-hydrogen production hybrid system on a university campus. Int. J. Hydrogen Energy 2022, 47, 23935–23956. [Google Scholar] [CrossRef]
- Alabi, T.M.; Agbajor, F.D.; Yang, Z.; Lu, L.; Ogungbile, A.J. Strategic potential of multi-energy system towards carbon neutrality: A forward-looking overview. Energy Built Environ. 2023, 4, 689–708. [Google Scholar] [CrossRef]
- Ghamari, V.; Hajabdollahi, H.; Dehaj, M.S. Comparison of gas turbine and diesel engine in optimal design of CCHP plant integrated with multi-effect and reverse osmosis desalinations. Process Saf. Environ. Prot. 2021, 154, 505–518. [Google Scholar] [CrossRef]
- Nutakki, T.U.K.; Agrawal, M.K.; Chauhdary, S.T.; Ahmad, S.F.; Ayadi, M.; Hedi, E.; Muhammad, T.; Xiao, F. Thermo-economic-environmental analysis of a sustainable heat integration design for biomass-fueled power plant using integration of CCHP and sweater desalination application. Desalination 2024, 577, 117404. [Google Scholar] [CrossRef]
- Parvez, M.; Ahamad, T.; Lal, S.; Khan, O.; Khalid, F.; Yahya, Z. Energy, Exergy, Economic, and environmental assessment of a trigeneration system for combined power, cooling, and water desalination system driven by solar energy. Int. J. Thermofluids 2024, 22, 100694. [Google Scholar] [CrossRef]
- Moghimi, M.; Emadi, M.; Akbarpoor, A.M.; Mollaei, M. Energy and exergy investigation of a combined cooling, heating, power generation, and seawater desalination system. Appl. Therm. Eng. 2018, 140, 814–827. [Google Scholar] [CrossRef]
- Hai, T.; Chaturvedi, R.; Marjan, R.K.; Almujibah, H.; Thuong, T.V.; Soliman, N.F.; El-Shafai, W. Tri-objective optimization of electricity, fresh water, and hydrogen production in a biomass-driven trigeneration plant: Thermoeconomic and environmental evaluation. Energy 2024, 294, 130627. [Google Scholar] [CrossRef]
- Ambriz-Diaz, V.M.; Rubio-Maya, C.; Ibarra, J.J.P.; Galvan Gonzalez, S.R.; Martínez Patino, J. Analysis of a sequential production of electricity, ice and drying of agricultural products by cascading geothermal energy. Int. J. Hydrogen Energy 2017, 42, 18092–18102. [Google Scholar] [CrossRef]
- Faisal, S.; Abbas, A.; Eladeb, A.; Agrawal, M.K.; Muhammad, T.; Ayadi, M.; Ghachem, K.; Kolsi, L.; Wang, M.; Mustafa, A. Innovative modification process of a natural gas power plant using self-sufficient waste heat recovery and flue gas utilization for a CCHP-methanol generation application: A comprehensive multi-variable feasibility study. Process Saf. Environ. Prot. 2024, 183, 801–820. [Google Scholar] [CrossRef]
- Lior, N.; Zhang, N. Energy, exergy, and Second Law performance criteria. Energy 2007, 32, 281–296. [Google Scholar] [CrossRef]
- Zhao, J.; Cai, S.; Huang, X.; Luo, X.; Tu, Z. 4E analysis and multiobjective optimization of a PEMFC-based CCHP system with dehumidification. Energy Convers. Manag. 2021, 248, 114789. [Google Scholar] [CrossRef]
- Kotas, T.J. The Exergy Method of Thermal Plant Analysis; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar] [CrossRef]
- Milani, D. Chapter 14—Renewable Energy Integration in Combined Cooling, Heating, and Power (CCHP) Processes. In Polygeneration with Polystorage for Chemical and Energy Hubs; Khalilpour, K.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 459–491. ISBN 9780128133064. [Google Scholar] [CrossRef]
- Calise, F.; d’Accadia, M.D.; Quiriti, E.; Vicidomini, M.; Piacentino, A. Chapter 4—Trigeneration and Polygeneration Configurations for Desalination and Other Beneficial Processes. In Sustainable Desalination Handbook; Gude, V.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 99–199. ISBN 9780128092408. [Google Scholar] [CrossRef]
- Samiee, S.; Aghdam, A.H. 4E analysis of a solar, wind and waste heat-driven CCHP system: A case study for a cruise ship. Appl. Therm. Eng. 2024, 252, 123600. [Google Scholar] [CrossRef]
- Akorede, M.F. 2—Design and performance analysis of off-grid hybrid renewable energy systems. In Hybrid Energy Systems, Hybrid Technologies for Power Generation; Faro, M.L., Barbera, O., Giacoppo, G., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 35–68. ISBN 9780128237939. [Google Scholar] [CrossRef]
- Kamran, M. Chapter 7—Microgrid and hybrid energy systems. In Fundamentals of Smart Grid Systems; Kamran, M., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 299–363. ISBN 9780323995603. [Google Scholar] [CrossRef]
- Kashani, B.O.; Saray, R.K.; Kheiri, R. Comparative analysis of a CCHP system based on municipal solid waste (MSW) gasification using micro gas turbine and internal combustion engine: Energy, exergy, economic, and environmental (4E) perspectives. Energy 2025, 326, 136004. [Google Scholar] [CrossRef]
- Kakavand, A.; Sayadi, S.; Tsatsaronis, G.; Behbahaninia, A. Techno-economic assessment of green hydrogen and ammonia production from wind and solar energy in Iran. Int. J. Hydrogen Energy 2023, 48, 14170–14191. [Google Scholar] [CrossRef]
- Torrubia, J.; Valero, A.; Valero, A. Non-renewable and renewable levelized exergy cost of electricity (LExCOE) with focus on its infrastructure: 1900–2050. Energy 2024, 313, 133987. [Google Scholar] [CrossRef]
- Meyer, L.; Castillo, R.; Buchgeister, J.; Tsatsaronis, G. Application of Exergoeconomic and Exergoenvironmental Analysis to an SOFC System with an Allothermal Biomass Gasifier. Int. J. Thermodyn. 2009, 12, 177–186. [Google Scholar]
- Meyer, L.; Tsatsaronis, G.; Buchgeister, J.; Schebek, L. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy 2009, 34, 75–89. [Google Scholar] [CrossRef]
- Tahir, M.F.; Haoyong, C.; Guangze, H. A comprehensive review of 4E analysis of thermal power plants, intermittent renewable energy and integrated energy systems. Energy Rep. 2021, 7, 3517–3534. [Google Scholar] [CrossRef]
- Pokson, C.; Chaiyat, N. Energy, economic, and environmental analysis of a novel combined cooling, heating, and power (CCHP) from infectious medical waste. Clean. Waste Syst. 2024, 8, 100155. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, X.; Li, H.; Jia, Z.; Zhang, S.; Tang, S.; Liu, D.; Wu, X. 4E analysis and parameter study of a solar-thermochemical energy storage CCHP system. Energy Convers. Manag. 2024, 301, 118002. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, L.; Lai, G.; Zhou, J.; Zhou, L.; Qin, Y.; Tang, Z. Optimal sizing and cost-benefit assessment of stand-alone microgrids with different energy storage considering dynamic avoided GHG emissions. J. Energy Storage 2025, 109, 115128. [Google Scholar] [CrossRef]
- Lin, J.; Zhao, Q.; Huang, H.; Mao, H.; Liu, Y.; Xiao, Y. Applications of low-temperature thermochemical energy storage systems for salt hydrates based on material classification: A review. Sol. Energy 2021, 214, 149–178. [Google Scholar] [CrossRef]
- Cesaro, Z.; Nayak-Luke, R.M.; Bañares-Alcántara, R. Chapter 2—Energy Storage Technologies: Power-to-X. In Techno-Economic Challenges of Green Ammonia as an Energy Vector; Valera-Medina, A., Banares-Alcantara, R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 15–26. ISBN 9780128205600. [Google Scholar] [CrossRef]
- Li, H.; Fu, L.; Geng, K.; Jiang, Y. Energy utilization evaluation of CCHP systems. Energy Build. 2006, 38, 253–257. [Google Scholar] [CrossRef]
- Arcuri, P.; Florio, G.; Fragiacomo, P. A mixed integer programming model for optimal design of trigeneration in a hospital complex. Energy 2007, 32, 1430–1447. [Google Scholar] [CrossRef]
- Erdeweghe, S.V.; Bael, J.V.; Laenen, B.; D’haeseleer, W. Optimal configuration for a low-temperature geothermal CHP plant based on thermoeconomic optimization. Energy 2019, 179, 323–335. [Google Scholar] [CrossRef]
- Erdeweghe, S.V.; Bael, J.V.; Laenen, B.; D’haeseleer, W. Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles. Appl. Energy 2019, 242, 716–731. [Google Scholar] [CrossRef]
- Heberle, F.; Brüggemann, D. Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation. Appl. Therm. Eng. 2010, 30, 1326–1332. [Google Scholar] [CrossRef]
- Habka, M.; Ajib, S. Determination and evaluation of the operation characteristics for two configurations of combined heat and power systems depending on the heating plant parameters in low-temperature geothermal applications. Energy Convers. Manag. 2013, 76, 996–1008. [Google Scholar] [CrossRef]
- Habka, M.; Ajib, S. Studying effect of heating plant parameters on performances of a geothermal-fuelled series cogeneration plant based on Organic Rankine Cycle. Energy Convers. Manag. 2014, 78, 324–337. [Google Scholar] [CrossRef]
- Erdeweghe, S.V.; Bael, J.V.; Laenen, B.; D’haeseleer, W. Comparison of series/parallel configuration for a low-T geothermal CHP plant, coupled to thermal networks. Renew. Energy 2017, 111, 494–505. [Google Scholar] [CrossRef]
- Habka, M.; Ajib, S. Investigation of novel, hybrid, geothermal-energized cogeneration plants based on organic Rankine cycle. Energy 2014, 70, 212–222. [Google Scholar] [CrossRef]
- Erdeweghe, S.V.; Bael, J.V.; Laenen, B.; D’haeseleer, W. Optimal combined heat-and-power plant for a low-temperature geothermal source. Energy 2018, 150, 396–409. [Google Scholar] [CrossRef]
- Behnam, P.; Arefi, A.; Shafii, M.B. Exergetic and thermoeconomic analysis of a trigeneration system producing electricity, hot water, and fresh water driven by low-temperature geothermal sources. Energy Convers. Manag. 2018, 157, 266–276. [Google Scholar] [CrossRef]
- Al-Ali, M.; Dincer, I. Energetic and exergetic studies of a multigenerational solar–geothermal system. Appl. Therm. Eng. 2014, 71, 16–23. [Google Scholar] [CrossRef]
- Calise, F.; Vicidomini, M.; Cappiello, F.L.; D’Accadia, M.D. Chapter 8—Combined cooling, heat, and power systems. In Polygeneration Systems; Calise, F., D’Accadia, M.D., Vanoli, L., Vicidomini, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 289–322. ISBN 9780128206256. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Kang, Q.; Li, Z.; Lu, J.; Gu, R.; Luo, X.; Chen, X.; Liu, Y.; Tang, Y.; et al. Optimal operation of CCHP system with duality operation strategy considering hydrogen trading and carbon capture. Sustain. Cities Soc. 2024, 115, 105881. [Google Scholar] [CrossRef]
- Kaldehi, B.J.; Keshavarz, A.; Pirooz, A.A.S.; Batooei, A.; Ebrahimi, M. Designing a micro Stirling engine for cleaner production of combined cooling heating and power in residential sector of different climates. J. Clean. Prod. 2017, 154, 502–516. [Google Scholar] [CrossRef]
- Ge, Y.; Ma, Y.; Wang, Q.; Yang, Q.; Xing, L.; Ba, S. Techno-economic-environmental assessment and performance comparison of a building distributed multi-energy system under various operation strategies. Renew. Energy 2023, 204, 685–696. [Google Scholar] [CrossRef]
- Mago, P.J.; Hueffed, A.K. Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies. Energy Build. 2010, 42, 1628–1636. [Google Scholar] [CrossRef]
- Liu, M.; Shi, Y.; Fang, F. Optimal power flow and PGU capacity of CCHP systems using a matrix modeling approach. Appl. Energy 2013, 102, 794–802. [Google Scholar] [CrossRef]
- Fumo, N.; Mago, P.J.; Chamra, L.M. Emission operational strategy for combined cooling, heating, and power systems. Appl. Energy 2009, 86, 2344–2350. [Google Scholar] [CrossRef]
- Zhao, N.; Gu, W.; Zheng, Z.; Ma, T. Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process. Renew. Energy 2023, 216, 119070. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, G.; Wu, W.; Liao, S. Genetic algorithm-based operation strategy optimization and multi-criteria evaluation of distributed energy system for commercial buildings. Energy Convers. Manag. 2020, 226, 113529. [Google Scholar] [CrossRef]
- Assad, M.E.H.; Khosravi, A.; Malekan, M.; Rosen, M.A.; Nazari, M.A. Chapter 14—Energy storage. In Design and Performance Optimization of Renewable Energy Systems; Assad, M.E.H., Rosen, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 205–219. ISBN 9780128216026. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Alami, A.H. Compressed air energy storage systems: Components and operating parameters—A review. J. Energy Storage 2021, 34, 102000. [Google Scholar] [CrossRef]
- Leszczyński, J.S.; Gryboś, D.; Markowski, J. Analysis of optimal expansion dynamics in a reciprocating drive for a micro-CAES production system. Appl. Energy 2023, 350, 121742. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Lu, K.; Miao, S.; Wang, D.; Wang, J. Current research and development trend of compressed air energy storage. Syst. Sci. Control Eng. 2017, 5, 434e48. [Google Scholar] [CrossRef]
- Han, Z.; Guo, S. Investigation of operation strategy of combined cooling, heating and power(CCHP) system based on advanced adiabatic compressed air energy storage. Energy 2018, 160, 290–308. [Google Scholar] [CrossRef]
- Vieira, F.S.; Balestieri, J.A.P.; Matelli, J.A. Applications of compressed air energy storage in cogeneration systems. Energy 2021, 214, 118904. [Google Scholar] [CrossRef]
- Jiang, R.; Qin, F.G.F.; Chen, B.; Yang, X.; Yin, H.; Xu, Y. Thermodynamic performance analysis, assessment and comparison of an advanced trigenerative compressed air energy storage system under different operation strategies. Energy 2019, 186, 115862. [Google Scholar] [CrossRef]
- Jiang, R.; Yin, H.; Yang, M.; Yang, X. Thermodynamic model development and performance analysis of a novel combined cooling, heating and power system integrated with trigenerative compressed air energy storage. Energy Convers. Manag. 2018, 168, 49–59. [Google Scholar] [CrossRef]
- Jiang, R.; Yin, H.; Chen, B.; Xu, Y.; Yang, M.; Yang, X. Multi-objective assessment, optimization and application of a grid-connected combined cooling, heating and power system with compressed air energy storage and hybrid refrigeration. Energy Convers. Manag. 2018, 174, 453–464. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Huang, M.; Ma, X. Multi-objective optimization of a gas turbine-based CCHP combined with solar and compressed air energy storage system. Energy Convers. Manag. 2018, 164, 93–101. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ahmadi, M.H.; Bidi, M.; Joda, F.; Valero, A.; Uson, S. Exergy analysis of a Combined Cooling, Heating and Power system integrated with wind turbine and compressed air energy storage system. Energy Convers. Manag. 2017, 131, 69–78. [Google Scholar] [CrossRef]
- Gholamian, E.; Ahmadi, P.; Hanafizadeh, P.; Mazzarella, L. The use of waste heat recovery (WHR) options to produce electricity, heating, cooling, and freshwater for residential buildings. Energy Equip. Syst. 2020, 8, 277–296. [Google Scholar] [CrossRef]
- Yao, E.; Wang, H.; Wang, L.; Xi, G.; Marechal, F. Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage. Energy Convers Manag. 2016, 118, 377e86. [Google Scholar] [CrossRef]
- Yao, E.; Wang, H.; Wang, L.; Xi, G.; Marechal, F. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system. Energy Convers Manag. 2017, 138, 199e209. [Google Scholar] [CrossRef]
- Wei, X.; Li, K.; Zhang, C.; Yan, Y.; Sun, Y. Operation strategy and economic analysis of biogas CCHP system including compressed air energy storage. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 9107–9112. [Google Scholar] [CrossRef]
- Feng, L.; Dai, X.; Mo, J.; Shi, L. Analysis of energy-matching performance and suitable users of conventional CCHP systems coupled with different energy storage systems. Energy Convers. Manag. 2019, 200, 112093. [Google Scholar] [CrossRef]
- Wang, J.; Xie, X.; Lu, Y.; Liu, B.; Li, X. Thermodynamic performance analysis and comparison of a combined cooling heating and power system integrated with two types of thermal energy storage. Appl. Energy 2018, 219, 114–122. [Google Scholar] [CrossRef]
- Jiang, X.Z.; Li, M.; Zeng, G.; Shi, L. Multiple effects of energy storage units on combined cooling, heating and power (CCHP) systems. Int. J. Energy Res. 2016, 40, 853–862. [Google Scholar] [CrossRef]
- Jiang, X.Z.; Zeng, G.; Li, M.; Shi, L. Evaluation of combined cooling, heating and power (CCHP) systems with energy storage units at different locations. Appl. Therm. Eng. 2016, 95, 204–210. [Google Scholar] [CrossRef]
- Liu, W.; Chen, G.; Yan, B.; Zhou, Z.; Du, H.; Zuo, J. Hourly operation strategy of a CCHP system with GSHP and thermal energy storage (TES) under variable loads: A case study. Energy Build. 2015, 93, 143–153. [Google Scholar] [CrossRef]
- Chu, S.; Zhang, H.; Chen, H. Performance analysis and optimization of a combined cooling, heating and power system based on active regulation of thermal energy storage. Energy 2024, 312, 133694. [Google Scholar] [CrossRef]
- Dumont, O.; Frate, G.F.; Pillai, A.; Lecompte, S.; Paepe, M.D.; Lemort, V. Carnot battery technology: A state-of-the-art review. J. Energy Storage 2020, 32, 101756. [Google Scholar] [CrossRef]
- Vecchi, A.; Knobloch, K.; Liang, T.; Kildahl, H.; Sciacovelli, A.; Engelbrecht, K.; Li, Y.; Ding, Y. Carnot Battery development: A review on system performance, applications and commercial state-of-the-art. J. Energy Storage 2022, 55, 105782. [Google Scholar] [CrossRef]
- Khan, M.M.A.; Saidur, R.; Al-Sulaiman, F.A. A review for phase change materials (PCMs) in solar absorption refrigeration systems. Renew. Sustain. Energy Rev. 2017, 76, 105–137. [Google Scholar] [CrossRef]
- Tony, M.A. Recent frontiers in solar energy storage via nanoparticles enhanced phase change materials: Succinct review on basics, applications, and their environmental aspects. Energy Storage 2021, 3, e238. [Google Scholar] [CrossRef]
- Fu, Z.; Feng, L.; Han, Y.; Sui, J.; Dong, R.; Chu, J. The active thermal energy storage regulation of combined cooling, heating, and power systems based on energy storage/release performance. Appl. Therm. Eng. 2024, 255, 123963. [Google Scholar] [CrossRef]
- Qi, M.; Cui, C.; Yu, H.; He, T.; Zhao, D. Synergies between Carnot battery and power-to-methanol for hybrid energy storage and multi-energy generation. J. Clean. Prod. 2023, 430, 139548. [Google Scholar] [CrossRef]
- Nitsch, F.; Wetzel, M.; Gils, H.C.; Nienhaus, K. The future role of Carnot batteries in Central Europe: Combining energy system and market perspective. J. Energy Storage 2024, 85, 110959. [Google Scholar] [CrossRef]
- Dezhdar, A.; Assareh, E.; Agarwal, N.; Baheri, A.; Ahmadinejad, M.; Zadsar, N.; Fard, G.Y.; bedakhanian, A.; Aghajari, M. Modeling, optimization, and economic analysis of a comprehensive CCHP system with fuel cells, reverse osmosis, batteries, and hydrogen storage subsystems Powered by renewable energy sources. Renew. Energy 2024, 220, 119695. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dupuy, A.; Percembli, A.A.; Grosu, L.; Tran, K.-H.; Dobrovicescu, A. Trigeneration Systems: A State-of-the-Art Review. Energies 2025, 18, 2594. https://doi.org/10.3390/en18102594
Dupuy A, Percembli AA, Grosu L, Tran K-H, Dobrovicescu A. Trigeneration Systems: A State-of-the-Art Review. Energies. 2025; 18(10):2594. https://doi.org/10.3390/en18102594
Chicago/Turabian StyleDupuy, Arthur, Adalia Andreea Percembli (Chelmuș), Lavinia Grosu, Khanh-Hung Tran, and Alexandru Dobrovicescu. 2025. "Trigeneration Systems: A State-of-the-Art Review" Energies 18, no. 10: 2594. https://doi.org/10.3390/en18102594
APA StyleDupuy, A., Percembli, A. A., Grosu, L., Tran, K.-H., & Dobrovicescu, A. (2025). Trigeneration Systems: A State-of-the-Art Review. Energies, 18(10), 2594. https://doi.org/10.3390/en18102594