Oscillations of the Oil Pipeline Axis with Consideration of the Inertia Component When Pumping Diesel Fuel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrusiv, U.; Zelinska, H.; Galtsova, O.; Kupalova, H.; Goncharenk, N. The modeling and forecasting of fuel and energy resources usage in the context of the energy independence of Ukraine. Polityka Energ. 2021, 24, 29–47. [Google Scholar] [CrossRef]
- Zelinska, H.; Fedorovych, I.; Andrusiv, U.; Chernova, O.; Kupalova, H. Modeling and prediction of the gas pipelines reliability indicators in the context of energy security of Ukraine. CEUR Workshop Proc. 2020, 2713, 415–433. [Google Scholar]
- He, Z.; He, L.; Liu, H.; Wang, D.; Li, X.; Li, Q. Experimental and Numerical Study on Gas-Liquid Flow in Hilly-Terrain Pipeline-Riser Systems. Discrete Dyn. Nat. Soc. 2021, 2021, 5529916. [Google Scholar] [CrossRef]
- Hart, J.D.; Zulfiqar, N. Historical Perspective on Wind-Induced Vibration of Above-Ground Pipeline Configurations on the Alaskan North Slope. Proc. Biennial Int. Pipeline Conf. 2024, 2A, v02AT03A030. [Google Scholar] [CrossRef]
- Xu, W.; He, Z.; Zhai, L.; Wang, E. Vortex-induced vibration prediction of an inclined flexible cylinder based on machine learning methods. Ocean Eng. 2023, 282, 114956. [Google Scholar] [CrossRef]
- Satchithananthan, U.; Ullah, S.N.; Lee, F.H.; Chen, Z.; Gu, H. Centrifuge modeling of axial pipe-soil interaction of deep-water pipelines. Geotech. Test. J. 2020, 43, 94–112. [Google Scholar] [CrossRef]
- Pukish, A.; Mandryk, O.; Arkhypova, L.; Syrovets, S.; Hryniuk, D. Mathematical modeling of pollution of underground aquifers due to mining of minerals. Min. Miner. Depos. 2024, 18, 94–103. [Google Scholar] [CrossRef]
- Bazaluk, O.; Slabyi, O.; Vekeryk, V.; Velychkovych, A.; Ropyak, L.; Lozynskyi, V. A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming. Energies 2021, 14, 3514. [Google Scholar] [CrossRef]
- Kubba, A.; Trabelsi, H.; Derbel, F. Enhanced Long-Range Network Performance of an Oil Pipeline Monitoring System Using a Hybrid Deep Extreme Learning Machine Model. Future Internet 2024, 16, 425. [Google Scholar] [CrossRef]
- Han, J.; Tian, L. Review of Construction Technology of Advanced Energy Infrastructure. Energies 2024, 17, 4157. [Google Scholar] [CrossRef]
- Popescu, C.; Gabor, M.R. Quantitative Analysis Regarding the Incidents to the Pipelines of Petroleum Products for an Efficient Use of the Specific Transportation Infrastructure. Processes 2021, 9, 1535. [Google Scholar] [CrossRef]
- Dai, L.; Wang, D.; Wang, T.; Feng, Q.; Yang, X. Analysis and Comparison of Long-Distance Pipeline Failures. J. Pet. Eng. 2017, 2017, 3174636. [Google Scholar] [CrossRef]
- Xie, M.; Tian, Z. A review on pipeline integrity management utilizing in-line inspection data. Eng. Fail. Anal. 2018, 92, 222–239. [Google Scholar] [CrossRef]
- Dutkiewicz, M.; Andrusyak, A.; Kychma, A.; Vytvytskyi, V.; Velychkovych, A. Numerical model of interaction of a mobile lift chain with a main gas pipeline pipe in the process of repair work. Ekspl. Niezawodn. 2024, 26, 187159. [Google Scholar] [CrossRef]
- Prysyazhnyuk, P.; Bembenek, M.; Drach, I.; Korzhov, A.; Romanyshyn, L.; Ropyak, L. Restoration of the Impact Crusher Rotor Using FCAW with High-Manganese Steel Reinforced by Complex Carbides. Manag. Syst. Prod. Eng. 2024, 32, 294–302. [Google Scholar] [CrossRef]
- Bembenek, M.; Mandziy, T.; Ivasenko, I.; Berehulyak, O.; Vorobel, R.; Slobodyan, Z.; Ropyak, L. Multiclass Level-Set Segmentation of Rust and Coating Damages in Images of Metal Structures. Sensors 2022, 22, 7600. [Google Scholar] [CrossRef]
- Shats’kyi, I.P. Closure of a longitudinal crack in a shallow cylindrical shell in bending. Mater. Sci. 2005, 41, 186–191. [Google Scholar] [CrossRef]
- Shats’kyi, I.P.; Makoviichuk, M.V. Analysis of the limiting state of cylindrical shells with cracks with regard for the contact of crack lips. Strength Mater. 2009, 41, 560–565. [Google Scholar] [CrossRef]
- Okodi, A.; Li, Y.; Cheng, R.; Kainat, M.; Yoosef-Ghodsi, N.; Adeeb, S. Crack Propagation and Burst Pressure of Pipeline with Restrained and Unrestrained Concentric Dent-Crack Defects Using Extended Finite Element Method. Appl. Sci. 2020, 10, 7554. [Google Scholar] [CrossRef]
- Zvirko, O.I.; Savula, S.F.; Tsependa, V.M.; Gabetta, G.; Nykyforchyn, H.M. Stress corrosion cracking of gas pipeline steels of different strength. Procedia Struct. Integr. 2016, 2, 509–516. [Google Scholar] [CrossRef]
- Shatskii, I.P.; Makoviichuk, N.V. Effect of closure of collinear cracks on the stress-strain state and the limiting equilibrium of bent shallow shells. J. Appl. Mech. Tech. Phys. 2011, 52, 464–470. [Google Scholar] [CrossRef]
- Dutkiewicz, M.; Dalyak, T.; Shatskyi, I.; Venhrynyuk, T.; Velychkovych, A. Stress Analysis in Damaged Pipeline with Composite Coating. Appl. Sci. 2021, 11, 10676. [Google Scholar] [CrossRef]
- Shatskyi, I.; Makoviichuk, M.; Ropyak, L.; Velychkovych, A. Analytical Model of Deformation of a Functionally Graded Ceramic Coating under Local Load. Ceramics 2023, 6, 1879–1893. [Google Scholar] [CrossRef]
- Ropyak, L.; Shihab, T.; Velychkovych, A.; Dubei, O.; Tutko, T.; Bilinskyi, V. Design of a Two-Layer Al–Al2O3 Coating with an Oxide Layer Formed by the Plasma Electrolytic Oxidation of Al for the Corrosion and Wear Protections of Steel. Prog. Phys. Met. 2023, 24, 319–365. [Google Scholar] [CrossRef]
- Tutko, T.; Dubei, O.; Ropyak, L.; Vytvytskyi, V. Determination of Radial Displacement Coefficient for Designing of Thread Joint of Thin-Walled Shells. In Advances in Design, Simulation and Manufacturing IV, Proceedings of the 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE 2021, Lviv, Ukraine, 8–11 June 2021; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2021; pp. 153–162. [Google Scholar] [CrossRef]
- Vynnykov, Y.; Kharchenko, M.; Manhura, S.; Aniskin, A.; Manhura, A. Neural network analysis of safe life of the oil and gas industrial structures. Min. Miner. Depos. 2024, 18, 37–44. [Google Scholar] [CrossRef]
- Matkivskyi, S. Near Wellbore Heavy Hydrocarbons Retrograde Condensation Study. Miner. Resour. Ukr. 2023, 3, 39–44. [Google Scholar] [CrossRef]
- Raimbekova, A.; Kapralova, V.; Dalbanbai, A.; Kubekova, S.; Popova, A. Effect of Various Phosphate Inhibitors on Corrosion of Low Carbon Steel in 3% Sodium Chloride Solution. Eng. J. Satbayev Univ. 2023, 145, 25–31. [Google Scholar] [CrossRef]
- Tatsiy, R.M.; Pazen, O.Y.; Vovk, S.Y.; Ropyak, L.Y.; Pryhorovska, T.O. Numerical study on heat transfer in multilayered structures of main geometric forms made of different materials. J. Serb. Soc. Comput. Mech. 2019, 13, 36–55. [Google Scholar] [CrossRef]
- Hamzawy, N.; Khedr, M.; Mahmoud, T.S.; EI-Mahallawi, I.; Khalifa, T.A. Investigation of Temperature Variation During Friction Drilling of 6082 and 7075 Al-Alloys. In Light Metal Technology symposium, Proceedings of the Light Metals Symposium, 149th Annual Meeting and Exhibition, TMS 2020, San Diego, CA, USA, 23–27 February 2020; Springer: Cham, Switzerland, 2020; pp. 471–477. [Google Scholar] [CrossRef]
- Doroshenko, Y.; Kogut, G.; Doroshenko, Y.; Tarayevs’kyy, O.; Pyrig, T. Numerical study on erosion wear and strength of main gas pipelines bends. Stroj. Cas. 2021, 71, 27–40. [Google Scholar] [CrossRef]
- Owoseni, O.D.; Orolu, K.O.; Oyediran, A.A. Dynamics of Slightly Curved Pipe Conveying Hot Pressurized Fluid Resting on Linear and Nonlinear Viscoelastic Foundations. J. Vib. Acoust. 2018, 140, 021005. [Google Scholar] [CrossRef]
- Kryzhanivs’kyi, E.I.; Rudko, V.P.; Shats’kyi, I.P. Estimation of admissible loads upon a pipeline in the zone of sliding ground. Mater. Sci. 2004, 40, 547–551. [Google Scholar] [CrossRef]
- Shats’kyi, I.P.; Struk, A.B. Stressed state of pipeline in zones of soil local fracture. Strength Mater. 2009, 41, 548–553. [Google Scholar] [CrossRef]
- Vazouras, P.; Dakoulas, P.; Karamanos, S.A. Pipe–soil interaction and pipeline performance under strike–slip fault movements. Soil Dyn. Earthq. Eng. 2015, 72, 48–65. [Google Scholar] [CrossRef]
- Han, J.; Bi, Y.; Hou, B.; Zhao, W.; El Naggar, M.H. Response of Corroded Steel Pipeline Without and with CFRP Reinforcement to Reverse Fault Movement. Appl. Sci. 2024, 14, 10896. [Google Scholar] [CrossRef]
- Landar, S.; Velychkovych, A.; Ropyak, L.; Andrusyak, A. A Method for Applying the Use of a Smart 4 Controller for the Assessment of Drill String Bottom-Part Vibrations and Shock Loads. Vibration 2024, 7, 802–828. [Google Scholar] [CrossRef]
- Filippov, A.N. Dynamic impact on a pipeline considering dry friction on its surface. Mech. Solids 2019, 54, 1144–1150. [Google Scholar] [CrossRef]
- Shatskyi, I.; Perepichka, V.; Vaskovskyi, M. Longitudinal waves in an elastic rod caused by sudden damage to the foundation. Theor. Appl. Mech. 2021, 48, 29–37. [Google Scholar] [CrossRef]
- Shatskyi, I.; Makoviichuk, M.; Vaskovkyi, M. Transversal Straining of Pressurized Pipeline Caused by Vibration of Damaged Foundation. Springer Proc. Math. Stat. 2024, 453, 501–508. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, J.; He, K.; Chen, S. Seismic Dynamics of Pipeline Buried in Dense Seabed Foundation. J. Mar. Sci. Eng. 2019, 7, 190. [Google Scholar] [CrossRef]
- Shatskii, I.P.; Perepichka, V.V. Shock-wave propagation in an elastic rod with a viscoplastic external resistance. J. Appl. Mech. Techn. Phys. 2013, 54, 1016–1020. [Google Scholar] [CrossRef]
- Moisyshyn, V.; Levchuk, K. Investigation on Releasing of a Stuck Drill String by Means of a Mechanical Jar. Oil Gas Sci. Technol. 2017, 72, 27–35. [Google Scholar] [CrossRef]
- Shatskyi, I.; Perepichka, V. Problem of dynamics of an elastic rod with decreasing function of elastic-plastic external resistance. In Dynamic Systems and Applications, Proceedings of the DSTA 2017, Łódź, Poland, 11–14 December 2017; Springer: Cham, Switzerland, 2018; Volume 249, pp. 335–342. [Google Scholar] [CrossRef]
- Begmatov, A.; Mamatova, N. Impact of rigid body and viscous-plastic rod of finite length. E3S Web of Conf. 2023, 401, 02003. [Google Scholar] [CrossRef]
- Bembenek, M.; Grydzhuk, Y.; Gajdzik, B.; Ropyak, L.; Pashechko, M.; Slabyi, O.; Al-Tanakchi, A.; Pryhorovska, T. An Analytical-Numerical Model for Determining “Drill String–Wellbore” Frictional Interaction Forces. Energies 2024, 17, 301. [Google Scholar] [CrossRef]
- Shatskyi, I.; Perepichka, V. Shock Torsion Wave in an Elastic Rod with Decreasing Function of Viscoplastic External Friction. Springer Proc. Math. Stat. 2024, 454, 585–592. [Google Scholar] [CrossRef]
- Bolonnyi, V.T.; Grudz, V.Y.; Grudz, Y.V.; Zapukhliak, V.B.; Dodyk, T.Y. Prediction of transient processes in oil pipelines with the purpose of emergency incident prevention. Nauk. Visn. Nats. Hirn. Univ. 2020, 1, 118–122. [Google Scholar] [CrossRef]
- Petryna, D.Y.; Kozak, O.L.; Shulyar, B.R.; Petryna, Y.D.; Hredil, M.I. Influence of alloying by rare-earth metals on the mechanical properties of 17g1s pipe steel. Mater. Sci. 2013, 48, 575–581. [Google Scholar] [CrossRef]
- Melnychenko, Y.; Poberezhny, L.; Hrudz, V.; Zapukhliak, V.; Chudyk, I.; Dodyk, T. Determination of preconditions leading to critical stresses in pipeline during lowering. In Degradation Assessment and Failure Prevention of Pipeline Systems; Lecture Notes in Civil Engineering; Springer: Cham, Switzerland, 2021; Volume 102, pp. 241–252. [Google Scholar] [CrossRef]
- Andreikiv, O.E.; Skal’s’kyi, V.R.; Dolins’ka, I.Y.; Dzyubyk, A.R. Influence of Corrosive Hydrogenating Media on the Residual Service Life of Structural Elements in the Maneuvering Mode of Operation. Mater. Sci. 2018, 54, 61–68. [Google Scholar] [CrossRef]
- Voloshyn, V.A.; Zvirko, O.I.; Sydor, P.Y. Influence of the compositions of neutral soil media on the corrosion cracking of pipe steel. Mater. Sci. 2015, 50, 44–47. [Google Scholar] [CrossRef]
- Kharchenko, L.E.; Kunta, O.E.; Zvirko, O.I.; Savula, R.S.; Duryahina, Z.A. Diagnostics of hydrogen macrodelamination in the wall of a bent pipe in the system of gas mains. Mater. Sci. 2016, 51, 530–537. [Google Scholar] [CrossRef]
- Khoma, M.; Vynar, V.; Chuchman, M.; Vasyliv, C. Corrosion-mechanical failure of pipe steels in hydrogen sulfide environments. In Degradation Assessment and Failure Prevention of Pipeline Systems; Lecture Notes in Civil Engineering; Springer: Cham, Switzerland, 2021; Volume 102, pp. 231–239. [Google Scholar] [CrossRef]
- Khoma, M.S.; Korniy, S.A.; Vynar, V.A.; Datsko, B.M.; Maksishko, Y.Y.; Dykha, O.V.; Bukliv, R.L. Influence of Hydrogen Sulfide on the Carbon-Dioxide Corrosion and the Mechanical Characteristics of High-Strength Pipe Steel. Mater. Sci. 2022, 57, 805–812. [Google Scholar] [CrossRef]
- Andreikiv, O.Y.; Dolins’ka, I.Y.; Shtoiko, I.P.; Raiter, O.K.; Matviiv, Y.Y. Evaluation of the Residual Service Life of Main Pipelines with Regard for the Action of Media and Degradation of Materials. Mater. Sci. 2019, 54, 638–646. [Google Scholar] [CrossRef]
- Vorobel, R.; Student, O.; Ivasenko, I.; Maruschak, P.; Krechkovska, H.; Zvirko, O.; Berehulyak, O.; Mandziy, T.; Tsybailo, I.; Solovei, P. Development of a method for computer processing of fractographic images to assess the cohesion of inclusions to the matrix in the weld metal after its operational degradation and hydrogenation. Materialia 2024, 34, 102074. [Google Scholar] [CrossRef]
- Mandziy, T.; Ivasenko, I.; Berehulyak, O.; Vorobel, R. Influence of Colour Restoration on Rust Image Segmentation. In Proceedings of the IEEE UKRCON 2021. 3rd Ukraine Conference on Electrical and Computer Engineering, Lviv, Ukraine, 26–28 August 2021; IEEE: Washington, DC, USA, 2021; pp. 68–73. [Google Scholar] [CrossRef]
- Stetsiuk, S.; Bondarenko, R.; Doroshenko, Y.; Holubenko, V. Experimental Studies on the Dynamics of the Movement of Cleaning Pigs through Tee Pipe Fittings. Stroj. Casopis. 2024, 74, 9–24. [Google Scholar] [CrossRef]
- Stetsiuk, S.; Shatskyi, I.; Doroshenko, Y.; Velychkovych, A. Analytical Study of Frictional Interaction of Elastic Cleaning Pig with Pipeline Wall. Arch. Mater. Sci. Eng. 2024, 129, 67–76. [Google Scholar] [CrossRef]
- Amandi, K.U.; Diemuodeke, E.O.; Briggs, T.A.; Pham, D. Model for remaining strength estimation of a corroded pipeline with interacting defects for oil and gas operations. Cogent Eng. 2019, 6, 1663692. [Google Scholar] [CrossRef]
- Vanitha, C.N.; Easwaramoorthy, S.V.; Krishna, S.A.; Cho, J. Efficient qualitative risk assessment of pipelines using relative risk score based on machine learning. Sci. Rep. 2023, 13, 14918. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Liu, Z.; Li, M.; Zhao, Y.; Zuo, Z.; Guo, R. Development of cost-effective repair system for locally damaged long-distance oil pipelines. Constr. Build. Mater. 2022, 333, 127342. [Google Scholar] [CrossRef]
- Yu, J.; Chen, C.; Li, C. Safety analysis and emergency response of suspended oil and gas pipelines triggered by natural disasters. Sustainability 2022, 14, 17045. [Google Scholar] [CrossRef]
- Bazaluk, O.; Kuchyn, O.; Saik, P.; Soltabayeva, S.; Brui, H.; Lozynskyi, V.; Cherniaiev, O. Impact of Ground Surface Subsidence Caused by Underground Coal Mining on Natural Gas Pipeline. Sci. Rep. 2023, 13, 19327. [Google Scholar] [CrossRef]
- Nguyen, L.Q.; Le, T.T.T.; Nguyen, T.G.; Tran, D.T. Prediction of Underground Mining-Induced Subsidence: Artificial Neural Network Based Approach. Min. Miner. Depos. 2023, 17, 45–52. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, H.; Xu, P.; Zhang, M.; Hou, Z. Coupling interaction of surrounding soil-buried pipeline and additional stress in subsidence soil. Geofluids 2021, 7941989. [Google Scholar] [CrossRef]
- Bazaluk, O.; Lozynskyi, V.; Falshtynskyi, V.; Saik, P.; Dychkovskyi, R.; Cabana, E. Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process. Energies 2021, 14, 4369. [Google Scholar] [CrossRef]
- Lozynskyi, V. Critical Review of Methods for Intensifying the Gas Generation Process in the Reaction Channel during Underground Coal Gasification (UCG). Min. Miner. Depos. 2023, 17, 67–85. [Google Scholar] [CrossRef]
- Petlovanyi, M.; Lozynskyi, V.; Saik, P.; Sai, K. Predicting the producing well stability in the place of its curving at the underground coal seams gasification. E3S Web Conf. 2019, 123, 01019. [Google Scholar] [CrossRef]
- Yu, H.; Li, S.; Wang, X. The Recent Progress China Has Made in the Backfill Mining Method, Part I: The Theory and Equipment of Backfill Pipeline Transportation. Minerals 2021, 11, 1274. [Google Scholar] [CrossRef]
- Petlovanyi, M.; Sai, K. Research into Cemented Paste Backfill Properties and Options for Its Application: Case Study from a Kryvyi Rih Iron-Ore Basin, Ukraine. Min. Miner. Depos. 2024, 18, 162–179. [Google Scholar] [CrossRef]
- Bazaluk, O.; Petlovanyi, M.; Zubko, S.; Lozynskyi, V.; Sai, K. Instability Asses during Underground Mining of Iron Ores. Minerals 2021, 11, 858. [Google Scholar] [CrossRef]
- Kopei, V.; Onysko, O.; Odosii, Z.; Pituley, L.; Goroshko, A. Investigation of the Influence of Tapered Thread Profile Accuracy on the Mechanical Stress, Fatigue Safety Factor and Contact Pressure. Lect. Notes Netw. Syst. 2021, 233, 177–185. [Google Scholar] [CrossRef]
- Kopei, V.; Onysko, O.; Barz, C.; Dašić, P.; Panchuk, V. Designing a Multi-Agent PLM System for Threaded Connections Using the Principle of Isomorphism of Regularities of Complex Systems. Machines 2023, 11, 263. [Google Scholar] [CrossRef]
- Velychkovych, A.; Andrusyak, A.; Pryhorowska, T.; Ropyak, L. Analytical model of oil pipeline overground transitions, laid in mountain areas. Oil Gas Sci. Technol. 2019, 74, 65. [Google Scholar] [CrossRef]
- Grudz, V.; Grudz, Y.; Pavlenko, I.; Liaposhchenko, O.; Ochowiak, M.; Pidluskiy, V.; Portechyn, O.; Iakymiv, M.; Włodarczak, S.; Krupińska, A.; et al. Ensuring the Reliability of Gas Supply Systems by Optimizing the Overhaul Planning. Energies 2023, 16, 986. [Google Scholar] [CrossRef]
- Bi, A.; Huang, S.; Zhang, Y.; Cao, Y. Reliability analysis of oil and gas pipelines based on step-down-stress testing in corrosive environments. Math. Probl. Eng. 2022, 4055779. [Google Scholar] [CrossRef]
- Chen, X.; Jeng, D.-S. Oscillatory Seabed Responses Around Two Pipelines in Tandem Under Combined Wave and Current Loading. Int. J. Offshore Polar Eng. 2022, 32, 321–329. [Google Scholar] [CrossRef]
- Soares, B.; Srinil, N. Capturing wake stiffness in wake-induced vibration of tandem cylinders. In Proceedings of the Int. Conf. Offshore Mech. Arctic Eng. (OMAE) 2020, Online, 3–7 August 2020; Volume 6A, p. V06AT06A011. [Google Scholar] [CrossRef]
- Dutkiewicz, M.; Velychkovych, A.; Andrusyak, A.; Petryk, J.; Kychma, A. Analytical model of an oil pipeline with a support of an overpass built in a mountainous area. Energies 2023, 16, 4464. [Google Scholar] [CrossRef]
- Dutkiewicz, M.; Shatskyi, I.; Martsynkiv, O.; Kuzmenko, E. Mechanism of casing string curvature due to displacement of surface strata. Energies 2022, 15, 5031. [Google Scholar] [CrossRef]
- Dey, S.; Tesfamariam, S. Structural performance of buried pipeline undergoing fault rupture in sand using Taguchi design of experiments. Soil Dyn. Earthq. Eng. 2022, 155, 107174. [Google Scholar] [CrossRef]
- Liu, E.; Li, W.; Cai, H.; Peng, S. Formation Mechanism of Trailing Oil in Product Oil Pipeline. Processes 2019, 7, 7. [Google Scholar] [CrossRef]
- Striletskyi, Y.; Ropyak, L.; Bandura, A. Method of oscillation excitation for investigation of inconsistency of coating deposition on long parts. Vibroeng. Procedia 2024, 57, 25–31. [Google Scholar] [CrossRef]
- Bandura, A.; Skaskiv, O. Analog of hayman’s theorem and its application to some system of linear partial differential equations. J. Math. Phys. Anal. Geom. 2019, 15, 170–191. [Google Scholar] [CrossRef]
- Bandura, A.; Skaskiv, O. Entire Functions of Bounded L-Index: Its Zeros and Behavior of Partial Logarithmic Derivatives. J. Complex Anal. 2017, 2017, 3253095. [Google Scholar] [CrossRef]
- Sheremeta, M.M.; Trukhan, Y.S. On a generalization of some Shah equation. Carpathian Math. Publ. 2024, 16, 259–266. [Google Scholar] [CrossRef]
- Sheremeta, M.M. Pseudostarlikeness and Pseudoconvexity of Multiple Dirichlet Series. Univ. J. Math. Appl. 2023, 6, 130–139. [Google Scholar] [CrossRef]
- Bandura, A.; Skaskiv, O.; Hural, I.; Shehda, L.; Smolovyk, L. Analytic functions in a unit polydisc: Conditions of directional boundedness of L-index for the sum of functions with directionally bounded L-index. J. Math. Sci. 2025, 288, 155–162. [Google Scholar] [CrossRef]
- Bandura, A.I.; Salo, T.M.; Skaskiv, O.B. Composition of entire function and analytic functions in the unit ball with a vanished gradient. Mat. Stud. 2024, 62, 132–140. [Google Scholar] [CrossRef]
- Gere, J.; Timoshenko, S. Mechanics of Materials. CL Engineering, 4th ed.; 912p, Available online: https://www.amazon.com/Mechanics-Materials-James-M-Gere/dp/0534934293 (accessed on 15 February 2025).
- Fridman, V. Theory of Elastic Oscillations. Equations and Methods; Springer Nature Pte Ltd.: Singapore, 2018. [Google Scholar] [CrossRef]
- Filippov, A. Oscillations of Mechanical Systems; Naukova Dumka: Kyiv, Ukraine, 1965. [Google Scholar]
- Peng, L.; Zhang, J.; Li, Y.; Du, G. A novel percussion-based approach for pipeline leakage detection with improved MobileNetV2. Eng. Appl. Artif. Intell. 2024, 133, 108537. [Google Scholar] [CrossRef]
- Akande, S.; Adetunla, A.; Olanrewaju, T.; Adeoye, A. UAV and Its Approach in Oil and Gas Pipeline Leakage Detection. J. Robot. 2021, 1300740. [Google Scholar] [CrossRef]
- Park, D.-Y.; Liang, J. Effects of Fatigue Parameters on Fatigue Crack Growth Rate of Pipe Steels and Girth Weld. J. Press. Vessel Technol. 2024, 146, 031701. [Google Scholar] [CrossRef]
- Yan, S.; Jia, K.; Xu, W.; Ma, Y. An experimental study on vortex-induced vibration suppression for submarine multispan pipelines. Ocean Eng. 2023, 271, 113678. [Google Scholar] [CrossRef]
- Liang, W.; Lou, M.; Fan, C.; Zhao, D.; Li, X. Coupling effects of vortex-induced vibration and local scour of double tandem pipelines in steady current. Ocean Eng. 2023, 286, 115495. [Google Scholar] [CrossRef]
- Tang, J.; Xu, J.; Zhou, D.; Huang, D.; Li, Y.; Chen, Z. Ground surface deformation caused by pipe jacking construction in a soft soil area: An experiment-based study. Buildings 2023, 13, 1628. [Google Scholar] [CrossRef]
- Wang, F.; Wu, G.; Chen, D.; Li, G.; Qian, Y.; Xi, F.; Wang, L. Mexanical response of a buried pipeline to permafrost trawing based on sequential coupling method. Atmosphere 2023, 14, 620. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, M.; Guo, Q.; Ma, W.; Zhang, Y.; Wu, W. Failure risk prediction model for girth welds in high-strength steel pipeline based on historical data and artificial neural network. Processes 2023, 11, 2273. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, S.; Lin, L.; Lou, Y.; Zhou, Y. Experimental study on the mechanical behavior of buried steel pipeline subjected to the local subsidence. Int. J. Press. Vessels Piping 2023, 206, 105037. [Google Scholar] [CrossRef]
- Li, X.; Wu, Q.; Jin, H.; Kan, W. A new stress monitoring method for mechanical state of buried steel pipelines under geological hazards. Adv. Mater. Sci. Eng. 2022, 2022, 4498458. [Google Scholar] [CrossRef]
- Arumugam, T.; Vijaya Kumar, S.D.; Karuppanan, S.; Ovinis, M. The influence of axial compressive stress and internal pressure on a pipeline network: A review. Appl. Sci. 2023, 13, 3799. [Google Scholar] [CrossRef]
- Witek, M. Structural integrity of steel pipeline with clusters of corrosion defects. Materials 2021, 14, 852. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Li, X.; Chen, F.; Guo, J.; Li, W.; Cai, J. Energy pipeline strength evaluation and reliability technology based on fuzzy deep learning network algorithm. Energy Rep. 2022, 8, 5129–5136. [Google Scholar] [CrossRef]
- Saraswat, R.; Patil, P.; Ciecko, E.; Koul, P. Identification of interacting free spans in subsea pipeline. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Melbourne, Australia, 11–16 June 2023; Volume 3, p. v003t04a043. [Google Scholar]
- Liu, X.; Sun, Z.; Zhu, J.; He, Y.; Pan, Y. Study on stress-strain characteristics of pipeline-soil interaction under ground collapse condition. Geofluids 2022, 5778761. [Google Scholar] [CrossRef]
- Bao, Y.; Ma, T.; Zhang, Y.; Wang, L. Influence of vibration on transient flow characteristics of gas-liquid two-phase flow in inclined pipes. Chem. Eng. Res. Des. 2023, 196, 71–88. [Google Scholar] [CrossRef]
- Chudyk, I.; Raiter, P.; Grydzhuk, Y.; Yurych, L. Mathematical model of oscillations of a drill tool with a drill bit of cutting-scraping type. Nauk. Visn. Nats. Hirn. Univ. 2020, 2020, 52–57. [Google Scholar] [CrossRef]
- Chudyk, I.; Sudakova, I.; Dreus, A.; Pavlychenko, A.; Sudakov, A. Determination of the Thermal State of a Block Gravel Filter during Its Transportation along the Borehole. Min. Miner. Depos. 2023, 17, 75–82. [Google Scholar] [CrossRef]
- Moysyshyn, V.; Lyskanych, M.; Borysevych, L.; Vytyaz, O.; Voznyi, I. Experimental estimation of design and drilling regime option influence on drilling tool dynamics. Metallofiz. Adv. Technol. 2021, 43, 689–712. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutko, R.; Lozynskyi, V. Oscillations of the Oil Pipeline Axis with Consideration of the Inertia Component When Pumping Diesel Fuel. Energies 2025, 18, 2472. https://doi.org/10.3390/en18102472
Tutko R, Lozynskyi V. Oscillations of the Oil Pipeline Axis with Consideration of the Inertia Component When Pumping Diesel Fuel. Energies. 2025; 18(10):2472. https://doi.org/10.3390/en18102472
Chicago/Turabian StyleTutko, Roman, and Vasyl Lozynskyi. 2025. "Oscillations of the Oil Pipeline Axis with Consideration of the Inertia Component When Pumping Diesel Fuel" Energies 18, no. 10: 2472. https://doi.org/10.3390/en18102472
APA StyleTutko, R., & Lozynskyi, V. (2025). Oscillations of the Oil Pipeline Axis with Consideration of the Inertia Component When Pumping Diesel Fuel. Energies, 18(10), 2472. https://doi.org/10.3390/en18102472