Numerical Modeling of Non-Isothermal Laminar Flow and Heat Transfer of Paraffinic Oil with Yield Stress in a Pipe
Abstract
:1. Introduction
2. Mathematical Model
2.1. Physical Model of a Viscoplastic Fluid
2.2. Rheological Properties of Non-Newtonian Fluid
2.3. The Basic Equations of Non-Newtonian Fluid Flow
2.4. Influence of Temperature on Non-Newtonian Fluid Properties
2.5. Boundary Conditions
3. Numerical Method
- Solve the discretized energy Equation (6) to determine the values of tij;
- Solving the discretized momentum Equations (4) and (5) to determine values of uij,vij;
- Compute the uncorrected mass fluxes at the surfaces. If their values are sufficiently small, stop the iterations of the SIMPLE algorithm (in this case, a solution is reached);
- Solve the pressure correction equation based on the continuity Equation (3) to obtain the cell values of the pressure correction (values of ∆pij);
- Update the pressure field: , where is the under-relaxation factor for pressure (0.005 ≤ ≤ 0.5);
4. Discussion of Calculated Data
4.1. Validation and Verification of Computational Data
4.2. Computational Data for Non-Isothermal Laminar Flow in a Pipe
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Latin | Greek | ||
cp | heat capacity, J/(kg·°C) | strain rate tensor, 1/s | |
D | pipe inner diameter, m | µeff | effective (apparent) molecular viscosity, Pa·s |
L | pipe length, m | µp | plastic viscosity, Pa·s |
R | pipe inner radius, m | λ | thermal conductivity, W/m·°C |
Re | Reynolds number, Re = ρu1R/μp1 | ρ | density, kg/m3 |
Bn | Bingham number, Bn = τ0w R/μpwu1 | τ0 | yield shear stress, Pa |
Pr | Prandtl number, Pr = μp1 cp1/λ1 | Τ | shear stress, Pa |
t | temperature, °C | Subscripts | |
t1 | temperature at the inlet, °C | 1 | initial condition |
tW | wall temperature, °C | w | wall |
p | pressure, Pa | S | soil |
u, v | axial and radial velocities, m/s | ||
z, r | axial and radial coordinates, m |
References
- Zhapbasbayev, U.K.; Ramazanova, G.I.; Bossinov, D.Z.; Kenzhaliyev, B.K. Flow and heat exchange calculation of waxy oil in the industrial pipeline. Case Stud. Thermal Eng. 2021, 26, 101007. [Google Scholar] [CrossRef]
- Aiyejina, A.; Chakrabarti, D.P.; Pilgrim, A.; Sastry, M.K.S. Wax formation in oil-pipelines: A critical review. Int. J. Multiphase Flow 2011, 37, 671–694. [Google Scholar] [CrossRef]
- Chala, G.T.; Sulaiman, S.A.; Japper-Jaafar, A. Flow start-up and transportation of waxy crude oil in pipelines—A review. J. Non-Newton. Fluid Mech. 2018, 251, 69–87. [Google Scholar] [CrossRef]
- Ghannam, M.T.; Hasan, S.W.; Abu-Jdayil, B.; Esmail, N. Rheological properties of heavy & light crude oil mixtures for improving flow ability. J. Petrol. Sci. Eng. 2012, 81, 122–128. [Google Scholar] [CrossRef]
- Sanjay, M.; Simanta, B.; Kulwant, S. Paraffin problems in crude oil production and transportation: A review. SPE Prod. Facil. 1995, 10, 50–54. [Google Scholar] [CrossRef]
- Ribeiro, F.S.; Souza Mendes, P.R.; Braga, S.L. Obstruction of pipelines due to paraffin deposition during the flow of crude oils. Int. J. Heat Mass Transf. 1997, 40, 4319–4328. [Google Scholar] [CrossRef]
- Bekibayev, T.T.; Zhapbasbayev, U.K.; Ramazanova, G.I.; Minghat, A.D.; Bosinov, D.Z. Simulation of oil pipeline shutdown and restart modes. Compl. Use of Min. Resour. 2021, 316, 15–23. [Google Scholar] [CrossRef]
- Bostanjiyan, S.A.; Merzhanov, A.G.; Khudiev, S.I. On the hydrodynamic thermal “explosion”. Rep. Acad. Sci. USSR 1965, 163, 133–136. Available online: https://www.mathnet.ru/links/e54928daa8dbbddb9d34a0066504a779/dan31312.pdf (accessed on 4 February 2024). (In Russian).
- Bostanjiyan, S.A.; Chernyaeva, S.M. On the hydrodynamic thermal “explosion” of non-Newtonian fluid. Rep. Acad. Sci. USSR 1966, 170, 301–304. Available online: https://www.mathnet.ru/links/f8a68735fd8c01274d136d8dc40e7126/dan32553.pdf (accessed on 4 February 2024). (In Russian).
- Duvaut, G.; Lions, J.-L. Inequalities in Mechanics and Physics; Springer: Berlin, Germany, 1976. [Google Scholar] [CrossRef]
- Kim, J.U. On the initial-boundary value problem for a Bingham fluid in a three-dimensional domain. Trans. Am. Math. Soc. 1987, 304, 751–770. [Google Scholar] [CrossRef]
- Baranovskii, E.S. On flows of Bingham-type fluids with threshold slippage. Adv. Math. Phys. 2017, 2017, 7548328. [Google Scholar] [CrossRef]
- Vinay, G.; Wachs, A.; Agassant, J.-F. Numerical simulation of non-isothermal viscoplastic waxy crude oil flows. J. Non-Newton. Fluid Mech. 2005, 128, 144–162. [Google Scholar] [CrossRef]
- Min, T.; Choi, H.G.; Yoo, J.Y.; Choi, H. Laminar convective heat transfer of a Bingham plastic in a circular pipe II. Numerical approach hydrodynamically developing flow and simultaneously developing flow. Int. J. Heat Mass Transf. 1997, 41, 3689–3701. [Google Scholar] [CrossRef]
- Hammad, K.J. The effect of hydrodynamic conditions on heat transfer in a complex viscoplastic flow field. Int. J. Heat Mass Transf. 2000, 43, 945–962. [Google Scholar] [CrossRef]
- Moraga, N.O.; Andrade, M.; Vasco, D. Unsteady conjugate mixed convection phase change of a power law non-Newtonian fluid in a square cavity. Int. J. Heat Mass Transf. 2010, 73, 671–692. [Google Scholar] [CrossRef]
- Patel, S.A.; Chhabra, R.P. Heat transfer in Bingham plastic fluids from a heated elliptical cylinder. Int. J. Heat Mass Transf. 2014, 53, 3308–3318. [Google Scholar] [CrossRef]
- Danane, F.; Boudiaf, A.; Mahfoud, O.; Ouyahia, S.-E.; Labsi, N.; Benkahla, Y.K. Effect of backward facing step shape on 3D mixed convection of Bingham fluid. Int. J. Therm. Sci. 2020, 147, 106116. [Google Scholar] [CrossRef]
- Bird, R.B.; Curtiss, C.F.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Beverly, C.R.; Tanner, R.I. Numerical analysis of three-dimensional Bingham plastic flow. J. Non-Newton. Fluid Mech. 1992, 42, 85–115. [Google Scholar] [CrossRef]
- Schwedoff, T. Recherches expérimentales sur la cohésion des liquids. J. Phys. Theor. Appl. 1890, 9, 34–46. [Google Scholar] [CrossRef]
- Bingham, E.C. Fluidity and Plasticity; McGraw-Hill: New York, NY, USA, 1922. [Google Scholar]
- Barnes, H.A. The yield stress—A review or ‘παντα ρει’−everything flows? J. Non-Newton. Fluid Mech. 1999, 81, 133–178. [Google Scholar] [CrossRef]
- Klimov, D.M.; Petrov, A.G.; Georgievsky, D.V. Viscous-Plastic Flows: Dynamical Chaos, Stability, and Confusion; Nauka: Moscow, Russia, 2005. (In Russian) [Google Scholar]
- Papanastasiou, T.C. Flows of materials with yield. J. Rheol. 1987, 31, 385–404. [Google Scholar] [CrossRef]
- Voller, V.R.; Prakash, C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transf. 1987, 30, 1709–1719. [Google Scholar] [CrossRef]
- Henry, H.; Argyropoulos, S.A. Mathematical modelling of solidification and melting: A review. Model. Simul. Mater. Sci. Eng. 1996, 4, 371–396. [Google Scholar] [CrossRef]
- Patankar, S. Numerical Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 1980. [Google Scholar] [CrossRef]
- Pakhomov, M.A.; Zhapbasbayev, U.K. RANS modeling of turbulent flow and heat transfer of non-Newtonian viscoplastic fluid in a pipe. Case Stud. Therm. Eng. 2021, 28, 101455. [Google Scholar] [CrossRef]
- Sahu, K.C. Linear instability in a miscible core-annular flow of a Newtonian and a Bingham fluid. J. Non-Newton. Fluid Mech. 2019, 264, 159–169. [Google Scholar] [CrossRef]
t, °C | T, K | τ0, Pa | μP, Pa·s |
---|---|---|---|
0 | 273 | 589.6 | 0.3585 |
5 | 278 | 34.62044 | 0.14634 |
10 | 283 | 2.03286 | 0.05974 |
15 | 288 | 0.11937 | 0.02438 |
20 | 293 | 0.00701 | 0.00995 |
25 | 298 | 4.1156 × 10−4 | 0.00406 |
30 | 303 | 2.41662 × 10−5 | 0.00166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhapbasbayev, U.; Bekibayev, T.; Pakhomov, M.; Ramazanova, G. Numerical Modeling of Non-Isothermal Laminar Flow and Heat Transfer of Paraffinic Oil with Yield Stress in a Pipe. Energies 2024, 17, 2080. https://doi.org/10.3390/en17092080
Zhapbasbayev U, Bekibayev T, Pakhomov M, Ramazanova G. Numerical Modeling of Non-Isothermal Laminar Flow and Heat Transfer of Paraffinic Oil with Yield Stress in a Pipe. Energies. 2024; 17(9):2080. https://doi.org/10.3390/en17092080
Chicago/Turabian StyleZhapbasbayev, Uzak, Timur Bekibayev, Maksim Pakhomov, and Gaukhar Ramazanova. 2024. "Numerical Modeling of Non-Isothermal Laminar Flow and Heat Transfer of Paraffinic Oil with Yield Stress in a Pipe" Energies 17, no. 9: 2080. https://doi.org/10.3390/en17092080
APA StyleZhapbasbayev, U., Bekibayev, T., Pakhomov, M., & Ramazanova, G. (2024). Numerical Modeling of Non-Isothermal Laminar Flow and Heat Transfer of Paraffinic Oil with Yield Stress in a Pipe. Energies, 17(9), 2080. https://doi.org/10.3390/en17092080