Enhanced Performance of a Thermoelectric Module with Heat Pipes for Refrigeration Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Heat Transfer Equations
4. Results
4.1. Effects of Boundary Conditions on the TEM Performance
4.2. Characterization of a TEM-Based Cooler with Heat Pipe Assembly
5. Discussion
6. Conclusions
- The optimized configuration from the three boundary conditions included HPs attached to a fan, which yielded a COP of 0.53 at a cooling rate of 26.26 W and a cold-side temperature of 278.5 K. This significant improvement in TEM performance was due to the enhanced heat transfer from the hot side (61.94 W), which reduced the hot-side temperature to 305.6 K.
- Removing the fan from the HPs negatively affected the TEM efficiency because of inadequate heat dissipation from the hot side.
- This study shows that the COP increased from 0.25 to 0.53 as the ΔT decreased from 50.6 K to 27.2 K because a smaller ΔT reduces the heat conduction between the TEM sides, leading to a higher and COP.
- The overall efficiency of the TEM was primarily controlled by the thermal resistance of both sides. According to the thermal resistance analysis, the COP of the TEM increases with a reduction in the thermal resistance on the hot and cold sides, which show minimum values of 0.17 and 0.63 K/W, respectively, for the optimized configuration.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGHPs | Axially grooved heat pipes [-]; |
Al | Aluminum [-]; |
Unfinned surface area of the HPs condenser [m2]; | |
Fin surface area [m2]; | |
COP | Coefficient of performance [-]; |
DC | Direct current [-]; |
ΔT | Temperature difference between the TEM sides [K]; |
Convective heat transfer coefficient [W/m2K]; | |
HPs | Heat pipes [-]; |
I | Current [A]; |
Itot | Total electrical current supplied to the cooler system [A]; |
K | Thermal conductance [W/K]; |
Number of fins [-]; | |
PVC | Polyvinyl chloride [-]; |
P | Applied electrical power to the TEM cooling system [W]; |
Electric power supplied to the TEM [W]; | |
Heat transfer rate into the cold side [W]; | |
Heat transfer rate out of the hot side [W]; | |
R | Electrical resistance [Ω]; |
Convective resistance from the unfinned surfaces of the HPs condenser [K/W]; | |
Thermal contact resistance on the cold side [K/W]; | |
Thermal contact resistance on the hot side [K/W]; | |
Thermal resistance of the HPs [K/W]; | |
Thermal resistance of the fin array [K/W]; | |
Conduction thermal resistance of the TEM [K/W]; | |
Hot-side thermal resistance [K/W]; | |
Cold-side thermal resistance [K/W]; | |
S | Seebeck coefficient [V/K]; |
TEM | Thermoelectric module [-]; |
Cold-side temperature [K]; | |
Ambient air temperature [K]; | |
Hot-side temperature [K]; | |
V | Voltage [V]; |
Greek symbols | |
Fin efficiency [-]. |
References
- Mao, J.; Chen, G.; Ren, Z. Thermoelectric Cooling Materials. Nat. Mater. 2021, 20, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Min, G.; Rowe, D.M. Experimental Evaluation of Prototype Thermoelectric Domestic-Refrigerators. Appl. Energy 2006, 83, 133–152. [Google Scholar] [CrossRef]
- Tassou, S.A.; Lewis, J.S.; Ge, Y.T.; Hadawey, A.; Chaer, I. A Review of Emerging Technologies for Food Refrigeration Applications. Appl. Therm. Eng. 2010, 30, 263–276. [Google Scholar] [CrossRef]
- Hu, B.; Shi, X.L.; Zou, J.; Chen, Z.G. Thermoelectrics for Medical Applications: Progress, Challenges, and Perspectives. Chem. Eng. J. 2022, 437, 135268. [Google Scholar] [CrossRef]
- Hermes, C.J.L.; Barbosa, J.R. Thermodynamic Comparison of Peltier, Stirling, and Vapor Compression Portable Coolers. Appl. Energy 2012, 91, 51–58. [Google Scholar] [CrossRef]
- Güler, N.F.; Ahiska, R. Design and Testing of a Microprocessor-Controlled Portable Thermoelectric Medical Cooling Kit. Appl. Therm. Eng. 2002, 22, 1271–1276. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Y.; Liu, D.; Zhao, F.Y. Thermoelectric Cooling Technology Applied in the Field of Electronic Devices: Updated Review on the Parametric Investigations and Model Developments. Appl. Therm. Eng. 2019, 148, 238–255. [Google Scholar] [CrossRef]
- Enescu, D.; Virjoghe, E.O. A Review on Thermoelectric Cooling Parameters and Performance. Renew. Sustain. Energy Rev. 2014, 38, 903–916. [Google Scholar] [CrossRef]
- Astrain, D.; Aranguren, P.; Martínez, A.; Rodríguez, A.; Pérez, M.G. A Comparative Study of Different Heat Exchange Systems in a Thermoelectric Refrigerator and Their Influence on the Efficiency. Appl. Therm. Eng. 2016, 103, 1289–1298. [Google Scholar] [CrossRef]
- Riffat, S.B.; Ma, X. Improving the Coefficient of Performance of Thermoelectric Cooling Systems: A Review. Int. J. Energy Res. 2004, 28, 753–768. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, G.; Wang, J.; Suo, Y.; Ye, Y.; Li, G.; Zhang, Z. Design and Optimization of a Cubic Two-Stage Thermoelectric Cooler for Thermal Performance Enhancement. Energy Convers. Manag. 2022, 271, 116259. [Google Scholar] [CrossRef]
- Zhao, D.; Tan, G.; Yang, L.; Chen, Z.G.; Dargusch, M.S.; Zou, J.; Zhao, D.; Tan, G. A Review of Thermoelectric Cooling: Materials, Modeling and Applications. Appl. Therm. Eng. 2014, 66, 15–24. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, B. Experimental Insights into Thermoelectric Freezer Systems: Feasibility and Efficiency. Energy Convers. Manag. X 2024, 23, 100676. [Google Scholar] [CrossRef]
- Dai, Y.J.; Wang, R.Z.; Ni, L. Experimental Investigation and Analysis on a Thermoelectric Refrigerator Driven by Solar Cells. Sol. Energy Mater. Sol. Cells 2003, 77, 377–391. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Elkamel, A.; Al-Damkhi, A.M.; Al-Habsi, I.A.; Al-Rubai’ey’, H.S.; Al-Battashi, A.K.; Al-Tamimi, A.R.; Al-Mamari, K.H.; Chutani, M.U. Design and Experimental Investigation of Portable Solar Thermoelectric Refrigerator. Renew. Energy 2009, 34, 30–34. [Google Scholar] [CrossRef]
- Rahman, S.M.A.; Hachicha, A.A.; Ghenai, C.; Saidur, R.; Said, Z. Performance and Life Cycle Analysis of a Novel Portable Solar Thermoelectric Refrigerator. Case Stud. Therm. Eng. 2020, 19, 100599. [Google Scholar] [CrossRef]
- Afshari, F.; Akif Ceviz, M.; Mandev, E.; Yıldız, F. Effect of Heat Exchanger Base Thickness and Cooling Fan on Cooling Performance of Air-To-Air Thermoelectric Refrigerator; Experimental and Numerical Study. Sustain. Energy Technol. Assess. 2022, 52, 102178. [Google Scholar] [CrossRef]
- Çağlar, A. Optimization of Operational Conditions for a Thermoelectric Refrigerator and Its Performance Analysis at Optimum Conditions. Int. J. Refrig. 2018, 96, 70–77. [Google Scholar] [CrossRef]
- He, Y.; Cao, C.; Wu, J.; Chen, G. Investigations on Coupling between Performance and External Operational Conditions for a Semiconductor Refrigeration System. Int. J. Refrig. 2020, 109, 172–179. [Google Scholar] [CrossRef]
- Gökçek, M.; Şahin, F. Experimental Performance Investigation of Minichannel Water Cooled-Thermoelectric Refrigerator. Case Stud. Therm. Eng. 2017, 10, 54–62. [Google Scholar] [CrossRef]
- Abderezzak, B.; Dreepaul, R.K.; Busawon, K.; Chabane, D. Experimental Characterization of a Novel Configuration of Thermoelectric Refrigerator with Integrated Finned Heat Pipes. Int. J. Refrig. 2021, 131, 157–167. [Google Scholar] [CrossRef]
- Ohara, B.; Sitar, R.; Soares, J.; Novisoff, P.; Nunez-Perez, A.; Lee, H. Optimization Strategies for a Portable Thermoelectric Vaccine Refrigeration System in Developing Communities. J. Electron. Mater. 2015, 44, 1614–1626. [Google Scholar] [CrossRef]
- Vián, J.G.G.; Astrain, D. Development of a Thermoelectric Refrigerator with Two-Phase Thermosyphons and Capillary Lift. Appl. Therm. Eng. 2009, 29, 1935–1940. [Google Scholar] [CrossRef]
- Faghri, A. Review and Advances in Heat Pipe Science and Technology. J. Heat Transfer 2012, 134. [Google Scholar] [CrossRef]
- Ku, J. Introduction to Heat Pipes. In Proceedings of the Thermal Fluids and Analysis Workshop (TFAWS) 2015, Silver Spring, MD, USA, 3–7 August 2015; p. 74. [Google Scholar]
- Riffat, S.B.; Omer, S.A.; Ma, X. A Novel Thermoelectric Refrigeration System Employing Heat Pipes and a Phase Change Material: An Experimental Investigation. Renew. Energy 2001, 23, 313–323. [Google Scholar] [CrossRef]
- Liang, K.; Li, Z.; Chen, M.; Jiang, H. Comparisons between Heat Pipe, Thermoelectric System, and Vapour Compression Refrigeration System for Electronics Cooling. Appl. Therm. Eng. 2019, 146, 260–267. [Google Scholar] [CrossRef]
- Liu, Y.; Su, Y. Experimental Investigations on COPs of Thermoelectric Module Frosting Systems with Various Hot Side Cooling Methods. Appl. Therm. Eng. 2018, 144, 747–756. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Bozorgi, M.; Venkateshwar, K.; Tasnim, S.; Mahmud, S. Phase Change Material-Enhanced Solid-State Thermoelectric Cooling Technology for Food Refrigeration and Storage Applications. J. Energy Storage 2023, 60, 106569. [Google Scholar] [CrossRef]
- Fenton, E.; Bozorgi, M.; Tasnim, S.; Mahmud, S. Solar-Powered Thermoelectric Refrigeration with Integrated Phase Change Material: An Experimental Approach to Food Storage. J. Energy Storage 2024, 79, 110247. [Google Scholar] [CrossRef]
- Kaiprath, J.; Kishor Kumar, V.V. A Review on Solar Photovoltaic-Powered Thermoelectric Coolers, Performance Enhancements, and Recent Advances. Int. J. Air Cond. Refrig. 2023, 31, 6. [Google Scholar] [CrossRef]
- Alrefae, M.A. Influence of Heat Dissipation on the Performance of a Thermoelectric Module. In Proceedings of the International Heat Transfer Conference 17, Cape Town, South Africa, 14–18 August 2023; Begell House Inc.: Danbury, CT, USA, 2023; p. ID: 575. [Google Scholar]
- Cai, Y.; Liu, D.; Zhao, F.Y.; Tang, J.F. Performance Analysis and Assessment of Thermoelectric Micro Cooler for Electronic Devices. Energy Convers. Manag. 2016, 124, 203–211. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; Dewitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Zeghari, K.; Louahlia, H. Flat Miniature Heat Pipe with Sintered Porous Wick Structure: Experimental and Mathematical Studies. Int. J. Heat Mass Transf. 2020, 158, 120021. [Google Scholar] [CrossRef]
- Poplaski, L.M.; Faghri, A.; Bergman, T.L. Analysis of Internal and External Thermal Resistances of Heat Pipes Including Fins Using a Three-Dimensional Numerical Simulation. Int. J. Heat Mass Transf. 2016, 102, 455–469. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Liao, S. Performance of a Thermoelectric Cooling System Integrated with a Gravity-Assisted Heat Pipe for Cooling Electronics. Appl. Therm. Eng. 2017, 116, 433–444. [Google Scholar] [CrossRef]
- Sun, X.; Ling, L.; Liao, S.; Chu, Y.; Fan, S.; Mo, Y. A Thermoelectric Cooler Coupled with a Gravity-Assisted Heat Pipe: An Analysis from Heat Pipe Perspective. Energy Convers. Manag. 2018, 155, 230–242. [Google Scholar] [CrossRef]
- Aranguren, P.; DiazDeGarayo, S.; Martínez, A.; Araiz, M.; Astrain, D. Heat Pipes Thermal Performance for a Reversible Thermoelectric Cooler-Heat Pump for a NZEB. Energy Build. 2019, 187, 163–172. [Google Scholar] [CrossRef]
- Park, S.J.; Bang, K.M.; Kim, B.; Ziolkowski, P.; Jeong, J.R.; Jin, H. Adaptive Thermoelectric Cooling System for Energy-Efficient Local and Transient Heat Management. Appl. Therm. Eng. 2022, 216, 119060. [Google Scholar] [CrossRef]
- Russel, M.K.; Ewing, D.; Ching, C.Y. Characterization of a Thermoelectric Cooler Based Thermal Management System under Different Operating Conditions. Appl. Therm. Eng. 2013, 50, 652–659. [Google Scholar] [CrossRef]
- Phelan, P.E.; Chiriac, V.A.; Tom Lee, T.Y. Current and Future Miniature Refrigeration Cooling Technologies for High Power Microelectronics. IEEE Trans. Compon. Packag. Technol. 2002, 25, 356–365. [Google Scholar] [CrossRef]
- Chang, Y.W.; Chang, C.C.; Ke, M.T.; Chen, S.L. Thermoelectric Air-Cooling Module for Electronic Devices. Appl. Therm. Eng. 2009, 29, 2731–2737. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Mui, Y.C.; Tarin, M. Analysis of Thermoelectric Cooler Performance for High Power Electronic Packages. Appl. Therm. Eng. 2010, 30, 561–568. [Google Scholar] [CrossRef]
- Choi, J.; Jeong, M.; Yoo, J.; Seo, M. A New CPU Cooler Design Based on an Active Cooling Heatsink Combined with Heat Pipes. Appl. Therm. Eng. 2012, 44, 50–56. [Google Scholar] [CrossRef]
Configuration | (K) | (K) | ΔT (K) | (W) | (W) | COP | (K/W) | (K/W) |
---|---|---|---|---|---|---|---|---|
Hot side: HPs without fan Cold side: heat exchange (or cooling plate) | 376.7 ± 2.6 | 298.1 ± 2.6 | 78.6 ± 5.2 | 18.69 ±0.44 | −6.78 ± 0.49 | - | 4.32 ± 0.10 | 0.33 ± 0.03 |
Hot side: HPs with fan Cold side: heat exchange (or cooling plate) | 333.1 ± 0.4 | 282.4 ± 0.3 | 50.6 ± 0.7 | 42.48 ± 0.09 | 11.10 ± 0.13 | 0.25 ± 0.01 | 0.87 ± 0.01 | 1.22 ± 0.03 |
Hot side: HPs with fan Cold side: HPs with fan | 305.6 ± 1.3 | 278.5 ± 0.3 | 27.2 ± 1.6 | 61.94 ± 0.32 | 26.26 ± 0.54 | 0.53 ± 0.01 | 0.17 ± 0.02 | 0.63 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrefae, M.A. Enhanced Performance of a Thermoelectric Module with Heat Pipes for Refrigeration Applications. Energies 2025, 18, 2426. https://doi.org/10.3390/en18102426
Alrefae MA. Enhanced Performance of a Thermoelectric Module with Heat Pipes for Refrigeration Applications. Energies. 2025; 18(10):2426. https://doi.org/10.3390/en18102426
Chicago/Turabian StyleAlrefae, Majed A. 2025. "Enhanced Performance of a Thermoelectric Module with Heat Pipes for Refrigeration Applications" Energies 18, no. 10: 2426. https://doi.org/10.3390/en18102426
APA StyleAlrefae, M. A. (2025). Enhanced Performance of a Thermoelectric Module with Heat Pipes for Refrigeration Applications. Energies, 18(10), 2426. https://doi.org/10.3390/en18102426