Review of Fuel-Cell Electric Vehicles
Abstract
:1. Introduction
Contribution and Organization of This Review
2. Fuel-Cell Technology and Models
2.1. Types of Fuel Cells
2.1.1. Alkaline Fuel Cells (AFCs)
2.1.2. Phosphoric Acid Fuel Cells (PAFCs)
2.1.3. Proton-Exchange Membrane Fuel Cells (PEMFCs)
2.1.4. Direct Methanol Fuel Cells (DMFCs)
2.1.5. Molten Carbonate Fuel Cells (MCFCs)
2.1.6. Solid Oxide Fuel Cells (SOFCs)
2.2. Fundamental Principles of PEMFCs
2.2.1. Anode and Cathode PEMFC
2.2.2. Electrolyte in PEMFC
2.2.3. Durability of PEMFCs
2.3. Fundamental Principles of SOFCs
2.3.1. Anode in SOFC
2.3.2. Cathode in SOFC
2.3.3. Electrolyte in SOFC
2.3.4. Interconnect in SOFC
- Exceptional electrical conductivity with an acceptable area-specific resistance (ASR), which is generally expected to be below 0.1 Ω cm−2;
- Thermal, mechanical, and chemical stability at evaluated operational temperature in both oxidizing and reducing environments during the lifetime of the service;
- Impermeable to oxygen and hydrogen, to prevent the direct combination of the fuel and oxidant during operation;
- The CTE matches with other cell components throughout the heat and cooling cycle to avoid unnecessary thermal stress generation and cell damage, with the generally accepted value of around (10–12) × 10−6 K−1;
- Absolutely no reaction or interdiffusion between interconnects with electrodes, electrolytes, or sealing materials exposed simultaneously in reducing or oxidizing environments at the SOFC operation temperature;
- Excellent in thermal conductivity at SOFC operational temperature to facilitate the internal reforming of hydrocarbon fuels, with the accepted value of above 5 W·m−1·K−1;
- Adequate resistance to oxidation, sulfidation, and carbon cementation;
- Adequate mechanical strength and creep resistance at the operational temperature;
- Comparably low cost of manufacturing and ease of assembly for commercial mass production.
2.3.5. Durability of SOFC
- Thermally and chemically stable in both oxidizing and reducing environments at SOFC operating temperatures;
- Negligible reaction with neighboring components, including anodes, cathodes, electrode contact materials, seals, or substrates;
- Ability to block Cr migration or diffusion from ferritic stainless steel;
- Low ohmic resistance;
- Adequate match in CTE with ferritic stainless steel during heating and cooling cycles.
2.4. General Fuel-Cell Model
2.5. Battery Electrical Vehicles
2.6. Hybrid Electric Vehicles (HEVs)
2.7. FC-EV Architecture
3. Necessary Advancements
3.1. Well-to-Wheel Efficiency
3.2. Infrastructure Implementation
3.3. Cost Considerations
3.4. Public Perception
4. Conclusions
Funding
Conflicts of Interest
References
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Ite, A.E.; Ibok, U.J.; Ite, M.U.; Petters, S.W. Petroleum Exploration and Production: Past and Present Environmental Issues in the Nigeria’s Niger Delta. Am. J. Environ. Prot. 2013, 1, 78–90. [Google Scholar] [CrossRef]
- Progress Cleaning the Air and Improving People’s Health. United States Environmental Protectio Agency. Available online: https://www.epa.gov/clean-air-act-overview/progress-cleaning-air-and-improving-peoples-health (accessed on 14 April 2024).
- U.S. Public Views on Climate and Energy. Pew Research Center. Available online: https://www.pewresearch.org/science/2019/11/25/u-s-public-views-on-climate-and-energy/ (accessed on 14 April 2024).
- Erickson, L.E.; Jennings, M. Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health. AIMS Public Health 2017, 4, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; Noto, V.D. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Brekken, T.K.A.; Yokochi, A.; Jouanne, A.V.; Yen, Z.Z.; Hapke, H.M.; Halamay, D.A. Optimal Energy Storage Sizing and Control for Wind Power Applications. IEEE Trans. Sustain. Energy 2011, 2, 69–77. [Google Scholar] [CrossRef]
- Collin, R.; Miao, Y.; Yokochi, A.; Enjeti, P.; Jouanne, A.V. Advanced Electric Vehicle Fast-Charging Technologies. Energies 2019, 12, 1839. [Google Scholar] [CrossRef]
- Adegbohun, F.; Jouanne, A.V.; Agamloh, E.; Yokochi, A. A Review of Bidirectional Charging Grid Support Applications and Battery Degradation Considerations. Energies 2024, 17, 1320. [Google Scholar] [CrossRef]
- Adegbohun, F.; Jouanne, A.V.; Agamloh, E.; Yokochi, A. Geographical Modeling of Charging Infrastructure Requirements for Heavy-Duty Electric Autonomous Truck Operations. Energies 2023, 16, 4161. [Google Scholar] [CrossRef]
- Moghbel, H.; Ganapavarapu, K.; Langari, R.; Ehsani, M. A Comparative Review of Fuel Cell Vehicles (FCVs) and Hybrid Electric Vehicles (HEVs) Part I: Performance and Parameter Characteristics, Emissions, Well-to-Wheels Efficiency and Fuel Economy, Alternative Fuels, Hybridization of FCV, and Batteries for HVs; SAE International: Warrendale, PA, USA, 2003; Volume 112, pp. 1860–1870. [Google Scholar]
- Andu, J.; Segura, F. Fuel cells: History and updating. A walk along two centuries. Renew. Sustain. Energy Rev. 2009, 13, 2309–2322. [Google Scholar]
- Fuel Cell in Transit Buses Summary. Department of Energy. Available online: https://www1.eere.energy.gov (accessed on 19 March 2024).
- Thompson, S.T.; Papageorgopoulos, D. Platinum group metal-free catalysts boost cost competitiveness of fuel cell vehicles. Nat. Catal. 2019, 2, 558–561. [Google Scholar] [CrossRef]
- Xu, H.; Han, Y.; Zhu, J.; Ni, M.; Yao, Z. Status and progress of metal-supported solid oxide fuel cell: Towards large-scale manufactory and practical applications. Energy Rev. 2024, 3, 100051. [Google Scholar] [CrossRef]
- Blennow, P.; Hjelm, J.; Klemensø, T.; Persson, Å.H.; Ramousse, S.; Mogensen, M. Planar Metal-Supported SOFC with Novel Cermet Anode. Fuel Cells 2011, 5, 661–668. [Google Scholar] [CrossRef]
- Li, M.; Bai, Y.; Zhang, C.; Song, Y.; Jiang, S.; Grouset, D.; Zhang, M. Review on the research of hydrogen storage system fast refueling in fuel cell vehicle. Int. J. Hydrog. Energy 2019, 44, 10677–10693. [Google Scholar] [CrossRef]
- Sankır, M.; Sankir, N. Hydrogen Electrical Vehicles; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Vargas, J.E.V.; Seabra, J.E.A. Fuel-cell technologies for private vehicles in Brazil: Environmental mirage or prospective romance? A comparative life cycle assessment of PEMFC and SOFC light-duty vehicles. Sci. Total Environ. 2021, 798, 149265. [Google Scholar] [CrossRef] [PubMed]
- Acres, G.; Frost, J.; Hards, G.; Potter, R.; Ralph, T.; Thompsett, D.; Burstein, G.; Hutchings, G. Electrocatalysts for fuel cells. Catal. Today 1997, 38, 393–400. [Google Scholar] [CrossRef]
- Warshay, M.; Prokopius, P.R. The Fuel Cell in Space: Yesterday, Today and Tomorrow. NASA Technical Memorandum 102366. In Proceedings of the Grove Anniversary (1839–1989) Fuel Cell Symposium, London, UK, 18–21 September 1989. [Google Scholar]
- Burke, K.A. Fuel Cells for Space Science Applications. In Proceedings of the First International Energy Conversion Engineering Conference, Portsmouth, VA, USA, 17–21 August 2003. [Google Scholar]
- Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 1995, 244, 456–462. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Safari, A. Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 2012, 16, 981–989. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007. [Google Scholar] [CrossRef]
- Jiao, K.; Li, X. Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 2011, 37, 221–291. [Google Scholar] [CrossRef]
- Hydrogen Cars Now. Available online: https://www.hydrogencarsnow.com/index.php/gm-electrovan/ (accessed on 24 March 2024).
- Honda Motor Co. Available online: https://global.honda/en/newsroom/worldnews/2002/4020724.html (accessed on 24 March 2024).
- Toyota Motor Corporation. Available online: https://techinfo.toyota.com/techInfoPortal/staticcontent/en/techinfo/html/prelogin/docs/fchverg.pdf (accessed on 24 March 2024).
- Toyota Knoxville. Available online: https://www.toyotaknoxville.com/blogs/1021/toyota-debut-mirai-at-japan-auto-show/ (accessed on 24 March 2024).
- Toyota Europe. Available online: https://www.toyota-europe.com/news/2020/mirai-2020 (accessed on 24 March 2024).
- Nissan Motor Corporation. Available online: https://global.nissannews.com/en/releases/nissan-unveils-worlds-first-solid-oxide-fuel-cell-vehicle (accessed on 24 March 2024).
- Honda of Fort Worth. Available online: https://www.hondaoffortworth.com/blog/2016/may/20/2016-honda-clarity-exudes-engineering-excellence.htm (accessed on 24 March 2024).
- Hyundai Motor Company. Available online: https://www.hyundai.news/eu/models/electrified/nexo/press-kit/all-new-hyundai-nexo-design.html (accessed on 24 March 2024).
- Wee, J.-H. Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells? J. Power Sources 2006, 161, 1–10. [Google Scholar] [CrossRef]
- Inoishi, A.; Sakai, T.; Ju, Y.W.; Ida, S.; Ishihara, T. Improved cycle stability of Fe-air solid state oxide rechargeable battery using LaGaO3-based oxide ion conductor. J. Power Sources 2014, 262, 310–315. [Google Scholar] [CrossRef]
- Aguadero, A.; Fawcett, L.; Taub, S.; Woolley, R.; Wu, K.-T.; Xu, N.; Kilner, J.A.; Skinner, S.J. Materials development for intermediate-temperature solid oxide. J. Mater. Sci. 2012, 47, 3925–3948. [Google Scholar] [CrossRef]
- Hossain, S.; Abdalla, A.M.; Jamain, S.N.B.; Zaini, J.H.; Azad, A.K. A review on proton conducting electrolytes for clean energy and intermediate temperature—Solid oxide fuel cells. Renew. Sustain. Energy Rev. 2017, 79, 750–764. [Google Scholar] [CrossRef]
- Zhu, W.; Deevi, S. Development of interconnect materials for solid oxide fuel cells. Mater. Sci. Eng. 2003, 348, 227–243. [Google Scholar] [CrossRef]
- Tronstad, T.; Åstrand, H.H.; Haugom, G.P.; Langfeldt, L. Study on the Use of Fuel Cells in Shipping; EMSA European Maritime Safety: Lisbon, Portugal, 2017.
- Solid Oxide Fuel Cell. Special Power Sources, 15 August 2023. Available online: https://spsources.com/a-comprehensive-comparison-of-planar-and-tubular-solid-oxide-fuel-cells/#:~:text=Lower%20Power%20Density%3A%20Tubular%20SOFCs,consuming%2C%20potentially%20increasing%20manufacturing%20costs (accessed on 20 April 2024).
- Husain, I. Electric and Hybrid Vehicles: Design Fundamentals; CRC Press: Boca Raton, FL, USA, 2010; pp. 159–169. [Google Scholar]
- Baker, R.; Zhang, J. Proton exchange membrane or polymer electrolyte membrane (pem) fuel cells. Electrochem. Encycl. 2011, 1, 11–22. [Google Scholar]
- Wang, P.; Shao, Q.; Huang, X. Updating Pt-Based Electrocatalysts for Practical Fuel Cells. Joule 2018, 2, 2511–2518. [Google Scholar] [CrossRef]
- PEM Fuel Cell History. Smithsonian Institution. Available online: https://americanhistory.si.edu/fuelcells/pem/pemmain.htm (accessed on 22 March 2024).
- Mauritz, K.A.; Moore, R.B. State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535–4585. [Google Scholar] [CrossRef]
- Hou, Y.; Hao, D.; Shen, J.; Li, P.; Zhang, T.; Wang, H. Effect of strengthened road vibration on performance degradation of PEM fuel cell stack. Int. J. Hydrog. Energy 2016, 41, 5123–5134. [Google Scholar] [CrossRef]
- Kurtz, J.; Dinh, H.; Saur, G.; Ainscough, C. Fuel Cell Technology Status: Degradation; National Renewable Energy Laboratory: Washington, DC, USA, 2017.
- Chen, H.; Zhang, R.; Xia, Z.; Weng, Q.; Zhang, T.; Pei, P. Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition. Appl. Energy 2023, 349, 121632. [Google Scholar] [CrossRef]
- Yan, S.; Yang, M.; Sun, C.; Xu, S. Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method. Energies 2023, 16, 6010. [Google Scholar] [CrossRef]
- Lewis, M.J. Synthesis and Evaluation of Electrolytically-Deposited Coatings to Protect Ferritic Stainless Steels. Master’s Thesis, Tennessee Technological University, Cookeville, TN, USA, 2011. [Google Scholar]
- Lewis, B.J. Synthesis and Evaluation of Manganese Cobalt Spinel Layers for Solid Oxide Fuel Cell Cathode-Interconnect Contact Application. Master’s Thesis, Tennessee Technological University, Cookeville, TN, USA, 2011. [Google Scholar]
- Singhal, S.C.; Kendall, K. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications; Elsevier Science: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Tonekabonimoghaddam, M.; Shamiri, A. Simulation and Sensitivity Analysis for Various Geometries and Optimization of Solid Oxide Fuel Cells: A Review. Eng 2021, 2, 386–415. [Google Scholar] [CrossRef]
- Jacobson, A.J. Materials for Solid Oxide Fuel Cells. Chem. Mater. 2010, 22, 660–674. [Google Scholar] [CrossRef]
- Bierschenk, D.M.; Pillai, M.R.; Lin, Y.; Barnett, S.A. Effect of Ethane and Propane in SimulatedNatural Gas on the Operation of Ni–YSZ Anode Supported SolidOxide Fuel Cells. Fuel Cells 2010, 6, 1129–1134. [Google Scholar] [CrossRef]
- Rasmussen, J.F.; Hagen, A. The effect of H2S on the performance of Ni–YSZ anodes in solid oxide fuel cells. J. Power Sources 2009, 191, 534–541. [Google Scholar] [CrossRef]
- Liu, J.; Barnett, S.A. Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ion. 2003, 158, 11–16. [Google Scholar] [CrossRef]
- Kuhn, J.N.; Lakshminarayanan, N.; Ozkan, U.S. Effect of hydrogen sulfide on the catalytic activity of Ni-YSZ cermets. J. Mol. Catal. 2008, 282, 9–21. [Google Scholar] [CrossRef]
- Bi, Z.H.; Zhu, J.H. A Cu–CeO2-LDC Composite Anode for LSGM Electrolyte-Supported Solid Oxide Fuel Cells. Electrochem. Solid-State Lett. 2009, 12, B107–B111. [Google Scholar] [CrossRef]
- Fergus, J.W. Oxide anode materials for solid oxide fuel cells. Solid State Ion. 2006, 177, 1529–1541. [Google Scholar] [CrossRef]
- Tietz, F.; Mai, A.; Stöver, D. From powder properties to fuel cell performance—A holistic approach for SOFC cathode development. Solid State Ion. 2008, 179, 1509–1515. [Google Scholar] [CrossRef]
- Nielsen, J.; Jacobsen, T. SOFC cathode/YSZ—Non-stationary TPB effects. Solid State Ion. 2008, 179, 1314–1319. [Google Scholar] [CrossRef]
- Sun, C.; Hui, R.; Roller, J. Cathode materials for solid oxide fuel cells: A review. J. Solid State Electrochem. 2009, 14, 1125–1144. [Google Scholar] [CrossRef]
- Bell, R.J.; Millar, G.J.; Drennan, J. Influence of synthesis route on the catalytic properties of La Sr MnO. Solid State Ion. 2000, 131, 211–220. [Google Scholar] [CrossRef]
- Jiang, S.P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: A review. J. Mater. Sci. 2008, 43, 6799–6833. [Google Scholar] [CrossRef]
- Backhaus-Ricoult, M.; Adib, K.; St, T.; Luerssen, B.; Gregoratti, L.; Barinov, A. In-situ study of operating SOFC LSM/YSZ cathodes under polarization by photoelectron microscopy. Solid State Ion. 2008, 179, 891–895. [Google Scholar] [CrossRef]
- Wang, S.; Yoon, J.; Kim, G.; Huang, D.; Wang, H.; Jacobson, A.J. Electrochemical Properties of Nanocrystalline La0.5Sr0.5CoO3-x Thin Films. Chem. Mater 2010, 22, 776–782. [Google Scholar] [CrossRef]
- Uhlenbruck, S.; Tietz, F. High-temperature thermal expansion and conductivity of cobaltites: Potentials for adaptation of the thermal expansion to the demands for solid oxide fuel cells. Mater. Sci. Eng. 2004, B107, 277–282. [Google Scholar] [CrossRef]
- Yang, S.; He, T.; He, Q. Sm0.5Sr0.5CoO3 cathode material from glycine-nitrate process: Formation, characterization, and application in LaGaO3-based solid oxide fuel cells. J. Alloys Compd. 2008, 450, 400–404. [Google Scholar] [CrossRef]
- Yang, Y.L.; Chen, C.L.; Chen, S.Y.; Chu, C.W.; Jacobson, A.J. Impedance Studies of Oxygen Exchange on Dense Thin Film Electrodes of LSCO. J. Electrochem. Soc. 2000, 147, 4001–4007. [Google Scholar] [CrossRef]
- Rembelski, D.; Viricelle, J.-P.; Rieu, M.; Combemale, L. Characterization and Comparison of Different Cathode Materials for SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 2012, 12, 256–264. [Google Scholar] [CrossRef]
- Minh, N.Q. Solid oxide fuel cell technology—Features and applications. Solid State Ion. 2004, 174, 271–277. [Google Scholar] [CrossRef]
- Han, M.; Tang, X.; Yin, H.; Peng, S. Fabrication, Microstructure and Properties of a YSZ electrolyte for SOFCs. J. Power Sources 2007, 165, 757–763. [Google Scholar] [CrossRef]
- Wu, J.; Liu, X. Recent Development of SOFC Metallic Interconnect. J. Mater. Sci. Technol. 2010, 26, 293–305. [Google Scholar] [CrossRef]
- Matsuda, M.; Hosomi, T.; Murata, K.; Fukui, T.; Miyake, M. Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC. J. Power Sources 2007, 165, 102–107. [Google Scholar] [CrossRef]
- Huijsmans, J.; Berkel, F.V.; Christie, G. Intermediate temperature SOFC—A promise for the 21st century. J. Power Sources 1998, 71, 107–110. [Google Scholar] [CrossRef]
- Geng, S.; Zhu, J.; Lu, Z. Evaluation of several alloys for solid oxide fuel cell interconnect application. Scr. Mater. 2006, 55, 239–242. [Google Scholar] [CrossRef]
- Quadakkers, W.; Piron-Abellan, J.; Shemet, V.; Singheiser, L. Metallic interconnectors for solid oxide fuel cells—A review. Mater. High Temp. 2003, 20, 115–127. [Google Scholar]
- Seo, H.G.; Staerz, A.; Dimitrakopoulos, G.; Kim, D.; Yildiz, B.; Tuller, H.L. Degradation and recovery of solid oxide fuel cell performance by control of cathode surface acidity: Case study—Impact of Cr followed by Ca infiltration. J. Power Sources 2023, 558, 232589. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Yasuda, I. Electrochemical properties of a SOFC cathode in contact with a chromium-containing alloy separator. Solid State Ion. 2000, 132, 271–278. [Google Scholar] [CrossRef]
- Yokokawa, H.; Horita, T.; Sakai, N.; Yamaji, K.; Brito, M.; Xiong, Y.-P.; Kishimoto, H. Thermodynamic considerations on Cr poisoning in SOFC cathodes. Solid State Ion. 2006, 177, 3193–3198. [Google Scholar] [CrossRef]
- Liu, W.; Sun, X.; Stephens, E.; Khaleel, M. Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications. J. Power Sources 2009, 189, 1044–1050. [Google Scholar] [CrossRef]
- Simner, S.P.; Anderson, M.D.; Xia, G.-G.; Yang, Z.; Pederson, L.R.; Stevenson, J.W. SOFC Performance with Fe-Cr-Mn Alloy Interconnect. J. Electrochem. Soc. 2005, 152, A740–A745. [Google Scholar] [CrossRef]
- Huang, K.; Hou, P.Y.; Goodenough, J.B. Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells. Solid State Ion. 2000, 129, 237–250. [Google Scholar] [CrossRef]
- Stanislowski, M.; Froitzheim, J.; Niewolak, L.; Quadakkers, W.; Hilpert, K.; Markus, T.; Singheiser, L. Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings. J. Power Sources 2007, 164, 578–589. [Google Scholar] [CrossRef]
- Ebrahimifar, H.; Zandrahimi, M. Mn coating on AISI 430 ferritic stainless steel by pack cementation method for SOFC interconnect applications. Solid State Ion. 2011, 183, 71–79. [Google Scholar] [CrossRef]
- Deng, X.; Wei, P.; Bateni, M.R.; Petric, A. Cobalt plating of high temperature stainless steel interconnects. J. Power Sources 2006, 160, 1225–1229. [Google Scholar] [CrossRef]
- Alman, D.; Johnson, C.; Collins, W.; Jablonski, P. The effect of cerium surface treated ferritic stainless steel current collectors on the performance of solid oxide fuel cells (SOFC). J. Power Sources 2007, 168, 351–355. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, G.; Simner, S.P.; Stevenson, J.W. Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnects. J. Electrochem. Soc. 2005, 152, A1896–A1901. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, G.-G.; Li, X.-H.; Stevenson, J.W. (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Int. J. Hydrog. Energy 2007, 32, 3648–3654. [Google Scholar] [CrossRef]
- Long, Z.; Axsen, J.; Miller, I.; Kormos, C. What does Tesla mean to car buyers? Exploring the role of automotive brand in perceptions of battery electric vehicles. Transp. Res. Part A 2019, 129, 185–204. [Google Scholar] [CrossRef]
- Wassiliadis, N.; Kriegler, J.; Gamra, K.A.; Lienkamp, M. Model-based health-awarefast charging to mitigate the risk of lithium plating and prolong the cycle life of lithium-ion batteries in electric vehicles. J. Power Sources 2023, 561, 232586. [Google Scholar] [CrossRef]
- Sangeetha, E.; Ramachandran, V. Different Topologies of Electrical Machines, Storage Systems, and Power Electronic Converters and Their Control for Battery Electric Vehicles—A Technical Review. Energies 2022, 15, 8959. [Google Scholar] [CrossRef]
- Toyota. Available online: https://www.toyotaofmelbourne.com/toyota-prius-model-timeline.html (accessed on 23 March 2024).
- Toyota Motor Sales, U.S.A., Inc. Available online: https://www.toyota.com/corolla/features/mpg_other_price/1852/1868/1866 (accessed on 24 March 2024).
- Auto Nation Toyota Corpus Christi. Available online: https://www.autonationtoyotacorpuschristi.com/showroom/2024/Toyota/bZ4X/SUV.htm (accessed on 24 March 2024).
- Toyota Motor Sales, U.S.A., Inc. Available online: https://www.toyota.com/prius/features/mpg_other_price/1223/1225/1227 (accessed on 24 March 2024).
- Toyota Motor Sales, U.S.A., Inc. Available online: https://www.toyota.com/mirai/2024/features/mpg_other_price/3002/3003 (accessed on 24 March 2024).
- Ehsani, M.; Singh, K.V.; Bansal, H.O.; Mehrjardi, R.T. State of the Art and Trends in Electric and Hybrid Electric Vehicles. Proc. IEEE 2021, 109, 967–984. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Available online: https://afdc.energy.gov/vehicles/how-do-fuel-cell-electric-cars-work (accessed on 12 March 2024).
- Lu, Q.; Zhang, B.; Yang, S.; Peng, Z. Life cycle assessment on energy efficiency of hydrogen fuel cell vehicle in China. Energy 2022, 257, 124731. [Google Scholar] [CrossRef]
- Liu, X.; Reddi, K.; Elgowainy, A.; Lohse-Busch, H.; Wang, M.; Rustagi, N. Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle. Int. J. Hydrogen Energy 2019, 45, 972–983. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. Int. J. Hydrog. Energy 2021, 46, 10049–10058. [Google Scholar] [CrossRef]
- LBST. 16th Annual Assessment of H2stations.org by LBST. LBST, 2024. Available online: https://www.h2stations.org/wp-content/uploads/2024-01-24-LBST-HRS-2023-en.pdf (accessed on 20 March 2024).
- US Department of Energy. Available online: https://afdc.energy.gov/fuels/hydrogen_stations.html (accessed on 19 March 2024).
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Rusman, N.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Chu, C.; Wu, K.; Luo, B.; Cao, Q.; Zhang, H. Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology—A review. Carbon Resour. Convers. 2023, 6, 334–351. [Google Scholar] [CrossRef]
- Li, H.; Chaoui, H.; Gualous, H. Cost Minimization Strategy for Fuel Cell Hybrid Electric Vehicles Considering Power Sources Degradation. IEEE Trans. Veh. Technol. 2020, 69, 12832–12842. [Google Scholar] [CrossRef]
- Li, Y.; Taghizadeh-Hesary, F. The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy 2022, 160, 112703. [Google Scholar] [CrossRef]
- Ringland, J.T. Safety Issues for Hydrogen-Powered Vehicles; Sandia Report; USDOE: Washington, DC, USA, 1994.
Planar | Tubular | |
---|---|---|
Electrical resistance | Low | High |
Power density | High | Low |
Manufacturing cost | Low | High |
High temperature sealing | Required | Not necessary |
Start-up cool down | Slower | Faster |
Interconnect | High cost | Difficult |
Fuel utilization | Less efficient | More efficient |
Thermal stress | More susceptible | Reduced |
Lifespan | Short | Long |
Requirements | Guide Parameter |
---|---|
Electronic conductivity | >100 S cm−1 |
Ionic conductivity | >10 mS cm−1 |
Catalyst for fuel reduction | <0.1 Ω cm−2 for electrode |
Electrode resistance | Total < 0.15 Ω cm−2 |
Thermal stability | Over an extended duration at operating temperature |
Chemical stability | While at operating temperature and in contact with other materials (such as electrodes and interconnects) |
Thermal expansion match | The cell undergoes significant temperature fluctuations |
Structural stability | It is essential to maintain porosity at the operating temperature for an extended period |
Reduction stability | Under high reducing conditions, reducing gas at high temperature |
Parameters | ICEs | EVs | HEVs | PEMFC-EVs | SOFC-EVs |
---|---|---|---|---|---|
Fuel Type | Hydrocarbon | Electricity | Hydrocarbon | H2 | H2 or BioFuel |
Fueling Time | Fast | Slow | Fast | Fast | Fast |
Tailpipe Emissions | Yes | No | Yes | Water | Water/CO2 |
City Mileage * | (32 MPG) | (131 MPGe) | (57 MPG) | (76 MPGe) | ** |
Highway Mileage * | (41 MPG) | (107 MPGe) | (56 MPG) | (71 MPGe) | ** |
Refilling Stations | Ample | Ample | Ample | Low | Low |
Purchase Cost | Low | Medium | Low | High | High |
Maintenance Cost | High | Low | High | Low | Low |
Collision Repair Cost | Low | High | Low | High | High |
Operation Noise | High | Low | Mixed | Low | Low |
Regenerative Braking | No | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, T.; Vairin, C.; von Jouanne, A.; Agamloh, E.; Yokochi, A. Review of Fuel-Cell Electric Vehicles. Energies 2024, 17, 2160. https://doi.org/10.3390/en17092160
Fang T, Vairin C, von Jouanne A, Agamloh E, Yokochi A. Review of Fuel-Cell Electric Vehicles. Energies. 2024; 17(9):2160. https://doi.org/10.3390/en17092160
Chicago/Turabian StyleFang, Tingke, Coleman Vairin, Annette von Jouanne, Emmanuel Agamloh, and Alex Yokochi. 2024. "Review of Fuel-Cell Electric Vehicles" Energies 17, no. 9: 2160. https://doi.org/10.3390/en17092160
APA StyleFang, T., Vairin, C., von Jouanne, A., Agamloh, E., & Yokochi, A. (2024). Review of Fuel-Cell Electric Vehicles. Energies, 17(9), 2160. https://doi.org/10.3390/en17092160