Adaptive Comfort Potential in Different Climate Zones of Ecuador Considering Global Warming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adaptive Thermal Comfort Model from ASHRAE 55-2020
2.2. Obtaining Climate Data
2.3. Analysis Process
3. Results and Discussion
3.1. Application of the Adaptive Thermal Comfort Model
Application of Natural Ventilation Strategies
3.2. Heating and Cooling Demands
3.2.1. Heating Degrees
3.2.2. Cooling Degrees
3.3. Implications for Practice and Future Research
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asamblea Nacional de la Repúbica del Ecuador. Código Orgánico de Organización Territorial, Autonomía y Descentralización, COOTAD; Asamblea Nacional de la Repúbica del Ecuador: Quito, Ecuador, 2019.
- Instituto Nacional de Estadísticas y Censos Censo de Población y Vivienda—Ecuador 2010. Available online: https://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda/ (accessed on 27 September 2022).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Chimborazo, O.; Vuille, M. Present-Day Climate and Projected Future Temperature and Precipitation Changes in Ecuador. Theor. Appl. Climatol. 2021, 143, 1581–1597. [Google Scholar] [CrossRef]
- Delgado, D.; Sadaoui, M.; Ludwig, W.; Méndez, W. Spatio-Temporal Assessment of Rainfall Erosivity in Ecuador Based on RUSLE Using Satellite-Based High Frequency GPM-IMERG Precipitation Data. Catena 2022, 219, 106597. [Google Scholar] [CrossRef]
- ONU HABITAT. Déficit Habitacional En América Latina y El Caribe; UN-Habitat: Nairobi, Kenya, 2015; ISBN 978-92-1-132648-2. [Google Scholar]
- Desarrollo, B.I. de Estudio Del BID: América Latina y El Caribe Encaran Creciente Déficit de Vivienda. Available online: https://www.iadb.org/es/noticias/estudio-del-bid-america-latina-y-el-caribe-encaran-creciente-deficit-de-vivienda#getNews(9969,’’)%23 (accessed on 21 March 2021).
- Ministerio de Desarrollo Urbano y Vivienda. Proyecto de Vivienda Casa Para Todos-CPT. Proyecto de Vivienda Casa Para Todos-CPT; Ministerio de Desarrollo Urbano y Vivienda República del Ecuador: Quito, Ecuador, 2018.
- García, R. Pobreza Energética En América Latina. Com. Económica Para América Lat. y el Caribe 2014, 36. Available online: https://repositorio.cepal.org/items/30533fbd-4fb1-425a-8745-a3f03532e872 (accessed on 27 September 2022).
- Fan, Z.; Bai, R.; Yue, T. Scenarios of Land Cover in Eurasia under Climate Change. J. Geogr. Sci. 2020, 30, 3–17. [Google Scholar] [CrossRef]
- Leng, G. Keeping Global Warming within 1.5 °C Reduces Future Risk of Yield Loss in the United States: A Probabilistic Modeling Approach. Sci. Total Environ. 2018, 644, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Vuille, M. Climate Change and Water Resources in the Tropical Andes; Inter-American Development Bank: Washington, DC, USA, 2013. [Google Scholar]
- García-Ochoa, J.; Quito-Rodríguez, J.; Perdomo Moreno, J.A. Análisis de La Huella de Carbono En La Construcción y Su Impacto Sobre El Ambiente; Villavicencio Universidad Cooperativa de Colombia: Bogota, Colombia, 2020; Volume 22. [Google Scholar]
- Alonso, A.; Calama-González, C.M.; Suárez, R.; León-Rodríguez, Á.L.; Hernández-Valencia, M. Improving Comfort Conditions as an Energy Upgrade Tool for Housing Stock: Analysis of a House Prototype. Energy Sustain. Dev. 2022, 66, 209–221. [Google Scholar] [CrossRef]
- Vergara, W.; Rios, A.R.; Galindo, L.M.; Gutman, P.; Isbell, P.; Suding, P.H.; Samaniego, J. The Climate and Development Challenge for Latin America and the Caribbean: Options for Climate-Resilient, Low-Carbon Development; Inter-American Development Bank: Washington, DC, USA, 2013; ISBN 978-1-59782-165-0. [Google Scholar]
- Moutinho, V.; Fuinhas, J.A.; Marques, A.C.; Santiago, R. Assessing Eco-Efficiency through the DEA Analysis and Decoupling Index in the Latin America Countries. J. Clean. Prod. 2018, 205, 512–524. [Google Scholar] [CrossRef]
- Sheinbaum, C.; Ruíz, B.J.; Ozawa, L. Energy Consumption and Related CO2 Emissions in Five Latin American Countries: Changes from 1990 to 2006 and Perspectives. Energy 2011, 36, 3629–3638. [Google Scholar] [CrossRef]
- Van der Borght, R.; Pallares Barbera, M. How Urban Spatial Expansion Influences CO2 Emissions in Latin American Countries. Cities 2023, 139, 104389. [Google Scholar] [CrossRef]
- OECD. OECD Environment at a Glance in Latin America and the Caribbean; OECD: Paris, France, 2023; ISBN 9789264995925. [Google Scholar]
- The World Bank. World Development Indicators; The World Bank: Washington, DC, USA, 2023. [Google Scholar]
- MAATE. Cuarta Comunicación Nacional y Segundo Informe Bienal de Actualización del Ecuador a la Convención Marco de las Naciones Unidas Sobre El Cambio Climático. Programa de las Naciones Unidas Para El Desarrollo; Quito. 2022. Available online: https://www.undp.org/es/ecuador/publicaciones/cuarta-comunicacion-nacional-y-segundo-informe-bienal-de-actualizacion-del-ecuador-la-convencion-marco-de-las-naciones-unidas (accessed on 27 March 2023).
- Bassi, A.M.; Baer, A.E. Quantifying Cross-Sectoral Impacts of Investments in Climate Change Mitigation in Ecuador. Energy Sustain. Dev. 2009, 13, 116–123. [Google Scholar] [CrossRef]
- Delgado, D.; Sadaoui, M.; Pacheco, H.; Méndez, W.; Ludwig, W. Interrelations Between Soil Erosion Conditioning Factors in Basins of Ecuador: Contributions to the Spatial Model Construction. In Proceedings of the International Conference on Water Energy Food and Sustainability, Leiria, Portugal, 10–12 May 2021; pp. 892–903. [Google Scholar] [CrossRef]
- Jakob, M. Ecuador’s Climate Targets: A Credible Entry Point to a Low-Carbon Economy? Energy Sustain. Dev. 2017, 39, 91–100. [Google Scholar] [CrossRef]
- Osman, M.M.; Sevinc, H. Adaptation of Climate-Responsive Building Design Strategies and Resilience to Climate Change in the Hot/Arid Region of Khartoum, Sudan. Sustain. Cities Soc. 2019, 47, 101429. [Google Scholar] [CrossRef]
- Rijal, H.B.; Humphreys, M.A.; Nicol, J.F. Adaptive Model and the Adaptive Mechanisms for Thermal Comfort in Japanese Dwellings. Energy Build. 2019, 202, 109371. [Google Scholar] [CrossRef]
- Talukdar, M.S.J.; Talukdar, T.H.; Singh, M.K.; Baten, M.A.; Hossen, M.S. Status of Thermal Comfort in Naturally Ventilated University Classrooms of Bangladesh in Hot and Humid Summer Season. J. Build. Eng. 2020, 32, 101700. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, M.K.; Kukreja, R.; Chaurasiya, S.K.; Gupta, V.K. Comparative Study of Thermal Comfort and Adaptive Actions for Modern and Traditional Multi-Storey Naturally Ventilated Hostel Buildings during Monsoon Season in India. J. Build. Eng. 2019, 23, 90–106. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Singh, M.K.; Reiter, S. An Adaptive Thermal Comfort Model for Hot Humid South-East Asia. Build. Environ. 2012, 56, 291–300. [Google Scholar] [CrossRef]
- López-Pérez, L.A.; Flores-Prieto, J.J.; Ríos-Rojas, C. Adaptive Thermal Comfort Model for Educational Buildings in a Hot-Humid Climate. Build. Environ. 2019, 150, 181–194. [Google Scholar] [CrossRef]
- Rubio-Bellido, C.; Pérez-Fargallo, A.; Pulido-Arcas, J.A.; Trebilcock, M. Application of Adaptive Comfort Behaviors in Chilean Social Housing Standards under the Influence of Climate Change. Build. Simul. 2017, 10, 933–947. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Pulido-Arcas, J.A.; Rubio-Bellido, C.; Trebilcock, M.; Piderit, B.; Attia, S. Development of a New Adaptive Comfort Model for Low Income Housing in the Central-South of Chile. Energy Build. 2018, 178, 94–106. [Google Scholar] [CrossRef]
- Torres-Quezada, J.; Torres Avilés, A.; Isalgue, A.; Pages-Ramon, A. The Evolution of Embodied Energy in Andean Residential Buildings. Methodology Applied to Cuenca-Ecuador. Energy Build. 2022, 259, 111858. [Google Scholar] [CrossRef]
- Balter, J.; Barea, G.; Ganem, C. Improvements in the Energy Performance of Buildings in Summer, through the Integration of Ventilated Envelopes on North-Facing Facades and Roofs. The Case of Mendoza, Argentina. Habitat Sustentable 2020, 10, 94–105. [Google Scholar] [CrossRef]
- Chavez-Rodriguez, M.F.; Carvajal, P.E.; Martinez Jaramillo, J.E.; Egüez, A.; Mahecha, R.E.G.; Schaeffer, R.; Szklo, A.; Lucena, A.F.P.; Arango Aramburo, S. Fuel Saving Strategies in the Andes: Long-Term Impacts for Peru, Colombia and Ecuador. Energy Strateg. Rev. 2018, 20, 35–48. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; López-Cabeza, V.P.; Rivera-Gómez, C.; Galán-Marín, C.; Rojas-Fernández, J.; Nikolopoulou, M. Extending the Adaptive Thermal Comfort Models for Courtyards. Build. Environ. 2021, 203, 108094. [Google Scholar] [CrossRef]
- AC08024865; Ergonomics of the Thermal Environment Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. ISO: Geneva, Switzerland, 2005.
- Yao, R.; Zhang, S.; Du, C.; Schweiker, M.; Hodder, S.; Olesen, B.W.; Toftum, J.; Romana d’Ambrosio, F.; Gebhardt, H.; Zhou, S.; et al. Evolution and Performance Analysis of Adaptive Thermal Comfort Models—A Comprehensive Literature Review. Build. Environ. 2022, 217, 109020. [Google Scholar] [CrossRef]
- Sarihi, S.; Mehdizadeh Saradj, F.; Faizi, M. A Critical Review of Façade Retrofit Measures for Minimizing Heating and Cooling Demand in Existing Buildings. Sustain. Cities Soc. 2021, 64, 102525. [Google Scholar] [CrossRef]
- Chang, M.; Thellufsen, J.Z.; Zakeri, B.; Pickering, B.; Pfenninger, S.; Lund, H.; Østergaard, P.A. Trends in Tools and Approaches for Modelling the Energy Transition. Appl. Energy 2021, 290, 116731. [Google Scholar] [CrossRef]
- Ramon, D.; Allacker, K.; De Troyer, F.; Wouters, H.; van Lipzig, N.P.M. Future Heating and Cooling Degree Days for Belgium under a High-End Climate Change Scenario. Energy Build. 2020, 216, 109935. [Google Scholar] [CrossRef]
- Rupp, R.F.; Parkinson, T.; Kim, J.; Toftum, J.; de Dear, R. The Impact of Occupant’s Thermal Sensitivity on Adaptive Thermal Comfort Model. Build. Environ. 2022, 207, 108517. [Google Scholar] [CrossRef]
- Parkinson, T.; de Dear, R.; Brager, G. Nudging the Adaptive Thermal Comfort Model. Energy Build. 2020, 206, 109559. [Google Scholar] [CrossRef]
- The American Society of Heating, Refrigerating and Air-Conditioning Engineers. Thermal Environmental Conditions for Human Occupancy 55-2004; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2004; pp. 1–34. [Google Scholar]
- The American Society of Heating, Refrigerating and Air-Conditioning Engineers. Standard 55—Thermal Environmental Conditions for Human Occupancy. 2023. Available online: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy (accessed on 28 January 2023).
- Luisa, M.; Hoz-torres, D.; Aguilar, A.J.; Ruiz, D.P.; Martínez-aires, D. An Investigation of Indoor Thermal Environments and Thermal Comfort in Naturally Ventilated Educational Buildings. J. Build. Eng. 2024, 84, 108677. [Google Scholar] [CrossRef]
- Sánchez-García, D.; Bienvenido-Huertas, D.; Pulido-Arcas, J.A.; Rubio-Bellido, C. Extending the Use of Adaptive Thermal Comfort to Air-Conditioning: The Case Study of a Local Japanese Comfort Model in Present and Future Scenarios. Energy Build. 2023, 285, 112901. [Google Scholar] [CrossRef]
- Albatayneh, A.; Jaradat, M.; Alkhatib, M.B.; Abdallah, R.; Juaidi, A.; Manzano-Agugliaro, F. The Significance of the Adaptive Thermal Comfort Practice over the Structure Retrofits to Sustain Indoor Thermal Comfort. Energies 2021, 14, 2946. [Google Scholar] [CrossRef]
- UNE-EN 16798-1; Eficiencia Energética de Los Edificios. Ventilación de Los Edificios. Parte 1: Parámetros Del Ambiente Interior a Considerar Para El Diseño y La Evaluación de La Eficiencia Energética de Edificios Incluyendo La Calidad Del Aire Interior, Condiciones Térmi. Asociación Española de Normalización: Madrid, Spain, 2020.
- Bienvenido-Huertas, D.; Rubio-Bellido, C.; Pérez-Fargallo, A.; Pulido-Arcas, J.A. Energy Saving Potential in Current and Future World Built Environments Based on the Adaptive Comfort Approach. J. Clean. Prod. 2020, 249, 119306. [Google Scholar] [CrossRef]
- Sánchez-García, D.; Bienvenido-Huertas, D.; Tristancho-Carvajal, M.; Rubio-Bellido, C. Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings under Current and Future Climate Conditions: A Case Study Located in Spain. Energies 2019, 12, 1498. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Pulido-Arcas, J.A.; Rubio-Bellido, C.; Pérez-Fargallo, A. Influence of Future Climate Changes Scenarios on the Feasibility of the Adaptive Comfort Model in Japan. Sustain. Cities Soc. 2020, 61, 102303. [Google Scholar] [CrossRef]
- Emori, S.; Taylor, K.; Hewitson, B.; Zermoglio, F.; Juckes, M.; Lautenschlager, M.; Stockhause, M. CMIP5 Data Provided at the IPCC Data Distribution Centre; IPCC: Geneva, Switzerland, 2016. [Google Scholar]
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014 Synthesis Report; Core Writing Team, Ed.; IPCC: Geneva, Switzerland, 2015; Volume 34, 151p, ISBN 9789291691432. [Google Scholar]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. IPCC Sixth Assessment Report—Synthesis Report; IPCC: Geneva, Switzerland, 2022; ISBN 9789291691647. [Google Scholar]
- Baek, H.J.; Lee, J.; Lee, H.S.; Hyun, Y.K.; Cho, C.; Kwon, W.T.; Marzin, C.; Gan, S.Y.; Kim, M.J.; Choi, D.H.; et al. Climate Change in the 21st Century Simulated by HadGEM2-AO under Representative Concentration Pathways. Asia-Pac. J. Atmos. Sci. 2013, 49, 603–618. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Mauro, G.M.; Napolitano, D.F. Effects of Global Warming on Energy Retrofit Planning of Neighborhoods under Stochastic Human Behavior. Energy Build. 2021, 250, 111306. [Google Scholar] [CrossRef]
- Sun, T.; Zanocco, C.; Flora, J.; Johnson, S.; Soto, H.J.; Rajagopal, R. Cooling-Related Electricity Consumption Patterns for Small and Medium Businesses in California: Current Impacts and Future Projections under Climate Change. Energy Build. 2023, 295, 113301. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Carver, S.; Mikkelsen, N.; Woodward, J. Long-Term Rates of Mass Wasting in Mesters Vig, Northeast Greenland: Notes on a Re-Survey. Permafr. Periglac. Process. 2002, 13, 243–249. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Liang, S.; Wang, D. Observed and Projected Changes in Global Climate Zones Based on Köppen Climate Classification. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e701. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Rubio-Bellido, C. Application of Adaptive Thermal Comfort Models for Energy Saving in Buildings. In Adaptive Thermal Comfort of Indoor Environment for Residential Buildings; Springer: Berlin/Heidelberg, Germany, 2021; pp. 35–50. [Google Scholar]
- Hwang, R.L.; Lin, T.P.; Chen, C.P.; Kuo, N.J. Investigating the Adaptive Model of Thermal Comfort for Naturally Ventilated School Buildings in Taiwan. Int. J. Biometeorol. 2009, 53, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.A.D.; Petrović, S.; Radoszynski, A.M.; McKenna, R.; Balyk, O. Climate Change Impacts on Trends and Extremes in Future Heating and Cooling Demands over Europe. Energy Build. 2020, 226, 110397. [Google Scholar] [CrossRef]
- Jafarpur, P.; Berardi, U. Effects of Climate Changes on Building Energy Demand and Thermal Comfort in Canadian Office Buildings Adopting Different Temperature Setpoints. J. Build. Eng. 2021, 42, 102725. [Google Scholar] [CrossRef]
- Petri, Y.; Caldeira, K. Impacts of Global Warming on Residential Heating and Cooling Degree-Days in the United States. Sci. Rep. 2015, 5, 12427. [Google Scholar] [CrossRef]
Province | Location | Population | Köppen Distribution | Characteristics | |
---|---|---|---|---|---|
Tungurahua | Ambato | 178,538 | Cfb | Oceanic climate | Cold or mild winters and cool summers. Rainfall is well distributed throughout the year. Lush forests |
Pichincha | Calderon (Carapungo) | 152,242 | Cfb | ||
Pichincha | Cayambe | 50,829 | Cfb | ||
Pichincha | Conocoto | 82,072 | Cfb | ||
Azuay | Cuenca | 331,888 | Cfb | ||
Cotopaxi | Latacunga | 98,355 | Cfb | ||
Loja | Loja | 180,617 | Cfb | ||
Imbabura | Otavalo | 52,753 | Cfb | ||
Pichincha | Quito | 1,619,146 | Cfb | ||
Chimborazo | Riobamba | 156,723 | Cfb | ||
Imbabura | San Miguel de Ibarra | 139,721 | Cfb | ||
Pichincha | Sangolqui | 81,140 | Cfb | ||
Carchi | Tulcan | 60,403 | Cfb | ||
Los Rios | Babahoyo | 96,956 | Aw | Tropical Savanna climate | Warm all year round, with dry season |
Guayas | Balzar | 53,937 | Aw | ||
Manabi | Chone | 74,906 | Aw | ||
Guayas | Daule | 87,508 | Aw | ||
Guayas | Eloy Alfaro (Durán) | 235,769 | Aw | ||
Esmeraldas | Esmeraldas | 161,868 | Aw | ||
Guayas | Guayaquil | 2,291,158 | Aw | ||
Guayas | Milagro | 145,025 | Aw | ||
El Oro | Pasaje | 53,485 | Aw | ||
Los Rios | Quevedo | 158,694 | Aw | ||
Guayas | Samborondon | 51,634 | Aw | ||
Los Rios | Vinces | 55,443 | Aw | ||
Manabi | El Carmen | 77,743 | Am | Tropical monsoon climate | Warm all year round, with a short dry season followed by a wet season with heavy rainfall. Monsoon forests |
Esmeraldas | Rosa Zarate (Quininde) | 67,259 | Am | ||
Los Rios | San Jacinto De Buena Fe | 50,870 | Am | ||
Santo Domingo | Santo Domingo De Los Colorados | 305,632 | Am | ||
Bolivar | Guaranda | 55,374 | Cwb | Temperate with dry winters | Cold or mild winters and cool summers. Summers are rainy and winters are dry |
Santa Elena | La Libertad | 95,942 | BWh | Hot Desert | Winters are mild, although inland temperatures can approach zero degrees at night. Summers are either warm or very hot |
Manabi | Manta | 221,122 | BWh | ||
Manabi | Montecristi | 67,842 | BWh | ||
Santa Elena | Santa Elena | 53,174 | BWh | ||
El Oro | Machala | 241,606 | BSh | Semi-arid hot | Winters are mild and summers are warm or very warm. Rainfall is scarce. The natural vegetation is steppe |
Manabi | Portoviejo | 223,086 | BSh | ||
El Oro | Santa Rosa | 52,863 | BSh | ||
Sucumbios | Nueva Loja | 57,727 | Af | Tropical equatorial climate | Warm and rainy all year, with no seasons. Rainforest climate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Gutierrez, E.; Canivell, J.; Bienvenido-Huertas, D.; Hidalgo-Sánchez, F.M. Adaptive Comfort Potential in Different Climate Zones of Ecuador Considering Global Warming. Energies 2024, 17, 2017. https://doi.org/10.3390/en17092017
Delgado-Gutierrez E, Canivell J, Bienvenido-Huertas D, Hidalgo-Sánchez FM. Adaptive Comfort Potential in Different Climate Zones of Ecuador Considering Global Warming. Energies. 2024; 17(9):2017. https://doi.org/10.3390/en17092017
Chicago/Turabian StyleDelgado-Gutierrez, Evelyn, Jacinto Canivell, David Bienvenido-Huertas, and Francisco M. Hidalgo-Sánchez. 2024. "Adaptive Comfort Potential in Different Climate Zones of Ecuador Considering Global Warming" Energies 17, no. 9: 2017. https://doi.org/10.3390/en17092017
APA StyleDelgado-Gutierrez, E., Canivell, J., Bienvenido-Huertas, D., & Hidalgo-Sánchez, F. M. (2024). Adaptive Comfort Potential in Different Climate Zones of Ecuador Considering Global Warming. Energies, 17(9), 2017. https://doi.org/10.3390/en17092017