Radiated Electromagnetic Emission from Photovoltaic Systems—Measurement Results: Inverters and Modules †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Photovoltaic-System Combinations
2.2. Photovoltaic Systems
2.3. In Situ Measurement Setup
2.4. Data Analysis
2.4.1. Statistical Data Analysis Method
3. Results and Discussion
3.1. Solar Inverter Concept
3.2. Photovoltiac Module
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ott, H.W. Electromagnetic compatibility. In Electromagnetic Compatibility Engineering; Wiley: Hoboken, NJ, USA, 2009; Chapter 1; pp. 1–42. [Google Scholar] [CrossRef]
- Araneo, R.; Lammens, S.; Grossiand, M.; Bertone, S. EMC Issues in High-Power Grid-Connected Photovoltaic Plants. IEEE Trans. Electromagn. Compat. 2009, 51, 639–648. [Google Scholar] [CrossRef]
- Henze, N.; Degner, T. Radio Interference of Photovoltaic Power Systems. In Proceedings of the 16th 6th International Wroclaw Symposium and Exhibition on EMC, Wroclaw, Poland, 25–28 June 2002. [Google Scholar]
- Regulation (EU) 2019/1020 of the European Parliament and of the Council of 20 June 2019 on Market Surveillance and Compliance of Products and Amending Directive 2004/42/EC and Regulations (EC) No 765/2008 and (EU) No 305/2011, OJ L 169/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELLAR:903d90ee-9712-11e9-9369-01aa75ed71a1 (accessed on 9 August 2023).
- Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the Harmonisation of the Laws of the Member States Relating to Electromagnetic Compatibility, OJ L 96/79. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014L0030 (accessed on 9 August 2023).
- Häberlin, H. Reception Interference from PV Systems with Power Optimizers; HBradio 5/2017; USKA: Bern, Switzerland, 2018; Available online: https://www.uska.ch/wp-content/uploads/2018/06/Empfangsst%C3%B6rungen-durch-PV-Anlage-mit-Power-Optimizern.HB9AZO.pdf (accessed on 22 November 2022). (In German)
- Schwarzburger, H. Optimizers Can Interfere. Photovoltaic. 2020; pp. 16–17. Available online: https://www.uska.ch/wp-content/uploads/2020/04/PV2-2020_DC-Optimierer.pdf (accessed on 22 November 2022). (In German).
- Radiocommunications Agency Netherlands. Annual Report Radiocommunications Agency Netherlands 2020. 2021, p. 29. Available online: https://www.agentschaptelecom.nl/documenten/jaarverslagen/2021/05/26/jaarbericht-2020 (accessed on 28 November 2022). (In Dutch).
- Hut, E. EMC Aspects of PV Installations [PowerPoint Slides]. 2019. Available online: https://fhi.nl/app/uploads/sites/42/2019/11/Agentschap-Telecom.pdf (accessed on 9 December 2022). (In Dutch).
- Olsson, H. Surveillance Visit Friberga School March 2021; Dnr: 19EV2763; Swedish National Electrical Safety Board: Kristinehamn, Sweden, 2021. (In Swedish) [Google Scholar]
- Swedish National Electrical Safety Board. Sales Ban. Dnr: 20EV1483, SolarEdge: P300, P350, P350I, P370, P4040, P405, P500, P505, P600, P650, P700, P730, P800p, P800s, P850, OPJ300-LV, M6240. 2021. Available online: https://www.elsakerhetsverket.se/privatpersoner/dina-elprodukter/forsaljningsforbud/solaredge-tvingas-saljstoppa-vaxelriktare/ (accessed on 10 October 2022). (In Swedish).
- Swedish National Electrical Safety Board. Sales Ban. Dnr: 19EV5340, Growatt: 8000TL3-S. 2021. Available online: https://www.elsakerhetsverket.se/privatpersoner/dina-elprodukter/forsaljningsforbud/sunnytek-solar-sweden-ab-tvingas-saljstoppa-growatt-vaxelriktare/ (accessed on 10 October 2022). (In Swedish).
- Swedish National Electrical Safety Board. Sales Ban. Dnr: 14EV1597, Carlo Gavazzi: HiNRG1G03EU(SE). 2015. Available online: https://www.elsakerhetsverket.se/privatpersoner/dina-elprodukter/forsaljningsforbud/storningar-fran-vaxelriktare/ (accessed on 10 October 2022). (In Swedish).
- Swedish National Electrical Safety Board. Sales Ban. Dnr: 14EV1599, Involar: MAC250-230-EUR. 2015. Available online: https://www.elsakerhetsverket.se/privatpersoner/dina-elprodukter/forsaljningsforbud/vaxelriktare-stor/ (accessed on 10 October 2022). (In Swedish).
- Stenumgaard, P.; Linder, S.; Olsson, H. Interference impact from solar-panel systems on HF Communications. Presented at the Nordic HF Conference (HF 19), Fårö, Gotland, 12–14 August 2019; p. 8.3. [Google Scholar]
- Stenumgaard, P.; Linder, S. Interference Impact from Solar-Panel Systems on Air Traffic Control Communications. In Proceedings of the 2019 International Symposium on Electromagnetic Compatibility-EMC EUROPE, Barcelona, Spain, 2–6 September 2019; pp. 1044–1048. [Google Scholar] [CrossRef]
- Linder, S.; Wiklundh, K. In-situ Measurements of Conducted and Radiated Emissions from Photovoltaic Installations. In Proceedings of the 2022 International Symposium on Electromagnetic Compatibility-EMC EUROPE, Gothenburg, Sweden, 5–8 September 2022; pp. 231–236. [Google Scholar] [CrossRef]
- Loschi, H.; Ferreira, L.; Nascimento, D.; Cardoso, P.; Carvalho, S.; Conte, F. EMC evaluation of off-grid and grid-tied photovoltaic systems for the Brazilian scenario. J. Clean Energy Technol. 2018, 6, 125–133. [Google Scholar] [CrossRef]
- Hamza, D.; Jain, P. Conducted EMI in grid-tied PV system. In Proceedings of the Intelec 2010, Orlando, FL, USA, 6–10 June 2010. [Google Scholar] [CrossRef]
- Di Piazza, M.C.; Serporta, C.; Tine, G.; Vitale, G. Electromagnetic compatibility characterisation of the DC side in a low power photovoltaic plant. In Proceedings of the 2004 IEEE International Conference on Industrial Technology (IEEE ICIT ’04), Hammamet, Tunisia, 8–10 December 2004. [Google Scholar] [CrossRef]
- Keyer, C.; Timens, R.; Buesink, F.; Leferink, F. In-situ measurement of high frequency emission caused by photo voltaic inverters. In Proceedings of the 2014 International Symposium on Electromagnetic Compatibility, Gothenburg, Sweden, 1–4 September 2014. [Google Scholar] [CrossRef]
- Mohos, A.; Ladanyi, J. Emission Measurement of a Solar Park in the Frequency Range of 2 to 150 kHz. In Proceedings of the 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE), Amsterdam, The Netherlands, 27–30 August 2018. [Google Scholar] [CrossRef]
- SEK Handbook 457; Photovoltaic–Recommendation and Rules for Electrical Installations. 1st ed. Swedish Electrical Standard: Kista, Sweden, 2019. (In Swedish)
- Azpúrua, M.; Pous, M.; Silva, F. A measurement system for radiated transient electromagnetic interference based on general purpose instruments. In Proceedings of the 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), Dresden, Germany, 16–22 August 2015; pp. 1189–1194. [Google Scholar] [CrossRef]
- Pico Technology. PicoScope 5000D Series—FlexRes Oscilloscopes and MSOs. Available online: https://www.picotech.com/download/datasheets/picoscope-5000d-series-data-sheet.pdf (accessed on 22 February 2024).
- IEC Standard CISPR 11:2015; Industrial, Scientific and Medical Equipment—Radio-Frequency Disturbance Characteristics—Limits and Methods of Measurement. International Electrotechnical Commission: Geneva, Switzerland, 2015.
- IEC Standard CISPR 16-2-3:2016; Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods—Part 2-3: Methods of Measurement of Disturbances and Immunity—Radiated Disturbance Measurements. International Electrotechnical Commission: Geneva, Switzerland, 2016.
- Schwarzburger, H. Service: Insufficient. Photovoltaic. 2020; pp. 18–21. Available online: https://www.uska.ch/wp-content/uploads/2020/04/PV2-2020_DC-Optimierer.pdf (accessed on 22 November 2022). (In German).
Abbreviation | Description | |
---|---|---|
Photovoltaic module | ||
LR-60HiH 370W | MO | 14 monofacial monocrystalline half-cell glass–backsheet modules with an aluminum frame |
SOLID PRO 320W M.60 | BI | 14 bifacial monocrystalline full-cell glass–glass modules without an aluminum frame |
Solar inverter concept | ||
Symo 3.0-3-S | F | String inverter |
Planticore 5.5 | K | String inverter |
SB 5000TL-21 | S | String inverter |
SE-5k-N4 | SE | Inverter with |
P505 | 14 module-level power optimizers | |
Symo 3.0-3-S | TF | String inverter with |
TS4-A-O | 1 module-level power optimizer | |
Planticore 5.5 | TK | String inverter with |
TS4-A-O | 1 module-level power optimizer | |
Loop area | ||
Small-loop area | SLS | Max. 5 cm distance between DC+ and DC− |
Large-loop area | LL | 1.8 m distance between DC+ and DC− |
String cables | ||
Zero distance | R | Zero distance: max 1 cm from cable center to center |
10 cm distance | R10 | 10 cm distance |
Earthing | ||
With | W | With functional equipotential earthing |
No | N | Without functional equipotential earthing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kroner, D.; Lundgren, U.; Augusto, A.; Bollen, M. Radiated Electromagnetic Emission from Photovoltaic Systems—Measurement Results: Inverters and Modules. Energies 2024, 17, 1893. https://doi.org/10.3390/en17081893
Kroner D, Lundgren U, Augusto A, Bollen M. Radiated Electromagnetic Emission from Photovoltaic Systems—Measurement Results: Inverters and Modules. Energies. 2024; 17(8):1893. https://doi.org/10.3390/en17081893
Chicago/Turabian StyleKroner, Désirée, Urban Lundgren, André Augusto, and Math Bollen. 2024. "Radiated Electromagnetic Emission from Photovoltaic Systems—Measurement Results: Inverters and Modules" Energies 17, no. 8: 1893. https://doi.org/10.3390/en17081893
APA StyleKroner, D., Lundgren, U., Augusto, A., & Bollen, M. (2024). Radiated Electromagnetic Emission from Photovoltaic Systems—Measurement Results: Inverters and Modules. Energies, 17(8), 1893. https://doi.org/10.3390/en17081893