Agricultural Wastes and Their By-Products for the Energy Market
Abstract
:1. Introduction
2. Production of Biofuels—Overview of Substrates from Agriculture
2.1. Production of Biogas
Type of Waste | Yield | References |
---|---|---|
Methane production | ||
Sunflower husks | 147 L CH4/kg VS | [31] |
Maize waste | 338 L CH4/kg VS | [32] |
Soybean straw | 196 L CH4/kg VS | [33] |
Wheat straw | 290 L CH4/kg VS | [32] |
Rice straw | 302 L CH4/kg VS | [32] |
Rice husks | 300 L CH4/kg VS | [34] |
Mix cereal grains | 345 L CH4/kg VS | [33] |
Residual cabbage and cauliflower (1:1, w/w) | 250 L CH4/kg VS | [35] |
Carrot leaves | 312 L CH4/kg VS | [36] |
Potato peels | 446 L CH4/kg VS | [36] |
Grape seeds | 71.4 L CH4/kg VS | [33] |
Apple pomace | 204 L CH4/kg VS | [37] |
Grape vinasse | 274 L CH4/kg VS | [33] |
Glycerine | 241 L CH4/kg VS | [31] |
Molasses | 456 L CH4/kg VS | [33] |
Palm oil cake | 402 L CH4/kg VS | [38] |
Sugarcane waste | 278 L CH4/kg VS | [32] |
Hydrogen production in photofermentation | ||
Potato starch powder | 77.78 mL/(L·h) | [39] |
Shrub landscaping waste | 73.82 ± 0.06 mL/g TS | [40] |
Corn stover | 74.58 mL/g TS | [41] |
Corncob | 84.7 mL/g TS | [42] |
Hydrogen production in dark fermentation | ||
Potato waste | 27.5 mL/g VSS | [43] |
Wheat straw | 31.67 mL/g VSS | [43] |
Cotton stalk hydrolysate | 179 mL/g VSS | [44] |
Raw cassava starch | 240 mL/g VSS | [45] |
Bioethanol production | ||
Wheat straw | 250–300 L/Mg d.m. | [46,47] |
Rice straw | 250–280 L/Mg d.m. | [48,49] |
Sugarcane straw | 250–450 L/Mg d.m. | [50,51] |
Potato waste | 21.7 g/L | [52] |
Sunflower stalk | 80–150 L/Mg d.m. | [53,54] |
Maize stover | 250–350 L/Mg d.m. | [47,55] |
Sugarcane bagasse | 0.29 ± 0.02 g ethanol/gglucose and xylose | [56] |
Biodiesel production | ||
Corn stover | 2.2 g/g | [57] |
Cassava starch | 0.187 g/g | [58] |
Rice bran oil | 94.12% | [59] |
2.2. Production of Biohydrogen
2.3. Production of Bioethanol
2.4. Production of Biodiesel
2.5. Production of Biobutanol
2.6. Production of Bio-Oil
2.7. Hybrid Technologies
2.8. Production of Bioelectricity by Microbial Fuel Cells (MFCs)
2.9. Production Costs of Energy Sources
3. Production of Other Value-Added Products
3.1. Production of Volatile Fatty Acids (VFAs) and Polyhydroxyalkanoates (PHAs)
3.2. Production of Biochar
3.3. Production of Hydrochar
3.4. Production of Platform Chemicals
3.5. Production of Cellulose Nanomaterials and Nanocomposites
4. Pretreatment of Agricultural Waste
4.1. Recalcitrant Compounds in Biomass
4.2. Reduction in Biogas Yield
4.3. Impact of Pretreatment Methods on Recalcitrant Formation
4.4. Mitigation Strategies for Recalcitrants in AD
5. Conclusions, Challenges, and Perspectives
Funding
Conflicts of Interest
References
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.-W.; Verniquet, A.; Broeze, J.; et al. A Research Challenge Vision Regarding Management of Agricultural Waste in a Circular Bio-Based Economy. Crit. Rev. Environ. Sci. Technol. 2018, 48, 614–654. [Google Scholar] [CrossRef]
- Raut, N.A.; Kokare, D.M.; Randive, K.R.; Bhanvase, B.A.; Dhoble, S.J. Introduction: Fundamentals of Waste Removal Technologies. In 360-Degree Waste Management, Volume 1: Fundamentals, Agricultural and Domestic Waste, and Remediation; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–16. [Google Scholar] [CrossRef]
- Pattanaik, L.; Pattnaik, F.; Saxena, D.K.; Naik, S.N. Biofuels from Agricultural Wastes. In Second and Third Generation of Feedstocks: The Evolution of Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–142. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sindhu, R.; Sirohi, R.; Kumar, V.; Ahluwalia, V.; Binod, P.; Juneja, A.; Kumar, D.; Yan, B.; Sarsaiya, S.; et al. Agricultural Waste Biorefinery Development towards Circular Bioeconomy. Renew. Sustain. Energy Rev. 2022, 158, 112122. [Google Scholar] [CrossRef]
- Babu, S.; Singh Rathore, S.; Singh, R.; Kumar, S.; Singh, V.K.; Yadav, S.K.; Yadav, V.; Raj, R.; Yadav, D.; Shekhawat, K.; et al. Exploring Agricultural Waste Biomass for Energy, Food and Feed Production and Pollution Mitigation: A Review. Bioresour. Technol. 2022, 360, 127566. [Google Scholar] [CrossRef]
- Pointner, M.; Kuttner, P.; Obrlik, T.; Jäger, A.; Kahr, H. Composition of Corncobs as a Substrate for Fermentation of Biofuels. Agron. Res. 2014, 12, 391–396. [Google Scholar]
- Panpatte, D.G.; Jhala, Y.K. Agricultural Waste: A Suitable Source for Biofuel Production. In Prospects of Renewable Bioprocessing in Future Energy Systems; Springer: Cham, Switzerland, 2019; pp. 337–355. [Google Scholar]
- Puligundla, P.; Mok, C. Valorization of Sugar Beet Pulp through Biotechnological Approaches: Recent Developments. Biotechnol. Lett. 2021, 43, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Sudhakar, K.; Mamat, R. Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality. Sustainability 2021, 13, 12374. [Google Scholar] [CrossRef]
- Kaur, G.; Yadav, N.; Kumar, S. Anaerobic Digestion: A Sustainable Biochemical Approach to Convert Biomass to Bioenergy. In Biomass Energy for Sustainable Development; CRC Press: Boca Raton, FL, USA, 2024; pp. 111–126. [Google Scholar] [CrossRef]
- EBA Statistical Report 2023. Available online: https://www.europeanbiogas.eu/eba-statistical-report-2023/ (accessed on 25 March 2024).
- Li, C.; Zhao, X.; Wang, A.; Huber, G.W.; Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115, 11559–11624. [Google Scholar] [CrossRef]
- José Horst, D.; Jairo Ramírez Behainne, J.; Paulo de Andrade Junior, P. Lignin as Alternative Fuel: An Estimate of the Thermal Energy Generation Potential from Brazilian Crops. Environ. Prog. Sustain. Energy 2017, 36, 717–722. [Google Scholar] [CrossRef]
- Gallegos, A.M.A.; Herrera Carrera, S.; Parra, R.; Keshavarz, T.; Iqbal, H.M.N. Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products—A Review. Bioresources 2016, 11, 5641–5655. [Google Scholar] [CrossRef]
- Harshwardhan, K.; Upadhyay, K. Effective Utilization of Agricultural Waste: Review. J. Fundam. Renew. Energy Appl. 2017, 7, 5. [Google Scholar] [CrossRef]
- Mikucka, W.; Witońska, I.; Zielińska, M.; Bułkowska, K.; Binczarski, M. Concept for the Valorization of Cereal Processing Waste: Recovery of Phenolic Acids by Using Waste-Derived Tetrahydrofurfuryl Alcohol and Biochar. Chemosphere 2023, 313, 137457. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, C.; Fraga-Corral, M.; Carpena, M.; García-Oliveira, P.; Echave, J.; Pereira, A.G.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Agriculture Waste Valorisation as a Source of Antioxidant Phenolic Compounds within a Circular and Sustainable Bioeconomy. Food Funct. 2020, 11, 4853–4877. [Google Scholar] [CrossRef] [PubMed]
- Riyadi, T.W.B.; Spraggon, M.; Herawan, S.G.; Idris, M.; Paristiawan, P.A.; Putra, N.R.; Faizullizam R, M.; Silambarasan, R.; Veza, I. Biodiesel for HCCI Engine: Prospects and Challenges of Sustainability Biodiesel for Energy Transition. Results Eng. 2023, 17, 100916. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, N.; Baredar, P.; Shukla, A. A Review on Biomass Energy Resources, Potential, Conversion and Policy in India. Renew. Sustain. Energy Rev. 2015, 45, 530–539. [Google Scholar] [CrossRef]
- Cherwoo, L.; Gupta, I.; Flora, G.; Verma, R.; Kapil, M.; Arya, S.K.; Ravindran, B.; Khoo, K.S.; Bhatia, S.K.; Chang, S.W.; et al. Biofuels an Alternative to Traditional Fossil Fuels: A Comprehensive Review. Sustain. Energy Technol. Assess. 2023, 60, 103503. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Jeevanantham, S.; Karishma, S.; Vo, D.V.N. Recent Advances and Sustainable Development of Biofuels Production from Lignocellulosic Biomass. Bioresour. Technol. 2022, 344, 126203. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vazvani, M.G.; Hassanisaadi, M.; Thakur, V.K. Agricultural Wastes: A Practical and Potential Source for the Isolation and Preparation of Cellulose and Application in Agriculture and Different Industries. Ind. Crops Prod. 2024, 208, 117904. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 2022, 8750221. [Google Scholar] [CrossRef]
- Deena, S.R.; Vickram, A.S.; Manikandan, S.; Subbaiya, R.; Karmegam, N.; Ravindran, B.; Chang, S.W.; Awasthi, M.K. Enhanced Biogas Production from Food Waste and Activated Sludge Using Advanced Techniques—A Review. Bioresour. Technol. 2022, 355, 127234. [Google Scholar] [CrossRef]
- Blasi, A.; Verardi, A.; Lopresto, C.G.; Siciliano, S.; Sangiorgio, P. Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview. Recycling 2023, 8, 61. [Google Scholar] [CrossRef]
- Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; López Granados, M. Furfural: A Renewable and Versatile Platform Molecule for the Synthesis of Chemicals and Fuels. Energy Environ. Sci. 2016, 9, 1144–1189. [Google Scholar] [CrossRef]
- Aristizábal-Marulanda, V.; Poveda-Giraldo, J.A.; Cardona Alzate, C.A. Comparison of Furfural and Biogas Production Using Pentoses as Platform. Sci. Total Environ. 2020, 728, 138841. [Google Scholar] [CrossRef] [PubMed]
- Almomani, F.; Bhosale, R.R. Enhancing the Production of Biogas through Anaerobic Co-Digestion of Agricultural Waste and Chemical Pre-Treatments. Chemosphere 2020, 255, 126805. [Google Scholar] [CrossRef]
- Dumlu, L.; Ciggin, A.S.; Ručman, S.; Perendeci, N.A. Pretreatment, Anaerobic Codigestion, or Both? Which Is More Suitable for the Enhancement of Methane Production from Agricultural Waste? Molecules 2021, 26, 4175. [Google Scholar] [CrossRef] [PubMed]
- Abouelenien, F.; Namba, Y.; Kosseva, M.R.; Nishio, N.; Nakashimada, Y. Enhancement of Methane Production from Co-Digestion of Chicken Manure with Agricultural Wastes. Bioresour. Technol. 2014, 159, 80–87. [Google Scholar] [CrossRef]
- Galí, A.; Benabdallah, T.; Astals, S.; Mata-Alvarez, J. Modified Version of ADM1 Model for Agro-Waste Application. Bioresour. Technol. 2009, 100, 2783–2790. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Methane Production from Lignocellulosic Agricultural Crop Wastes: A Review in Context to Second Generation of Biofuel Production. Renew. Sustain. Energy Rev. 2012, 16, 1462–1476. [Google Scholar] [CrossRef]
- Garcia, N.H.; Mattioli, A.; Gil, A.; Frison, N.; Battista, F.; Bolzonella, D. Evaluation of the Methane Potential of Different Agricultural and Food Processing Substrates for Improved Biogas Production in Rural Areas. Renew. Sustain. Energy Rev. 2019, 112, 1–10. [Google Scholar] [CrossRef]
- Kalra, M.S.; Panwar, J.S. Anaerobic Digestion of Rice Crop Residues. Agric. Wastes 1986, 17, 263–269. [Google Scholar] [CrossRef]
- Beniche, I.; El Bari, H.; Siles, J.A.; Chica, A.F.; Martín, M.Á. Methane Production by Anaerobic Co-Digestion of Mixed Agricultural Waste: Cabbage and Cauliflower. Environ. Technol. 2021, 42, 4550–4558. [Google Scholar] [CrossRef]
- Gunaseelan, V.N. Biochemical Methane Potential of Fruits and Vegetable Solid Waste Feedstocks. Biomass Bioenergy 2004, 26, 389–399. [Google Scholar] [CrossRef]
- Da Ros, C.; Cavinato, C.; Bolzonella, D.; Pavan, P. Renewable Energy from Thermophilic Anaerobic Digestion of Winery Residue: Preliminary Evidence from Batch and Continuous Lab-Scale Trials. Biomass Bioenergy 2016, 91, 150–159. [Google Scholar] [CrossRef]
- Paepatung, N.; Nopharatana, A.; Songkasiri, W. Bio-Methane Potential of Biological Solid Materials and Agricultural Wastes. Asian J. Energy Environ. 2009, 10, 19–27. [Google Scholar]
- Hu, B.; Li, Y.; Zhu, S.; Zhang, H.; Jing, Y.; Jiang, D.; He, C.; Zhang, Z. Evaluation of Biohydrogen Yield Potential and Electron Balance in the Photo-Fermentation Process with Different Initial PH from Starch Agricultural Leftover. Bioresour. Technol. 2020, 305, 122900. [Google Scholar] [CrossRef] [PubMed]
- Yue, T.; Jiang, D.; Zhang, Z.; Zhang, Y.; Li, Y.; Zhang, T.; Zhang, Q. Recycling of Shrub Landscaping Waste: Exploration of Bio-Hydrogen Production Potential and Optimization of Photo-Fermentation Bio-Hydrogen Production Process. Bioresour. Technol. 2021, 331, 125048. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhang, Y.; Zhang, Z.; Li, Y.; Ai, F.; Zhang, Q. Effect of Fe0 Particle Size on Buffering Characteristics and Biohydrogen Production in High-Load Photo Fermentation System of Corn Stover. Bioresour. Technol. 2022, 364, 128086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, H.; Li, Y.; Lu, C.; Zhu, S.; He, C.; Ai, F.; Zhang, Q. Investigation of the Interaction between Lighting and Mixing Applied during the Photo-Fermentation Biohydrogen Production Process from Agricultural Waste. Bioresour. Technol. 2020, 312, 123570. [Google Scholar] [CrossRef] [PubMed]
- Sołowski, G.; Konkol, I.; Cenian, A. Methane and Hydrogen Production from Cotton Waste by Dark Fermentation under Anaerobic and Micro-Aerobic Conditions. Biomass Bioenergy 2020, 138, 105576. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Deng, L.; Liu, Z.; Jiang, H.; Wang, F. Biohydrogen Production from Fermentation of Cotton Stalk Hydrolysate by Klebsiella Sp. WL1316 Newly Isolated from Wild Carp (Cyprinus Carpio L.) of the Tarim River Basin. Appl. Microbiol. Biotechnol. 2018, 102, 4231–4242. [Google Scholar] [CrossRef]
- Su, H.; Cheng, J.; Zhou, J.; Song, W.; Cen, K. Improving Hydrogen Production from Cassava Starch by Combination of Dark and Photo Fermentation. Int. J. Hydrog. Energy 2009, 34, 1780–1786. [Google Scholar] [CrossRef]
- Smuga-Kogut, M.; Wnuk, A.D.; Zgórska, K.; Kubiak, M.S.; Wojdalski, J.; Kupczyk, A.; Szlachta, J.; Luberański, A. Production of Ethanol from Wheat Straw. Pol. J. Chem. Technol. 2015, 17, 89–94. [Google Scholar] [CrossRef]
- Biswas, B.; Pandey, N.; Bisht, Y.; Singh, R.; Kumar, J.; Bhaskar, T. Pyrolysis of Agricultural Biomass Residues: Comparative Study of Corn Cob, Wheat Straw, Rice Straw and Rice Husk. Bioresour. Technol. 2017, 237, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Kamarudin, S.K.; Shamsul, N.S.; Ghani, J.A.; Chia, S.K.; Liew, H.S.; Samsudin, A.S. Production of Methanol from Biomass Waste via Pyrolysis. Bioresour. Technol. 2013, 129, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Harisankar, S.; Vishnu Mohan, R.; Choudhary, V.; Vinu, R. Effect of Water Quality on the Yield and Quality of the Products from Hydrothermal Liquefaction and Carbonization of Rice Straw. Bioresour. Technol. 2022, 351, 127031. [Google Scholar] [CrossRef] [PubMed]
- Mesa, L.; Martínez, Y.; Celia de Armas, A.; González, E. Ethanol Production from Sugarcane Straw Using Different Configurations of Fermentation and Techno-Economical Evaluation of the Best Schemes. Renew. Energy 2020, 156, 377–388. [Google Scholar] [CrossRef]
- Barbosa, F.C.; Martins, M.; Brenelli, L.B.; Ferrari, F.A.; Forte, M.B.S.; Rabelo, S.C.; Franco, T.T.; Goldbeck, R. Screening of Potential Endoglucanases, Hydrolysis Conditions and Different Sugarcane Straws Pretreatments for Cello-Oligosaccharides Production. Bioresour. Technol. 2020, 316, 123918. [Google Scholar] [CrossRef] [PubMed]
- Hossain, T.; Miah, A.B.; Mahmud, S.A.; Mahin, A.-A. Enhanced Bioethanol Production from Potato Peel Waste Via Consolidated Bioprocessing with Statistically Optimized Medium. Appl. Biochem. Biotechnol. 2018, 186, 425–442. [Google Scholar] [CrossRef]
- Antonopoulou, G.; Vayenas, D.; Lyberatos, G. Ethanol and Hydrogen Production from Sunflower Straw: The Effect of Pretreatment on the Whole Slurry Fermentation. Biochem. Eng. J. 2016, 116, 65–74. [Google Scholar] [CrossRef]
- Gong, L.; Zha, J.; Pan, L.; Ma, C.; He, Y.C. Highly Efficient Conversion of Sunflower Stalk-Hydrolysate to Furfural by Sunflower Stalk Residue-Derived Carbonaceous Solid Acid in Deep Eutectic Solvent/Organic Solvent System. Bioresour. Technol. 2022, 351, 126945. [Google Scholar] [CrossRef]
- Guo, J.; Cui, X.; Sun, H.; Zhao, Q.; Wen, X.; Pang, C.; Dong, R. Effect of Glucose and Cellulase Addition on Wet-Storage of Excessively Wilted Maize Stover and Biogas Production. Bioresour. Technol. 2018, 259, 198–206. [Google Scholar] [CrossRef]
- Buaban, B.; Inoue, H.; Yano, S.; Tanapongpipat, S.; Ruanglek, V.; Champreda, V.; Pichyangkura, R.; Rengpipat, S.; Eurwilaichitr, L. Bioethanol Production from Ball Milled Bagasse Using an On-Site Produced Fungal Enzyme Cocktail and Xylose-Fermenting Pichia Stipitis. J. Biosci. Bioeng. 2010, 110, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Shafiei Alavijeh, R.; Karimi, K.; van den Berg, C. An Integrated and Optimized Process for Cleaner Production of Ethanol and Biodiesel from Corn Stover by Mucor Indicus. J. Clean. Prod. 2020, 249, 119321. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Gou, Q.; Zhou, W.; Liu, Y.; Xu, J.; Liu, Y.; Zhou, W.; Gong, Z. Consolidated Bioprocessing of Cassava Starch into Microbial Lipid for Biodiesel Production by the Amylolytic Yeast Lipomyces Starkeyi. Ind. Crops Prod. 2022, 177, 114534. [Google Scholar] [CrossRef]
- Ibrahim, H.; Silitonga, A.S.; Rahmawaty, R.; Dharma, S.; Sebayang, A.H.; Khairil, K.; Sumartono, S.; Sutrisno, J.; Razak, A. An Ultrasound Assisted Transesterification to Optimize Biodiesel Production from Rice Bran Oil. Int. J. Technol. 2020, 11, 225. [Google Scholar] [CrossRef]
- Wu, L.; Wei, W.; Song, L.; Woźniak-Karczewska, M.; Chrzanowski, Ł.; Ni, B.J. Upgrading Biogas Produced in Anaerobic Digestion: Biological Removal and Bioconversion of CO2 in Biogas. Renew. Sustain. Energy Rev. 2021, 150, 111448. [Google Scholar] [CrossRef]
- Mulu, E.; M’Arimi, M.M.; Ramkat, R.C. A Review of Recent Developments in Application of Low Cost Natural Materials in Purification and Upgrade of Biogas. Renew. Sustain. Energy Rev. 2021, 145, 111081. [Google Scholar] [CrossRef]
- Muntaha, N.; Rain, M.I.; Goni, L.K.M.O.; Shaikh, M.A.A.; Jamal, M.S.; Hossain, M. A Review on Carbon Dioxide Minimization in Biogas Upgradation Technology by Chemical Absorption Processes. ACS Omega 2022, 7, 33680–33698. [Google Scholar] [CrossRef] [PubMed]
- Bahrun, M.H.V.; Bono, A.; Othman, N.; Zaini, M.A.A. Carbon Dioxide Removal from Biogas through Pressure Swing Adsorption—A Review. Chem. Eng. Res. Des. 2022, 183, 285–306. [Google Scholar] [CrossRef]
- Gkotsis, P.; Kougias, P.; Mitrakas, M.; Zouboulis, A. Biogas Upgrading Technologies—Recent Advances in Membrane-Based Processes. Int. J. Hydrog. Energy 2023, 48, 3965–3993. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Tarannum, K.; Chowdhury, A.T.; Rafa, N.; Nuzhat, S.; Kumar, P.S.; Vo, D.V.N.; Lichtfouse, E.; Mahlia, T.M.I. Biogas Upgrading, Economy and Utilization: A Review. Environ. Chem. Lett. 2021, 19, 4137–4164. [Google Scholar] [CrossRef]
- Assunção, R.C.L.; Mendes, A.S.P.; Matos, S.; Borschiver, S. Technology Roadmap of Renewable Natural Gas: Identifying Trends for Research and Development to Improve Biogas Upgrading Technology Management. Appl. Energy 2021, 292, 116849. [Google Scholar] [CrossRef]
- Andlar, M.; Belskaya, H.; Morzak, G.; Šantek, M.I.; Rezić, T.; Tominac, V.P.; Šantek, B. Biogas Production Systems and Upgrading Technologies: A Review. Food Technol. Biotechnol. 2021, 59, 387–412. [Google Scholar] [CrossRef] [PubMed]
- Wassie, Y.T.; Adaramola, M.S. Analysing Household Biogas Utilization and Impact in Rural Ethiopia: Lessons and Policy Implications for Sub-Saharan Africa. Sci. Afr. 2020, 9, e00474. [Google Scholar] [CrossRef]
- Abanades, S.; Abbaspour, H.; Ahmadi, A.; Das, B.; Ehyaei, M.A.; Esmaeilion, F.; El Haj Assad, M.; Hajilounezhad, T.; Hmida, A.; Rosen, M.A.; et al. A Conceptual Review of Sustainable Electrical Power Generation from Biogas. Energy Sci. Eng. 2022, 10, 630–655. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Q.; Zhang, Z.; Jing, Y.; Hu, J.; He, C.; Lu, C. A Review on Biological Recycling in Agricultural Waste-Based Biohydrogen Production: Recent Developments. Bioresour. Technol. 2022, 347, 126595. [Google Scholar] [CrossRef] [PubMed]
- Bundhoo, Z.M.A. Potential of Bio-Hydrogen Production from Dark Fermentation of Crop Residues: A Review. Int. J. Hydrog. Energy 2019, 44, 17346–17362. [Google Scholar] [CrossRef]
- Niño-Navarro, C.; Chairez, I.; Christen, P.; Canul-Chan, M.; García-Peña, E.I. Enhanced Hydrogen Production by a Sequential Dark and Photo Fermentation Process: Effects of Initial Feedstock Composition, Dilution and Microbial Population. Renew. Energy 2020, 147, 924–936. [Google Scholar] [CrossRef]
- Prajapati, K.B.; Singh, R. Bio-Electrochemically Hydrogen and Methane Production from Co-Digestion of Wastes. Energy 2020, 198, 117259. [Google Scholar] [CrossRef]
- Kim, M.; Yang, Y.; Morikawa-Sakura, M.S.; Wang, Q.; Lee, M.V.; Lee, D.-Y.; Feng, C.; Zhou, Y.; Zhang, Z. Hydrogen Production by Anaerobic Co-Digestion of Rice Straw and Sewage Sludge. Int. J. Hydrog. Energy 2012, 37, 3142–3149. [Google Scholar] [CrossRef]
- Zhang, X.; Huo, L.; Yao, Z.; Xie, T.; Sun, Y.; Liu, Z.; Zhao, Y.; Zhao, L. A Comparative Review on the Progress of Thermochemical Hydrogen Production Technologies from Agricultural Waste. Fuel 2024, 366, 131284. [Google Scholar] [CrossRef]
- Rahimi, Z.; Anand, A.; Gautam, S. An Overview on Thermochemical Conversion and Potential Evaluation of Biofuels Derived from Agricultural Wastes. Energy Nexus 2022, 7, 100125. [Google Scholar] [CrossRef]
- Leng, L.; Yang, L.; Chen, J.; Leng, S.; Li, H.; Li, H.; Yuan, X.; Zhou, W.; Huang, H. A Review on Pyrolysis of Protein-Rich Biomass: Nitrogen Transformation. Bioresour. Technol. 2020, 315, 123801. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol Production from Agricultural Wastes: An Overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Granjo, J.F.O.; Nunes, D.S.; Duarte, B.P.M.; Oliveira, N.M.C. A Comparison of Process Alternatives for Energy-Efficient Bioethanol Downstream Processing. Sep. Purif. Technol. 2020, 238, 116414. [Google Scholar] [CrossRef]
- Braide, W.; Kanu, I.; Oranusi, U.; Adeleye, S. Production of Bioethanol from Agricultural Waste. J. Fundam. Appl. Sci. 2016, 8, 372. [Google Scholar] [CrossRef]
- Walker, G.M.; Basso, T.O. Mitigating Stress in Industrial Yeasts. Fungal Biol. 2020, 124, 387–397. [Google Scholar] [CrossRef]
- Elfasakhany, A. Gasoline Engine Fueled with Bioethanol-Bio-Acetone-Gasoline Blends: Performance and Emissions Exploration. Fuel 2020, 274, 117825. [Google Scholar] [CrossRef]
- Aliyu, G.; Mshelia, R.B. Review of the Use of Bioethanol as Alternative Fuel for Internal Combustion Engines. Acta Tech. Corviniensis-Bull. Eng. 2021, 14, 139–144. [Google Scholar]
- Sanchez, N.; Ruiz, R.; Hacker, V.; Cobo, M. Impact of Bioethanol Impurities on Steam Reforming for Hydrogen Production: A Review. Int. J. Hydrog. Energy 2020, 45, 11923–11942. [Google Scholar] [CrossRef]
- Bonenkamp, T.B.; Middelburg, L.M.; Hosli, M.O.; Wolffenbuttel, R.F. From Bioethanol Containing Fuels towards a Fuel Economy That Includes Methanol Derived from Renewable Sources and the Impact on European Union Decision-Making on Transition Pathways. Renew. Sustain. Energy Rev. 2020, 120, 109667. [Google Scholar] [CrossRef]
- Erixno, O.; Rahim, N.A.; Ramadhani, F.; Adzman, N.N. Energy Management of Renewable Energy-Based Combined Heat and Power Systems: A Review. Sustain. Energy Technol. Assess. 2022, 51, 101944. [Google Scholar] [CrossRef]
- Passaretti, A.; Cuvillier, L.; Sciutto, G.; Guilminot, E.; Joseph, E. Biologically Derived Gels for the Cleaning of Historical and Artistic Metal Heritage. Appl. Sci. 2021, 11, 3405. [Google Scholar] [CrossRef]
- Ceylan, S.; Potuk, K.; Bayraktar, O. High-Value–Added Products from Microalgae Production Integrated with Bioethanol Process. Bioenergy Engineering: Fundamentals, Methods, Modelling, and Applications; Woodhead Publishing: Sawston, UK, 2023; pp. 315–332. [Google Scholar] [CrossRef]
- Jamil, F.; Aslam, M.; Al-Muhtaseb, A.H.; Bokhari, A.; Rafiq, S.; Khan, Z.; Inayat, A.; Ahmed, A.; Hossain, S.; Khurram, M.S.; et al. Greener and Sustainable Production of Bioethylene from Bioethanol: Current Status, Opportunities and Perspectives. Rev. Chem. Eng. 2022, 38, 185–207. [Google Scholar] [CrossRef]
- Raj, T.; Chandrasekhar, K.; Naresh Kumar, A.; Kim, S.H. Lignocellulosic Biomass as Renewable Feedstock for Biodegradable and Recyclable Plastics Production: A Sustainable Approach. Renew. Sustain. Energy Rev. 2022, 158, 112130. [Google Scholar] [CrossRef]
- Awogbemi, O.; Von Kallon, D.V.; Aigbodion, V.S. Trends in the Development and Utilization of Agricultural Wastes as Heterogeneous Catalyst for Biodiesel Production. J. Energy Inst. 2021, 98, 244–258. [Google Scholar] [CrossRef]
- Awasthi, P.; Shrivastava, S.; Kharkwal, A.C.; Varma, A. Biofuel from Agricultural Waste: A Review. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 470–477. [Google Scholar]
- Koreti, D.; Kosre, A.; Jadhav, S.K.; Chandrawanshi, N.K. A Comprehensive Review on Oleaginous Bacteria: An Alternative Source for Biodiesel Production. Bioresour. Bioprocess. 2022, 9, 47. [Google Scholar] [CrossRef]
- Kasirajan, L.; Maupin-Furlow, J.A. Halophilic Archaea and Their Potential to Generate Renewable Fuels and Chemicals. Biotechnol. Bioeng. 2021, 118, 1066–1090. [Google Scholar] [CrossRef]
- Safieddin Ardebili, S.M.; Khademalrasoul, A. An Analysis of Liquid-Biofuel Production Potential from Agricultural Residues and Animal Fat (Case Study: Khuzestan Province). J. Clean. Prod. 2018, 204, 819–831. [Google Scholar] [CrossRef]
- Monteiro, M.R.; Kugelmeier, C.L.; Pinheiro, R.S.; Batalha, M.O.; da Silva César, A. Glycerol from Biodiesel Production: Technological Paths for Sustainability. Renew. Sustain. Energy Rev. 2018, 88, 109–122. [Google Scholar] [CrossRef]
- Dias, M.E.S.; Lopes, J.C.; Carneiro, R.B.; Damianovic, M.H.R.Z.; Foresti, E. Using Compounds Derived from the Glycerol Fermentation as a Carbon Source for Denitrification and Biological Phosphorus Removal. Water Air Soil. Pollut. 2021, 232, 339. [Google Scholar] [CrossRef]
- Balwan, W.K.; Kour, S. A Systematic Review of Biofuels: The Cleaner Energy for Cleaner Environment. Indian. J. Sci. Res. 2021, 12, 135–142. [Google Scholar] [CrossRef]
- Ogunkunle, O.; Ahmed, N.A. Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario. Sustainability 2021, 13, 5465. [Google Scholar] [CrossRef]
- Aydın, S. Comprehensive Analysis of Combustion, Performance and Emissions of Power Generator Diesel Engine Fueled with Different Source of Biodiesel Blends. Energy 2020, 205, 118074. [Google Scholar] [CrossRef]
- Khan, F.A.; Pal, N.; Saeed, S.H. Stand-Alone Hybrid System of Solar Photovoltaics/Wind Energy Resources: An Eco-Friendly Sustainable Approach. Renewable Energy Systems; Academic Press: Cambridge, MA, USA, 2021; pp. 687–705. [Google Scholar] [CrossRef]
- Dey, P.; Ray, S.; Newar, A. Defining a Waste Vegetable Oil-Biodiesel Based Diesel Substitute Blend Fuel by Response Surface Optimization of Density and Calorific Value. Fuel 2021, 283, 118978. [Google Scholar] [CrossRef]
- Ningaraju, C.; Yatish, K.V.; Mithun Prakash, R.; Sakar, M.; Balakrishna, R. Simultaneous Refining of Biodiesel-Derived Crude Glycerol and Synthesis of Value-Added Powdered Catalysts for Biodiesel Production: A Green Chemistry Approach for Sustainable Biodiesel Industries. J. Clean. Prod. 2022, 363, 132448. [Google Scholar] [CrossRef]
- Moradi, F.; Amiri, H.; Soleimanian-Zad, S.; Ehsani, M.R.; Karimi, K. Improvement of Acetone, Butanol and Ethanol Production from Rice Straw by Acid and Alkaline Pretreatments. Fuel 2013, 112, 8–13. [Google Scholar] [CrossRef]
- Cheng, C.L.; Che, P.Y.; Chen, B.Y.; Lee, W.J.; Lin, C.Y.; Chang, J.S. Biobutanol Production from Agricultural Waste by an Acclimated Mixed Bacterial Microflora. Appl. Energy 2012, 100, 3–9. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Ramli, N.; Kamal Bahrin, E.; Abd-Aziz, S. Cellulosic Biobutanol by Clostridia: Challenges and Improvements. Renew. Sustain. Energy Rev. 2017, 79, 1241–1254. [Google Scholar] [CrossRef]
- Awogbemi, O.; Kallon, D.V. Von Valorization of Agricultural Wastes for Biofuel Applications. Heliyon 2022, 8, e11117. [Google Scholar] [CrossRef]
- Santos, J.; Ouadi, M.; Jahangiri, H.; Hornung, A. Integrated Intermediate Catalytic Pyrolysis of Wheat Husk. Food Bioprod. Process. 2019, 114, 23–30. [Google Scholar] [CrossRef]
- Stigsson, C.; Furusjö, E.; Börjesson, P. A Model of an Integrated Hydrothermal Liquefaction, Gasification and Fischer-Tropsch Synthesis Process for Converting Lignocellulosic Forest Residues into Hydrocarbons. Bioresour. Technol. 2022, 353, 126070. [Google Scholar] [CrossRef] [PubMed]
- Hawash, S.I.; Farah, J.Y.; El-Diwani, G. Pyrolysis of Agriculture Wastes for Bio-Oil and Char Production. J. Anal. Appl. Pyrolysis 2017, 124, 369–372. [Google Scholar] [CrossRef]
- Biswas, B.; Singh, R.; Kumar, J.; Singh, R.; Gupta, P.; Krishna, B.B.; Bhaskar, T. Pyrolysis Behavior of Rice Straw under Carbon Dioxide for Production of Bio-Oil. Renew. Energy 2018, 129, 686–694. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Z.; Tian, X.; Dai, L.; Jiang, L.; Zhang, S.; Wu, Q.; Wen, P.; Fu, G.; Liu, Y.; et al. Production of Bio-Oil from Agricultural Waste by Using a Continuous Fast Microwave Pyrolysis System. Bioresour. Technol. 2018, 269, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xie, Q.; Zhang, B.; Cheng, Y.; Liu, Y.; Chen, P.; Ruan, R. Fast Microwave-Assisted Catalytic Co-Pyrolysis of Corn Stover and Scum for Bio-Oil Production with CaO and HZSM-5 as the Catalyst. Bioresour. Technol. 2016, 204, 164–170. [Google Scholar] [CrossRef]
- Ravikumar, C.; Senthil Kumar, P.; Subhashni, S.K.; Tejaswini, P.V.; Varshini, V. Microwave Assisted Fast Pyrolysis of Corn Cob, Corn Stover, Saw Dust and Rice Straw: Experimental Investigation on Bio-Oil Yield and High Heating Values. Sustain. Mater. Technol. 2017, 11, 19–27. [Google Scholar] [CrossRef]
- Machado, H.; Cristino, A.F.; Orišková, S.; Galhano dos Santos, R. Bio-Oil: The Next-Generation Source of Chemicals. Reactions 2022, 3, 118–137. [Google Scholar] [CrossRef]
- Sánchez-Borrego, F.J.; Álvarez-Mateos, P.; García-Martín, J.F. Biodiesel and Other Value-Added Products from Bio-Oil Obtained from Agrifood Waste. Processes 2021, 9, 797. [Google Scholar] [CrossRef]
- Premier, G.C.; Kim, J.R.; Massanet-Nicolau, J.; Kyazze, G.; Esteves, S.R.R.; Penumathsa, B.K.V.; Rodríguez, J.; Maddy, J.; Dinsdale, R.M.; Guwy, A.J. Integration of Biohydrogen, Biomethane and Bioelectrochemical Systems. Renew. Energy 2013, 49, 188–192. [Google Scholar] [CrossRef]
- Monlau, F.; Barakat, A.; Trably, E.; Dumas, C.; Steyer, J.-P.; Carrère, H. Lignocellulosic Materials Into Biohydrogen and Biomethane: Impact of Structural Features and Pretreatment. Crit. Rev. Environ. Sci. Technol. 2013, 43, 260–322. [Google Scholar] [CrossRef]
- Rena; Mohammed Bin Zacharia, K.; Yadav, S.; Machhirake, N.P.; Kim, S.H.; Lee, B.D.; Jeong, H.; Singh, L.; Kumar, S.; Kumar, R. Bio-Hydrogen and Bio-Methane Potential Analysis for Production of Bio-Hythane Using Various Agricultural Residues. Bioresour. Technol. 2020, 309, 123297. [Google Scholar] [CrossRef] [PubMed]
- Pandit, S.; Savla, N.; Sonawane, J.M.; Sani, A.M.; Gupta, P.K.; Mathuriya, A.S.; Rai, A.K.; Jadhav, D.A.; Jung, S.P.; Prasad, R. Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. Fermentation 2021, 7, 169. [Google Scholar] [CrossRef]
- Zuo, Y.; Maness, P.-C.; Logan, B.E. Electricity Production from Steam-Exploded Corn Stover Biomass. Energy Fuels 2006, 20, 1716–1721. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Shen, Y.; Gao, L.; Liao, Z.-H.; Sun, J.-Z.; Yong, Y.-C. Improving the Extracellular Electron Transfer of Shewanella Oneidensis MR-1 for Enhanced Bioelectricity Production from Biomass Hydrolysate. RSC Adv. 2017, 7, 30488–30494. [Google Scholar] [CrossRef]
- Gurung, A.; Oh, S.-E. Rice Straw as a Potential Biomass for Generation of Bioelectrical Energy Using Microbial Fuel Cells (MFCs). Energy Sources Part. A Recovery Util. Environ. Eff. 2015, 37, 2625–2631. [Google Scholar] [CrossRef]
- Gregoire, K.P.; Becker, J.G. Design and Characterization of a Microbial Fuel Cell for the Conversion of a Lignocellulosic Crop Residue to Electricity. Bioresour. Technol. 2012, 119, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Statistical Report 2022 Development and Implementation of Biogas on the European Market—European Biogas Association (EBA). Available online: https://biometan.org.pl/raport-statystyczny-2022 (accessed on 17 April 2024).
- Kang, K.E.; Jeong, J.S.; Kim, Y.; Min, J.; Moon, S.K. Development and Economic Analysis of Bioethanol Production Facilities Using Lignocellulosic Biomass. J. Biosci. Bioeng. 2019, 128, 475–479. [Google Scholar] [CrossRef]
- Madian, H.R.; Sidkey, N.M.; Abo Elsoud, M.M.; Hamouda, H.I.; Elazzazy, A.M. Bioethanol Production from Water Hyacinth Hydrolysate by Candida Tropicalis Y-26. Arab. J. Sci. Eng. 2019, 44, 33–41. [Google Scholar] [CrossRef]
- Sondhi, S.; Kaur, P.S.; Kaur, M. Techno-Economic Analysis of Bioethanol Production from Microwave Pretreated Kitchen Waste. SN Appl. Sci. 2020, 2, 1558. [Google Scholar] [CrossRef]
- Barzegaravval, H.; Hosseini, S.E.; Wahid, M.A.; Saat, A. Effects of Fuel Composition on the Economic Performance of Biogas-Based Power Generation Systems. Appl. Therm. Eng. 2018, 128, 1543–1554. [Google Scholar] [CrossRef]
- Abduh, M.Y.; Manurung, R.; Heeres, H.J.; Puad, N.I.M. A Review on Community Scale Stationary and Mobile Production of Biodiesel. Curr. Res. Biosci. Biotechnol. 2021, 2, 126–138. [Google Scholar] [CrossRef]
- Szulczyk, K.R.; Cheema, M.A. The Economic Feasibility and Environmental Ramifications of Biobutanol Production in Malaysia. J. Clean. Prod. 2021, 286, 124953. [Google Scholar] [CrossRef]
- Mukherjee, M.; Goswami, G.; Mondal, P.K.; Das, D. Biobutanol as a Potential Alternative to Petroleum Fuel: Sustainable Bioprocess and Cost Analysis. Fuel 2020, 278, 118403. [Google Scholar] [CrossRef]
- D’Adamo, I.; Ribichini, M.; Tsagarakis, K.P. Biomethane as an Energy Resource for Achieving Sustainable Production: Economic Assessments and Policy Implications. Sustain. Prod. Consum. 2023, 35, 13–27. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Rafa, N.; Mofijur, M.; Badruddin, I.A.; Inayat, A.; Ali, M.S.; Farrok, O.; Yunus Khan, T.M. Biohydrogen Production From Biomass Sources: Metabolic Pathways and Economic Analysis. Front. Energy Res. 2021, 9, 753878. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Clausen, L.R. Techno-Economic Analysis of Polygeneration Systems Based on Catalytic Hydropyrolysis for the Production of Bio-Oil and Fuels. Energy Convers. Manag. 2019, 184, 539–558. [Google Scholar] [CrossRef]
- Righetti, E.; Nortilli, S.; Fatone, F.; Frison, N.; Bolzonella, D. A Multiproduct Biorefinery Approach for the Production of Hydrogen, Methane and Volatile Fatty Acids from Agricultural Waste. Waste Biomass Valorization 2020, 11, 5239–5246. [Google Scholar] [CrossRef]
- Greses, S.; Tomás-Pejó, E.; Gónzalez-Fernández, C. Agroindustrial Waste as a Resource for Volatile Fatty Acids Production via Anaerobic Fermentation. Bioresour. Technol. 2020, 297, 122486. [Google Scholar] [CrossRef]
- Bioplastics Market Development Update 2023. Available online: https://www.european-bioplastics.org/bioplastics-market-development-update-2023-2/ (accessed on 25 March 2024).
- Wang, J.; Liu, S.; Huang, J.; Qu, Z. A Review on Polyhydroxyalkanoate Production from Agricultural Waste Biomass: Development, Advances, Circular Approach, and Challenges. Bioresour. Technol. 2021, 342, 126008. [Google Scholar] [CrossRef]
- Koller, M.; Bona, R.; Braunegg, G.; Hermann, C.; Horvat, P.; Kroutil, M.; Martinz, J.; Neto, J.; Pereira, L.; Varila, P. Production of Polyhydroxyalkanoates from Agricultural Waste and Surplus Materials. Biomacromolecules 2005, 6, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Quilez-Molina, A.I.; Merino, D. From Waste to Resource: Methods for Vegetable Waste Transformation into Sustainable Plant-Based Bioplastics. In Advanced Applications of Biobased Materials: Food, Biomedical, and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 61–110. [Google Scholar] [CrossRef]
- Sen, K.Y.; Baidurah, S. Renewable Biomass Feedstocks for Production of Sustainable Biodegradable Polymer. Curr. Opin. Green. Sustain. Chem. 2021, 27, 100412. [Google Scholar] [CrossRef]
- Goel, V.; Luthra, P.; Kapur, G.S.; Ramakumar, S.S.V. Biodegradable/Bio-Plastics: Myths and Realities. J. Polym. Environ. 2021, 29, 3079–3104. [Google Scholar] [CrossRef]
- Yrjälä, K.; Ramakrishnan, M.; Salo, E. Agricultural Waste Streams as Resource in Circular Economy for Biochar Production towards Carbon Neutrality. Curr. Opin. Environ. Sci. Health 2022, 26, 100339. [Google Scholar] [CrossRef]
- Asadi Zeidabadi, Z.; Bakhtiari, S.; Abbaslou, H.; Ghanizadeh, A.R. Synthesis, Characterization and Evaluation of Biochar from Agricultural Waste Biomass for Use in Building Materials. Constr. Build. Mater. 2018, 181, 301–308. [Google Scholar] [CrossRef]
- Campos, P.; Miller, A.Z.; Knicker, H.; Costa-Pereira, M.F.; Merino, A.; De la Rosa, J.M. Chemical, Physical and Morphological Properties of Biochars Produced from Agricultural Residues: Implications for Their Use as Soil Amendment. Waste Manag. 2020, 105, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Wijitkosum, S.; Jiwnok, P. Elemental Composition of Biochar Obtained from Agricultural Waste for Soil Amendment and Carbon Sequestration. Appl. Sci. 2019, 9, 3980. [Google Scholar] [CrossRef]
- Pereira Lopes, R.; Astruc, D. Biochar as a Support for Nanocatalysts and Other Reagents: Recent Advances and Applications. Coord. Chem. Rev. 2021, 426, 213585. [Google Scholar] [CrossRef]
- Singh, S.; Kumar Bhaumik, S.; Dong, L.; Li, C.Z.; Vuthaluru, H. An Integrated Two-Step Process of Reforming and Adsorption Using Biochar for Enhanced Tar Removal in Syngas Cleaning. Fuel 2022, 307, 121935. [Google Scholar] [CrossRef]
- Vijay, V.; Shreedhar, S.; Adlak, K.; Payyanad, S.; Sreedharan, V.; Gopi, G.; Sophia van der Voort, T.; Malarvizhi, P.; Yi, S.; Gebert, J.; et al. Review of Large-Scale Biochar Field-Trials for Soil Amendment and the Observed Influences on Crop Yield Variations. Front. Energy Res. 2021, 9, 710766. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Feng, Y. The Effects of Biochar Addition on Soil Physicochemical Properties: A Review. Catena 2021, 202, 105284. [Google Scholar] [CrossRef]
- Mansour, M.M.; Soliman, E.; El-Ghamry, A.; El, A.; Kenawy, E.; Biochar, A.M.; Jiang, B.; Mosa, A.; Mansour, M.M.; Soliman, E.; et al. Biochar as a Soil Amendment for Restraining Greenhouse Gases Emission and Improving Soil Carbon Sink: Current Situation and Ways Forward. Sustainability 2023, 15, 1206. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the Removal of Contaminants from Soil and Water: A Review. Biochar 2022, 4, 19. [Google Scholar] [CrossRef]
- Liu, M.; Almatrafi, E.; Zhang, Y.; Xu, P.; Song, B.; Zhou, C.; Zeng, G.; Zhu, Y. A Critical Review of Biochar-Based Materials for the Remediation of Heavy Metal Contaminated Environment: Applications and Practical Evaluations. Sci. Total Environ. 2022, 806, 150531. [Google Scholar] [CrossRef] [PubMed]
- Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedláček, P.; Bielská, L.; Soja, G. Biochar Surface Functional Groups as Affected by Biomass Feedstock, Biochar Composition and Pyrolysis Temperature. Carbon. Resour. Convers. 2021, 4, 36–46. [Google Scholar] [CrossRef]
- Karimi, M.; Shirzad, M.; Silva, J.A.C.; Rodrigues, A.E. Biomass/Biochar Carbon Materials for CO2 Capture and Sequestration by Cyclic Adsorption Processes: A Review and Prospects for Future Directions. J. CO2 Util. 2022, 57, 101890. [Google Scholar] [CrossRef]
- Yeboah, M.L.; Li, X.; Zhou, S. Facile Fabrication of Biochar from Palm Kernel Shell Waste and Its Novel Application to Magnesium-Based Materials for Hydrogen Storage. Materials 2020, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Chen, X.; Wu, H.; Zeng, X.; Dong, P.; Han, L.; Yu, F.; Cai, W.; Xie, Y.; Xiao, J.; et al. A Novel Chinese Parasol Leaf Biochar Fuelled Direct Carbon Solid Oxide Fuel Cell for High Performance Electricity Generation. Int. J. Hydrog. Energy 2022, 47, 1172–1182. [Google Scholar] [CrossRef]
- Song, B.; Wang, Q.; Ali, J.; Wang, Z.; Wang, L.; Wang, J.; Li, J.; Glebov, E.M.; Zhuang, X. Biochar-Supported Fe3C Nanoparticles with Enhanced Interfacial Contact as High-Performance Binder-Free Anode Material for Microbial Fuel Cells. Chem. Eng. J. 2023, 474, 145678. [Google Scholar] [CrossRef]
- Kacprzak, A.; Włodarczyk, R. Utilization of Organic Waste in a Direct Carbon Fuel Cell for Sustainable Electricity Generation. Energies 2023, 16, 7359. [Google Scholar] [CrossRef]
- Patwardhan, S.B.; Pandit, S.; Kumar Gupta, P.; Kumar Jha, N.; Rawat, J.; Joshi, H.C.; Priya, K.; Gupta, M.; Lahiri, D.; Nag, M.; et al. Recent Advances in the Application of Biochar in Microbial Electrochemical Cells. Fuel 2022, 311, 122501. [Google Scholar] [CrossRef]
- Qin, C.; Wang, H.; Yuan, X.; Xiong, T.; Zhang, J.; Zhang, J. Understanding Structure-Performance Correlation of Biochar Materials in Environmental Remediation and Electrochemical Devices. Chem. Eng. J. 2020, 382, 122977. [Google Scholar] [CrossRef]
- Shrivastava, K.; Jain, A. Development of Sustainable High-Performance Supercapacitor Electrodes from Biochar-Based Material. In Energy Storage Technologies in Grid Modernization; Wiley: Hoboken, NJ, USA, 2023; pp. 71–104. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhu, X.; Dutta, S.; Khanal, S.K.; Lee, K.T.; Masek, O.; Tsang, D.C.W. Catalytic Co-Hydrothermal Carbonization of Food Waste Digestate and Yard Waste for Energy Application and Nutrient Recovery. Bioresour. Technol. 2022, 344, 126395. [Google Scholar] [CrossRef] [PubMed]
- Pauline, A.L.; Joseph, K. Hydrothermal Carbonization of Organic Wastes to Carbonaceous Solid Fuel—A Review of Mechanisms and Process Parameters. Fuel 2020, 279, 118472. [Google Scholar] [CrossRef]
- Ischia, G.; Fiori, L. Hydrothermal Carbonization of Organic Waste and Biomass: A Review on Process, Reactor, and Plant Modeling. Waste Biomass Valorization 2020, 12, 2797–2824. [Google Scholar] [CrossRef]
- Aragon-Briceño, C.; Pożarlik, A.; Bramer, E.; Brem, G.; Wang, S.; Wen, Y.; Yang, W.; Pawlak-Kruczek, H.; Niedźwiecki, Ł.; Urbanowska, A.; et al. Integration of Hydrothermal Carbonization Treatment for Water and Energy Recovery from Organic Fraction of Municipal Solid Waste Digestate. Renew. Energy 2022, 184, 577–591. [Google Scholar] [CrossRef]
- Pawlak-Kruczek, H.; Niedzwiecki, L.; Sieradzka, M.; Mlonka-Mędrala, A.; Baranowski, M.; Serafin-Tkaczuk, M.; Magdziarz, A. Hydrothermal Carbonization of Agricultural and Municipal Solid Waste Digestates—Structure and Energetic Properties of the Solid Products. Fuel 2020, 275, 117837. [Google Scholar] [CrossRef]
- Belete, Y.Z.; Mau, V.; Yahav Spitzer, R.; Posmanik, R.; Jassby, D.; Iddya, A.; Kassem, N.; Tester, J.W.; Gross, A. Hydrothermal Carbonization of Anaerobic Digestate and Manure from a Dairy Farm on Energy Recovery and the Fate of Nutrients. Bioresour. Technol. 2021, 333, 125164. [Google Scholar] [CrossRef]
- Naisse, C.; Girardin, C.; Lefevre, R.; Pozzi, A.; Maas, R.; Stark, A.; Rumpel, C. Effect of Physical Weathering on the Carbon Sequestration Potential of Biochars and Hydrochars in Soil. GCB Bioenergy 2015, 7, 488–496. [Google Scholar] [CrossRef]
- Putra, H.E.; Damanhuri, E.; Dewi, K.; Pasek, A.D. Hydrothermal Treatment of Municipal Solid Waste into Coal-like Fuel. IOP Conf. Ser. Earth Environ. Sci. 2020, 483, 012021. [Google Scholar] [CrossRef]
- Sharma, H.B.; Sarmah, A.K.; Dubey, B. Hydrothermal Carbonization of Renewable Waste Biomass for Solid Biofuel Production: A Discussion on Process Mechanism, the Influence of Process Parameters, Environmental Performance and Fuel Properties of Hydrochar. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Mong, G.R.; Tan, H.; Chin Vui Sheng, D.D.; Kek, H.Y.; Nyakuma, B.B.; Woon, K.S.; Othman, M.H.D.; Kang, H.S.; Goh, P.S.; Wong, K.Y. A Review on Plastic Waste Valorisation to Advanced Materials: Solutions and Technologies to Curb Plastic Waste Pollution. J. Clean. Prod. 2024, 434, 140180. [Google Scholar] [CrossRef]
- Zhou, Y.; Remón, J.; Pang, X.; Jiang, Z.; Liu, H.; Ding, W. Hydrothermal Conversion of Biomass to Fuels, Chemicals and Materials: A Review Holistically Connecting Product Properties and Marketable Applications. Sci. Total Environ. 2023, 886, 163920. [Google Scholar] [CrossRef]
- Murillo, H.A.; Pagés-Díaz, J.; Díaz-Robles, L.A.; Vallejo, F.; Huiliñir, C. Valorization of Oat Husk by Hydrothermal Carbonization: Optimization of Process Parameters and Anaerobic Digestion of Spent Liquors. Bioresour. Technol. 2022, 343, 126112. [Google Scholar] [CrossRef]
- Cho, E.J.; Trinh, L.T.P.; Song, Y.; Lee, Y.G.; Bae, H.J. Bioconversion of Biomass Waste into High Value Chemicals. Bioresour. Technol. 2020, 298, 122386. [Google Scholar] [CrossRef] [PubMed]
- Moon, M.; Yeon, Y.J.; Park, H.J.; Park, J.; Park, G.W.; Kim, G.H.; Lee, J.P.; Lee, D.; Lee, J.S.; Min, K. Chemoenzymatic Valorization of Agricultural Wastes into 4-Hydroxyvaleric Acid via Levulinic Acid. Bioresour. Technol. 2021, 337, 125479. [Google Scholar] [CrossRef] [PubMed]
- Global Furfural Market by Raw Material (Sugarcane Bagasse, Corncob, Rice Husk), Application (Derivatives, Solvents), End-use Industry (Agriculture, Paint & Coatings, Pharmaceuticals, Food & Beverages, Refineries), and Region—Forecast to 2028. Available online: https://www.researchandmarkets.com/report/furfural (accessed on 25 March 2024).
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M.; Reig, M. A Green Approach to Phenolic Compounds Recovery from Olive Mill and Winery Wastes. Sci. Total Environ. 2022, 835, 155552. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, G. Agricultural Waste-Derived Superabsorbent Hydrogels: Preparation, Performance, and Socioeconomic Impacts. J. Clean. Prod. 2020, 251, 119669. [Google Scholar] [CrossRef]
- Al kamzari, S.M.A.; Nageswara Rao, L.; Lakavat, M.; Gandi, S.; Reddy, P.S.; Kavitha Sri, G. Extraction and Characterization of Cellulose from Agricultural Waste Materials. Mater. Today Proc. 2023, 80, 2740–2743. [Google Scholar] [CrossRef]
- Das, D.; Prakash, P.; Rout, P.K.; Bhaladhare, S. Synthesis and Characterization of Superabsorbent Cellulose-Based Hydrogel for Agriculture Application. Starch–Stärke 2021, 73, 1900284. [Google Scholar] [CrossRef]
- Wang, X.; Yao, C.; Wang, F.; Li, Z. Cellulose-Based Nanomaterials for Energy Applications. Small 2017, 13, 1702240. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Gao, Y.; Luo, J.; Jiao, L.; Wu, W.; Fang, G.; Dai, H. Lignocellulosic Nanofibrils Produced Using Wheat Straw and Their Pulping Solid Residue: From Agricultural Waste to Cellulose Nanomaterials. Waste Manag. 2019, 91, 1–8. [Google Scholar] [CrossRef]
- Ghalehno, M.D.; Yousefi, H. Green Nanocomposite Made from Carboxymethyl Cellulose Reinforced with Four Types of Cellulose Nanomaterials of Wheat Straw. J. Appl. Polym. Sci. 2022, 139, e52802. [Google Scholar] [CrossRef]
- Thakur, M.; Sharma, A.; Ahlawat, V.; Bhattacharya, M.; Goswami, S. Process Optimization for the Production of Cellulose Nanocrystals from Rice Straw Derived α-Cellulose. Mater. Sci. Energy Technol. 2020, 3, 328–334. [Google Scholar] [CrossRef]
- Hsieh, Y.-L. Cellulose Nanocrystals and Self-Assembled Nanostructures from Cotton, Rice Straw and Grape Skin: A Source Perspective. J. Mater. Sci. 2013, 48, 7837–7846. [Google Scholar] [CrossRef]
- Khoo, R.Z.; Chow, W.S.; Ismail, H. Sugarcane Bagasse Fiber and Its Cellulose Nanocrystals for Polymer Reinforcement and Heavy Metal Adsorbent: A Review. Cellulose 2018, 25, 4303–4330. [Google Scholar] [CrossRef]
- Torgbo, S.; Quan, V.M.; Sukyai, P. Cellulosic Value-Added Products from Sugarcane Bagasse. Cellulose 2021, 28, 5219–5240. [Google Scholar] [CrossRef]
- de Aguiar, J.; Bondancia, T.J.; Claro, P.I.C.; Mattoso, L.H.C.; Farinas, C.S.; Marconcini, J.M. Enzymatic Deconstruction of Sugarcane Bagasse and Straw to Obtain Cellulose Nanomaterials. ACS Sustain. Chem. Eng. 2020, 8, 2287–2299. [Google Scholar] [CrossRef]
- Vu, H.P.; Nguyen, L.N.; Vu, M.T.; Johir, M.A.H.; McLaughlan, R.; Nghiem, L.D. A Comprehensive Review on the Framework to Valorise Lignocellulosic Biomass as Biorefinery Feedstocks. Sci. Total Environ. 2020, 743, 140630. [Google Scholar] [CrossRef]
- Xu, N.; Liu, S.; Xin, F.; Zhou, J.; Jia, H.; Xu, J.; Jiang, M.; Dong, W. Biomethane Production from Lignocellulose: Biomass Recalcitrance and Its Impacts on Anaerobic Digestion. Front. Bioeng. Biotechnol. 2019, 7, 472405. [Google Scholar] [CrossRef]
- Banu, J.R.; Sugitha, S.; Kavitha, S.; Kannah, R.Y.; Merrylin, J.; Kumar, G. Lignocellulosic Biomass Pretreatment for Enhanced Bioenergy Recovery: Effect of Lignocelluloses Recalcitrance and Enhancement Strategies. Front. Energy Res. 2021, 9, 646057. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, Z.; Liu, K.; Si, B.; Yang, G.; Tian, C.; Zhang, Y. Multi-Cycle Anaerobic Digestion of Hydrothermal Liquefaction Aqueous Phase: Role of Carbon and Iron Based Conductive Materials in Inhibitory Compounds Degradation, Microbial Structure Shaping, and Interspecies Electron Transfer Regulation. Chem. Eng. J. 2023, 454, 140019. [Google Scholar] [CrossRef]
- Balasundaram, G.; Banu, R.; Varjani, S.; Kazmi, A.A.; Tyagi, V.K. Recalcitrant Compounds Formation, Their Toxicity, and Mitigation: Key Issues in Biomass Pretreatment and Anaerobic Digestion. Chemosphere 2022, 291, 132930. [Google Scholar] [CrossRef]
- Balu, A.M.; Nuñez, A.G. Biomass and Biowaste: New Chemical Products from Old. Biomass and Biowaste: New Chemical Products from Old; De Gruyter: Berlin, Germany, 2020; pp. 1–182. [Google Scholar]
- He, O.; Zhang, Y.; Wang, P.; Liu, L.; Wang, Q.; Yang, N.; Li, W.; Champagne, P.; Yu, H. Experimental and Kinetic Study on the Production of Furfural and HMF from Glucose. Catalysts 2020, 11, 11. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, A.; Kaya, S.; Vo, D.V.N.; Sharma, A. Suppressing Inhibitory Compounds by Nanomaterials for Highly Efficient Biofuel Production: A Review. Fuel 2022, 312, 122934. [Google Scholar] [CrossRef]
- Cousin, E.; Namhaed, K.; Pérès, Y.; Cognet, P.; Delmas, M.; Hermansyah, H.; Gozan, M.; Alaba, P.A.; Aroua, M.K. Towards Efficient and Greener Processes for Furfural Production from Biomass: A Review of the Recent Trends. Sci. Total Environ. 2022, 847, 157599. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Kumar, V.; Kumar, S.; Majid, I.; Aggarwal, P.; Suri, S. 5-Hydroxymethylfurfural (HMF) Formation, Occurrence and Potential Health Concerns: Recent Developments. Toxin Rev. 2021, 40, 545–561. [Google Scholar] [CrossRef]
- Mohamad Said, K.A.; Ismail, A.F.; Abdul Karim, Z.; Abdullah, M.S.; Hafeez, A. A Review of Technologies for the Phenolic Compounds Recovery and Phenol Removal from Wastewater. Process Saf. Environ. Prot. 2021, 151, 257–289. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Hoshino, É.P.; Mota, T.R.; Marchiosi, R.; Ferrarese-Filho, O.; dos Santos, W.D. Modulation of Cellulase Activity by Lignin-Related Compounds. Bioresour. Technol. Rep. 2020, 10, 100390. [Google Scholar] [CrossRef]
- Valanciene, E.; Jonuskiene, I.; Syrpas, M.; Augustiniene, E.; Matulis, P.; Simonavicius, A.; Malys, N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Radhika, N.L.; Sachdeva, S.; Kumar, M. Lignin Depolymerization and Biotransformation to Industrially Important Chemicals/Biofuels. Fuel 2022, 312, 122935. [Google Scholar] [CrossRef]
- van der Maas, L.; Driessen, J.L.S.P.; Mussatto, S.I. Effects of Inhibitory Compounds Present in Lignocellulosic Biomass Hydrolysates on the Growth of Bacillus Subtilis. Energies 2021, 14, 8419. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Liu, X.; Shi, X.; Wang, C.; Zhong, H.; Jin, F. Sustainable Production of Formic Acid and Acetic Acid from Biomass. Mol. Catal. 2023, 545, 113199. [Google Scholar] [CrossRef]
- Tan, Z.; Li, X.; Yang, C.; Liu, H.; Cheng, J.J. Inhibition and Disinhibition of 5-Hydroxymethylfurfural in Anaerobic Fermentation: A Review. Chem. Eng. J. 2021, 424, 130560. [Google Scholar] [CrossRef]
- Liu, B.; Liu, L.; Deng, B.; Huang, C.; Zhu, J.; Liang, L.; He, X.; Wei, Y.; Qin, C.; Liang, C.; et al. Application and Prospect of Organic Acid Pretreatment in Lignocellulosic Biomass Separation: A Review. Int. J. Biol. Macromol. 2022, 222, 1400–1413. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Alshehri, K.; Li, Y.; Qian, H.; Sapsford, D.; Cleall, P.; Harbottle, M. Advances in Biological Techniques for Sustainable Lignocellulosic Waste Utilization in Biogas Production. Renew. Sustain. Energy Rev. 2022, 170, 112995. [Google Scholar] [CrossRef]
- Uthirakrishnan, U.; Godvin Sharmila, V.; Merrylin, J.; Adish Kumar, S.; Dharmadhas, J.S.; Varjani, S.; Rajesh Banu, J. Current Advances and Future Outlook on Pretreatment Techniques to Enhance Biosolids Disintegration and Anaerobic Digestion: A Critical Review. Chemosphere 2022, 288, 132553. [Google Scholar] [CrossRef]
- Yang, P.; Peng, Y.; Tan, H.; Liu, H.; Wu, D.; Wang, X.; Li, L.; Peng, X. Foaming Mechanisms and Control Strategies during the Anaerobic Digestion of Organic Waste: A Critical Review. Sci. Total Environ. 2021, 779, 146531. [Google Scholar] [CrossRef]
- Liu, T.; Goux, X.; Calusinska, M.; Westerholm, M. Analyzing Microbial Core Communities, Rare Species, and Interspecies Interactions Can Help Identify Core Microbial Functions in Anaerobic Degradation. In Assessing the Microbiological Health of Ecosystems; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022; pp. 127–157. [Google Scholar] [CrossRef]
- Fernández-Sandoval, M.T.; García, A.; Teymennet-Ramírez, K.V.; Arenas-Olivares, D.Y.; Martínez-Morales, F.; Trejo-Hernández, M.R. Removal of Phenolic Inhibitors from Lignocellulose Hydrolysates Using Laccases for the Production of Fuels and Chemicals. Biotechnol. Prog. 2023, 40, e3406. [Google Scholar] [CrossRef]
- Cucina, M.; Pezzolla, D.; Tacconi, C.; Gigliotti, G. Anaerobic Co-Digestion of a Lignocellulosic Residue with Different Organic Wastes: Relationship between Biomethane Yield, Soluble Organic Matter and Process Stability. Biomass Bioenergy 2021, 153, 106209. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, S.K.; Kumar, J.; Ahluwalia, V. A Critical Review on Current Strategies and Trends Employed for Removal of Inhibitors and Toxic Materials Generated during Biomass Pretreatment. Bioresour. Technol. 2020, 299, 122633. [Google Scholar] [CrossRef] [PubMed]
- Raja Ram, N.; Nikhil, G.N. A Critical Review on Sustainable Biogas Production with Focus on Microbial-Substrate Interactions: Bottlenecks and Breakthroughs. Bioresour. Technol. Rep. 2022, 19, 101170. [Google Scholar] [CrossRef]
- Dedes, G.; Karnaouri, A.; Topakas, E. Novel Routes in Transformation of Lignocellulosic Biomass to Furan Platform Chemicals: From Pretreatment to Enzyme Catalysis. Catalysts 2020, 10, 743. [Google Scholar] [CrossRef]
- Awogbemi, O.; Kallon, D.V. Von Pretreatment Techniques for Agricultural Waste. Case Stud. Chem. Environ. Eng. 2022, 6, 100229. [Google Scholar] [CrossRef]
- Lorenci Woiciechowski, A.; Dalmas Neto, C.J.; Porto de Souza Vandenberghe, L.; de Carvalho Neto, D.P.; Novak Sydney, A.C.; Letti, L.A.J.; Karp, S.G.; Zevallos Torres, L.A.; Soccol, C.R. Lignocellulosic Biomass: Acid and Alkaline Pretreatments and Their Effects on Biomass Recalcitrance—Conventional Processing and Recent Advances. Bioresour. Technol. 2020, 304, 122848. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhai, R.; Li, Y.; Yuan, X.; Liu, Z.H.; Jin, M. Understanding the Structural Characteristics of Water-Soluble Phenolic Compounds from Four Pretreatments of Corn Stover and Their Inhibitory Effects on Enzymatic Hydrolysis and Fermentation. Biotechnol. Biofuels 2020, 13, 1–13. [Google Scholar] [CrossRef]
- Sheng, Y.; Lam, S.S.; Wu, Y.; Ge, S.; Wu, J.; Cai, L.; Huang, Z.; Van Le, Q.; Sonne, C.; Xia, C. Enzymatic Conversion of Pretreated Lignocellulosic Biomass: A Review on Influence of Structural Changes of Lignin. Bioresour. Technol. 2021, 324, 124631. [Google Scholar] [CrossRef]
- Wu, Z.; Peng, K.; Zhang, Y.; Wang, M.; Yong, C.; Chen, L.; Qu, P.; Huang, H.; Sun, E.; Pan, M. Lignocellulose Dissociation with Biological Pretreatment towards the Biochemical Platform: A Review. Mater. Today Bio 2022, 16, 100445. [Google Scholar] [CrossRef]
- Usman Khan, M.; Kiaer Ahring, B. Improving the Biogas Yield of Manure: Effect of Pretreatment on Anaerobic Digestion of the Recalcitrant Fraction of Manure. Bioresour. Technol. 2021, 321, 124427. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, Y.; Huang, H.; Khunjar, W.; Wang, Z.W. Recalcitrant Dissolved Organic Nitrogen Formation in Thermal Hydrolysis Pretreatment of Municipal Sludge. Environ. Int. 2020, 138, 105629. [Google Scholar] [CrossRef] [PubMed]
- Donkor, K.O.; Gottumukkala, L.D.; Lin, R.; Murphy, J.D. A Perspective on the Combination of Alkali Pre-Treatment with Bioaugmentation to Improve Biogas Production from Lignocellulose Biomass. Bioresour. Technol. 2022, 351, 126950. [Google Scholar] [CrossRef] [PubMed]
- Atiwesh, G.; Parrish, C.C.; Banoub, J.; Le, T.A.T. Lignin Degradation by Microorganisms: A Review. Biotechnol. Prog. 2022, 38, e3226. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Liu, H.; Zhang, Y.; Cui, M.; Fu, B.; Liu, H. Insight into Sludge Anaerobic Digestion with Granular Activated Carbon Addition: Methanogenic Acceleration and Methane Reduction Relief. Bioresour. Technol. 2021, 319, 124131. [Google Scholar] [CrossRef] [PubMed]
- Diniz, V.; Gasparini Fernandes Cunha, D.; Rath, S. Adsorption of Recalcitrant Contaminants of Emerging Concern onto Activated Carbon: A Laboratory and Pilot-Scale Study. J. Environ. Manag. 2023, 325, 116489. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. Biochar for Wastewater Treatment—Conversion Technologies and Applications. Appl. Sci. 2020, 10, 3492. [Google Scholar] [CrossRef]
- Liu, Z.; Mohseni, M.; Sauvé, S.; Barbeau, B. Segmented Regeneration of Ion Exchange Resins Used for Natural Organic Matter Removal. Sep. Purif. Technol. 2022, 303, 122271. [Google Scholar] [CrossRef]
- Babu Ponnusami, A.; Sinha, S.; Ashokan, H.; Paul, M.V.; Hariharan, S.P.; Arun, J.; Gopinath, K.P.; Hoang Le, Q.; Pugazhendhi, A. Advanced Oxidation Process (AOP) Combined Biological Process for Wastewater Treatment: A Review on Advancements, Feasibility and Practicability of Combined Techniques. Environ. Res. 2023, 237, 116944. [Google Scholar] [CrossRef]
- Pandis, P.K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering 2022, 6, 8. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, C.; Yang, M.; Zang, L. Comparison of Calcium Oxide and Calcium Peroxide Pretreatments of Wheat Straw for Improving Biohydrogen Production. ACS Omega 2020, 5, 9151–9161. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, J.; Fu, Z.; Wang, Y.; Guan, D.; Xie, J.; Zhang, Q.; Liu, Q.; Wang, D.; Sun, Y. Metagenomic Approach Reveals the Mechanism of Calcium Oxide Improving Kitchen Waste Dry Anaerobic Digestion. Bioresour. Technol. 2023, 387, 129647. [Google Scholar] [CrossRef] [PubMed]
Biofuel | Production Costs | References |
---|---|---|
Biogas | 0.05–0.18 USD/kWh | [129] |
Biomethane | 0.54–0.78 EUR/m3 | [133] |
Biohydrogen | 10–20 USD/GJ | [134] |
Bioethanol | 1310 USD/m3 | [126] |
Biodiesel | 760–1120 USD/m3 | [130] |
Bio-oil | 17–24 USD/GJ | [135] |
Biobutanol | 500–800 USD/m3 | [131,132] |
Pretreatment Method | Mechanism | Substrate | Effects on Digestion | Key Findings | References |
---|---|---|---|---|---|
Alkali-assisted thermal pretreatment | Utilizes sodium hydroxide (NaOH) to improve the degradation of manure fibers by breaking down recalcitrant compounds like lignin and crystalline cellulose. | Manure fibers | Increased biogas yield and enhanced volatile solids conversion. | CH4 yield improved by 127% with thermal pretreatment with 3% NaOH added. Optimal reductions in cellulose, hemicellulose, and lignin were 24.8%, 29.1%, and 9.5%, respectively, during pretreatment; 76.5% of cellulose and 84.9% of hemicellulose were converted to CH4 during AD. | [224] |
Thermal hydrolysis pretreatment (THP) | THP enhances the performance of anaerobic digestion by solubilizing and hydrolyzing the organic component of municipal sludge at elevated temperatures and pressures. It involves the Maillard reaction between reducing sugar and amino groups, producing melanoidins, which are recalcitrant dissolved organic nitrogen (rDON) compounds. | Municipal sludge, which typically contains polysaccharides (20–40%) and proteins (30–50%), provides abundant reactants for the Maillard reaction under THP conditions. | Reduction of sludge viscosity, improvement of sludge digestibility and biogas production, enhancement of sludge dewaterability, pathogen sterilization, and odor reduction. Formation of substances with high color and ultraviolet (UV)-quenching ability, inhibition of side-stream nitrogen removal processes, and generation of rDON. | THP at temperatures of 160–190 °C and pressures of 480–1260 kPa leads to the production of melanoidins, a type of rDON. | [225] |
Alkali pre-treatment combined with bioaugmentation | Alkali pretreatment disrupts the lignocellulosic structure by breaking down lignin and hemicellulose, which hinders microbial access to cellulose. This increases the porosity, reduces the degree of polymerization, and enhances the surface area for microbial action. Bioaugmentation involves the addition of specific microbial strains or consortia to the digester to target and enhance the degradation of complex organic matter more efficiently. | Lignocellulosic biomass, with grass, is composed mainly of cellulose, hemicellulose, and lignin. | Enhancement of the digestibility of lignocellulosic biomass, leading to increased biogas production. The enhancement in biogas yield is attributed to the more efficient breakdown of the biomass structure, allowing for improved microbial access and activity. | Increases biomethane production by 47% and reduces the retention time from 30 to 20 days, which could significantly lower energy production costs and make the process more economically viable. | [226] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, M.; Bułkowska, K. Agricultural Wastes and Their By-Products for the Energy Market. Energies 2024, 17, 2099. https://doi.org/10.3390/en17092099
Zielińska M, Bułkowska K. Agricultural Wastes and Their By-Products for the Energy Market. Energies. 2024; 17(9):2099. https://doi.org/10.3390/en17092099
Chicago/Turabian StyleZielińska, Magdalena, and Katarzyna Bułkowska. 2024. "Agricultural Wastes and Their By-Products for the Energy Market" Energies 17, no. 9: 2099. https://doi.org/10.3390/en17092099
APA StyleZielińska, M., & Bułkowska, K. (2024). Agricultural Wastes and Their By-Products for the Energy Market. Energies, 17(9), 2099. https://doi.org/10.3390/en17092099