The Impact of Aluminosilicate Additives upon the Chlorine Distribution and Melting Behavior of Poultry Litter Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Poultry Litter
2.2. Fuel Additives
2.3. Ash Preparation and Analyses
3. Results and Discussion
3.1. Influence of Additives on Chlorine Distribution in Ash
3.2. Influence of Additives on Ash Fusion Temperatures
3.3. Influence of Additives on Ash Morphology
3.4. Influence of Additives on Phase Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bioenergy—IEA. Available online: https://www.iea.org/energy-system/renewables/bioenergy (accessed on 4 October 2023).
- Zhao, P.; Yu, S.; Li, Q.; Zhang, Y.; Zhou, H. Understanding Heavy Metal in the Conversion of Biomass Model Component: Migration and Transformation Characteristics of Cu during Hydrothermal Carbonization of Cellulose. Energy 2024, 293, 130700. [Google Scholar] [CrossRef]
- Yu, S.; Yang, X.; Zhou, H.; Tan, Z.; Cong, K.; Zhang, Y.; Li, Q. Thermal and Kinetic Behaviors during Co-Pyrolysis of Microcrystalline Cellulose and Styrene–Butadiene–Styrene Triblock Copolymer. Processes 2021, 9, 1335. [Google Scholar] [CrossRef]
- Yu, S.; He, J.; Zhang, Z.; Sun, Z.; Xie, M.; Xu, Y.; Bie, X.; Li, Q.; Zhang, Y.; Sevilla, M.; et al. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. Adv. Mater. 2024, e2307412. [Google Scholar] [CrossRef] [PubMed]
- Ibitoye, S.E.; Mahamood, R.M.; Jen, T.-C.; Loha, C.; Akinlabi, E.T. An Overview of Biomass Solid Fuels: Biomass Sources, Processing Methods, and Morphological and Microstructural Properties. J. Bioresour. Bioprod. 2023, 8, 333–360. [Google Scholar] [CrossRef]
- Köninger, J.; Lugato, E.; Panagos, P.; Kochupillai, M.; Orgiazzi, A.; Briones, M.J.I. Manure Management and Soil Biodiversity: Towards More Sustainable Food Systems in the EU. Agric. Syst. 2021, 194, 103251. [Google Scholar] [CrossRef]
- Whitely, N.; Ozao, R.; Artiaga, R.; Cao, Y.; Pan, W.P. Multi-Utilization of Chicken Litter as Biomass Source. Part I. Combustion. Energy Fuels 2006, 20, 2660–2665. [Google Scholar] [CrossRef]
- Hubbard, L.E.; Givens, C.E.; Griffin, D.W.; Iwanowicz, L.R.; Meyer, M.T.; Kolpin, D.W. Poultry Litter as Potential Source of Pathogens and Other Contaminants in Groundwater and Surface Water Proximal to Large-Scale Confined Poultry Feeding Operations. Sci. Total Environ. 2020, 735, 139459. [Google Scholar] [CrossRef] [PubMed]
- Tańczuk, M.; Junga, R.; Kolasa-Więcek, A.; Niemiec, P. Assessment of the Energy Potential of Chicken Manure in Poland. Energies 2019, 12, 1244. [Google Scholar] [CrossRef]
- Kelleher, B.P.; Leahy, J.J.; Henihan, A.M.; O’Dwyer, T.F.; Sutton, D.; Leahy, M.J. Advances in Poultry Litter Disposal Technology—A Review. Bioresour. Technol. 2002, 83, 27–36. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2017/1262—Of 12 July 2017—Amending Regulation (EU) No 142/2011 as Regards the Use of Manure of Farmed Animals as a Fuel in Combustion Plants. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2017.182.01.0034.01.ENG (accessed on 10 February 2024).
- Turzyński, T.; Kluska, J.; Kardaś, D. Study on Chicken Manure Combustion and Heat Production in Terms of Thermal Self-Sufficiency of a Poultry Farm. Renew. Energy 2022, 191, 84–91. [Google Scholar] [CrossRef]
- Pachón Gómez, E.M.; Domínguez, R.E.; López, D.A.; Téllez, J.F.; Marino, M.D.; Almada, N.; Gange, J.M.; Moyano, E.L. Chicken Litter: A Waste or a Source of Chemicals? Fast Pyrolysis and Hydrothermal Conversion as Alternatives in the Valorisation of Poultry Waste. J. Anal. Appl. Pyrolysis 2023, 169, 105796. [Google Scholar] [CrossRef]
- Li, S.; Wu, A.; Deng, S.; Pan, W. Effect of Co-Combustion of Chicken Litter and Coal on Emissions in a Laboratory-Scale Fluidized Bed Combustor. Fuel Process. Technol. 2008, 89, 7–12. [Google Scholar] [CrossRef]
- Simbolon, L.M.; Pandey, D.S.; Horvat, A.; Kwapinska, M.; Leahy, J.J.; Tassou, S.A. Investigation of Chicken Litter Conversion into Useful Energy Resources by Using Low Temperature Pyrolysis. Energy Procedia 2019, 161, 47–56. [Google Scholar] [CrossRef]
- Vainio, E.; Kinnunen, H.; Laurén, T.; Brink, A.; Yrjas, P.; DeMartini, N.; Hupa, M. Low-Temperature Corrosion in Co-Combustion of Biomass and Solid Recovered Fuels. Fuel 2016, 184, 957–965. [Google Scholar] [CrossRef]
- Ruozzi, A.; Vainio, E.; Kinnunen, H.; Hupa, L. Cold-End Corrosion in Biomass Combustion—Role of Calcium Chloride in the Deposit. Fuel 2023, 349, 128344. [Google Scholar] [CrossRef]
- Vainio, E.; Vänskä, K.; Laurén, T.; Yrjas, P.; Coda Zabetta, E.; Hupa, M.; Hupa, L. Impact of Boiler Load and Limestone Addition on SO3 and Corrosive Cold-End Deposits in a Coal-Fired CFB Boiler. Fuel 2021, 304, 121313. [Google Scholar] [CrossRef]
- Nielsen, H.P.; Frandsen, F.J.; Dam-Johansen, K.; Baxter, L.L. The Implications of Chlorine-Associated Corrosion on the Operation of Biomass-Fired Boilers. Prog. Energy Combust. Sci. 2000, 26, 283–298. [Google Scholar] [CrossRef]
- Nielsen, H.P.; Baxter, L.L.; Sclippab, G.; Morey, C.; Frandsen, F.J.; Dam-Johansen, K. Deposition of Potassium Salts on Heat Transfer Surfaces in Straw-Fired Boilers: A Pilot-Scale Study. Fuel 2000, 79, 131–139. [Google Scholar] [CrossRef]
- Karuana, F.; Prismantoko, A.; Suhendra, N.; Darmawan, A.; Hariana, H.; Darmadi, D.B.; Akhsin Muflikhun, M. Investigation of Austenitic Stainless Steel Corrosion Resistance against Ash Deposits from Co-Combustion Coal and Biomass Waste. Eng. Fail. Anal. 2023, 150, 107368. [Google Scholar] [CrossRef]
- Król, D.; Motyl, P.; Poskrobko, S. Chlorine Corrosion in a Low-Power Boiler Fired with Agricultural Biomass. Energies 2022, 15, 382. [Google Scholar] [CrossRef]
- Ovčačíková, H.; Velička, M.; Vlček, J.; Topinková, M.; Klárová, M.; Burda, J. Corrosive Effect of Wood Ash Produced by Biomass Combustion on Refractory Materials in a Binary Al–Si System. Materials 2022, 15, 5796. [Google Scholar] [CrossRef]
- Steenari, B.M.; Lindqvist, O. High-Temperature Reactions of Straw Ash and the Anti-Sintering Additives Kaolin and Dolomite. Biomass Bioenergy 1998, 14, 67–76. [Google Scholar] [CrossRef]
- Gruber, T.; Schulze, K.; Scharler, R.; Obernberger, I. Investigation of the Corrosion Behaviour of 13CrMo4–5 for Biomass Fired Boilers with Coupled Online Corrosion and Deposit Probe Measurements. Fuel 2015, 144, 15–24. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, T.; Tan, X.; Hu, N.; Wang, Y.; Yang, H.; Zhang, M. Experimental Study on the Sintering Characteristics of Biomass Ash. Fuel 2024, 356, 129586. [Google Scholar] [CrossRef]
- Mlonka-Mędrala, A.; Magdziarz, A.; Kalemba-Rec, I.; Nowak, W. The Influence of Potassium-Rich Biomass Ashes on Steel Corrosion above 550 °C. Energy Convers. Manag. 2019, 187, 15–28. [Google Scholar] [CrossRef]
- Roberts, L.J.; Mason, P.E.; Jones, J.M.; Gale, W.F.; Williams, A.; Hunt, A.; Ashman, J. The Impact of Aluminosilicate-Based Additives upon the Sintering and Melting Behaviour of Biomass Ash. Biomass Bioenergy 2019, 127, 105284. [Google Scholar] [CrossRef]
- Niu, Y.; Tan, H.; Hui, S. Ash-Related Issues during Biomass Combustion: Alkali-Induced Slagging, Silicate Melt-Induced Slagging (Ash Fusion), Agglomeration, Corrosion, Ash Utilization, and Related Countermeasures. Prog. Energy Combust. Sci. 2016, 52, 1–61. [Google Scholar] [CrossRef]
- Grabke, H.J.; Reese, E.; Spiegel, M. The Effects of Chlorides, Hydrogen Chloride, and Sulfur Dioxide in the Oxidation of Steels below Deposits. Corros. Sci. 1995, 37, 1023–1043. [Google Scholar] [CrossRef]
- Wu, D.L.; Dahl, K.V.; Christiansen, T.L.; Montgomery, M.; Hald, J. Corrosion Behaviour of Ni and Nickel Aluminide Coatings Exposed in a Biomass Fired Power Plant for Two Years. Surf. Coat. Technol. 2019, 362, 355–365. [Google Scholar] [CrossRef]
- Okoro, S.C.; Montgomery, M.; Frandsen, F.J.; Pantleon, K. Influence of Preoxidation on High Temperature Corrosion of a Ni-Based Alloy under Conditions Relevant to Biomass Firing. Surf. Coat. Technol. 2017, 319, 76–87. [Google Scholar] [CrossRef]
- Garcia-Maraver, A.; Mata-Sanchez, J.; Carpio, M.; Perez-Jimenez, J.A. Critical Review of Predictive Coefficients for Biomass Ash Deposition Tendency. J. Energy Inst. 2017, 90, 214–228. [Google Scholar] [CrossRef]
- Lachman, J.; Baláš, M.; Lisý, M.; Lisá, H.; Milčák, P.; Elbl, P. An Overview of Slagging and Fouling Indicators and Their Applicability to Biomass Fuels. Fuel Process. Technol. 2021, 217, 106804. [Google Scholar] [CrossRef]
- Sobieraj, J.; Gądek, W.; Jagodzińska, K.; Kalisz, S. Investigations of Optimal Additive Dose for Cl-Rich Biomasses. Renew. Energy 2021, 163, 2008–2017. [Google Scholar] [CrossRef]
- Hariana, H.; Ghazidin, H.; Darmawan, A.; Hilmawan, E.; Prabowo; Aziz, M. Effect of Additives in Increasing Ash Fusion Temperature during Co-Firing of Coal and Palm Oil Waste Biomass. Bioresour. Technol. Rep. 2023, 23, 101531. [Google Scholar] [CrossRef]
- Morris, J.D.; Daood, S.S.; Nimmo, W. The Use of Kaolin and Dolomite Bed Additives as an Agglomeration Mitigation Method for Wheat Straw and Miscanthus Biomass Fuels in a Pilot-Scale Fluidized Bed Combustor. Renew. Energy 2022, 196, 749–762. [Google Scholar] [CrossRef]
- Wang, L.; Hustad, J.E.; Skreiberg, Ø.; Skjevrak, G.; Grønli, M. A Critical Review on Additives to Reduce Ash Related Operation Problems in Biomass Combustion Applications. Energy Procedia 2012, 20, 20–29. [Google Scholar] [CrossRef]
- Míguez, J.L.; Porteiro, J.; Behrendt, F.; Blanco, D.; Patiño, D.; Dieguez-Alonso, A. Review of the Use of Additives to Mitigate Operational Problems Associated with the Combustion of Biomass with High Content in Ash-Forming Species. Renew. Sustain. Energy Rev. 2021, 141, 110502. [Google Scholar] [CrossRef]
- PN-EN ISO 18122:2015; Solid Biofuels: Determination of Ash Content. International Organization for Standardization: Geneva, Switzerland, 2015.
- PN-EN ISO 18125:2017; Solid Biofuels: Determination of Calorific Value. International Organization for Standardization: Geneva, Switzerland, 2017.
- PN-EN ISO 16948:2015; Solid Biofuels: Determination of Total Content of Carbon, Hydrogen and Nitrogen. International Organization for Standardization: Geneva, Switzerland, 2015.
- PN-EN ISO 16994:2016; Solid Biofuels: Determination of Total Content of Sulfur and Chlorine. International Organization for Standardization: Geneva, Switzerland, 2016.
- Andersson, S.; Blomqvist, E.W.; Bäfver, L.; Jones, F.; Davidsson, K.; Froitzheim, J.; Karlsson, M.; Larsson, E.; Liske, J. Sulfur Recirculation for Increased Electricity Production in Waste-to-Energy Plants. Waste Manag. 2014, 34, 67–78. [Google Scholar] [CrossRef]
- Aho, M.; Ferrer, E. Importance of Coal Ash Composition in Protecting the Boiler against Chlorine Deposition during Combustion of Chlorine-Rich Biomass. Fuel 2005, 84, 201–212. [Google Scholar] [CrossRef]
- Glarborg, P.; Marshall, P. Mechanism and Modeling of the Formation of Gaseous Alkali Sulfates. Combust. Flame 2005, 141, 22–39. [Google Scholar] [CrossRef]
- Skrifvars, B.J.; Laurén, T.; Hupa, M.; Korbee, R.; Ljung, P. Ash Behaviour in a Pulverized Wood Fired Boiler—A Case Study. Fuel 2004, 83, 1371–1379. [Google Scholar] [CrossRef]
- Theis, M.; Skrifvars, B.J.; Zevenhoven, M.; Hupa, M.; Tran, H. Fouling Tendency of Ash Resulting from Burning Mixtures of Biofuels. Part 2: Deposit Chemistry. Fuel 2006, 85, 1992–2001. [Google Scholar] [CrossRef]
- Maj, I.; Matus, K. Aluminosilicate Clay Minerals: Kaolin, Bentonite, and Halloysite as Fuel Additives for Thermal Conversion of Biomass and Waste. Energies 2023, 16, 4359. [Google Scholar] [CrossRef]
- Murray, H.H. Applied Clay Mineralogy Today and Tomorrow. Clay Miner. 1999, 34, 39–49. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. Chapter 1 General Introduction: Clays, Clay Minerals, and Clay Science. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 1–18. [Google Scholar]
- Wejkowski, R.; Kalisz, S.; Tymoszuk, M.; Ciukaj, S.; Maj, I. Full-Scale Investigation of Dry Sorbent Injection for NOx Emission Control and Mercury Retention. Energies 2021, 14, 7787. [Google Scholar] [CrossRef]
- Kalisz, S.; Ciukaj, S.; Mroczek, K.; Tymoszuk, M.; Wejkowski, R.; Pronobis, M.; Kubiczek, H. Full-Scale Study on Halloysite Fireside Additive in 230 t/h Pulverized Coal Utility Boiler. Energy 2015, 92, 33–39. [Google Scholar] [CrossRef]
- Nickovic, S.; Vukovic, A.; Vujadinovic, M.; Djurdjevic, V.; Pejanovic, G. Technical Note: High-Resolution Mineralogical Database of Dust-Productive Soils for Atmospheric Dust Modeling. Atmos. Chem. Phys. 2012, 12, 845–855. [Google Scholar] [CrossRef]
- Punjak, W.A.; Shadman, F. Aluminosilicate Sorbents for Control of Alkali Vapors during Coal Combustion and Gasification. Energy Fuels 1988, 2, 845–855. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Yang, Y.; Shen, F.; Zhang, Z. Theoretical Investigation of Sodium Capture Mechanism on Kaolinite Surfaces. Fuel 2018, 234, 318–325. [Google Scholar] [CrossRef]
- Kuptz, D.; Kuchler, C.; Rist, E.; Eickenscheidt, T.; Mack, R.; Schön, C.; Drösler, M.; Hartmann, H. Combustion Behaviour and Slagging Tendencies of Pure, Blended and Kaolin Additivated Biomass Pellets from Fen Paludicultures in Two Small-Scale Boilers < 30 KW. Biomass Bioenergy 2022, 164, 106532. [Google Scholar] [CrossRef]
- Li, F.; Wang, X.; Zhao, C.; Li, Y.; Guo, M.; Fan, H.; Guo, Q.; Fang, Y. Influence of Additives on Potassium Retention Behaviors during Straw Combustion: A Mechanism Study. Bioresour. Technol. 2020, 299, 122515. [Google Scholar] [CrossRef]
- PN-EN ISO 21404:2020; Solid Biofuels: Determination of Ash Melting Behaviour. International Organization for Standardization: Geneva, Switzerland, 2020.
- Wang, Y.; Li, L.; An, Q.; Tan, H.; Li, P.; Peng, J. Effect of Different Additives on Ash Fusion Characteristic and Mineral Phase Transformation of Iron-Rich Zhundong Coal. Fuel 2022, 307, 121841. [Google Scholar] [CrossRef]
- Hardy, T.; Kordylewski, W.; Mościcki, K. Use of Aluminosilicate Sorbents for Control of KCl Vapors in Biomass Combustion Gases. J. Power Technol. 2013, 93, 37–43. [Google Scholar]
- Wang, L.; Becidan, M.; Skreiberg, Ø. Sintering Behavior of Agricultural Residues Ashes and Effects of Additives. Energy Fuels 2012, 26, 5917–5929. [Google Scholar] [CrossRef]
- Zheng, Y.; Jensen, P.A.; Jensen, A.D. A Kinetic Study of Gaseous Potassium Capture by Coal Minerals in a High Temperature Fixed-Bed Reactor. Fuel 2008, 87, 3304–3312. [Google Scholar] [CrossRef]
- Maj, I. Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review. Energies 2022, 15, 8981. [Google Scholar] [CrossRef]
- Font-Palma, C. Methods for the Treatment of Cattle Manure—A Review. C 2019, 5, 27. [Google Scholar] [CrossRef]
- Belviso, C. State-of-the-Art Applications of Fly Ash from Coal and Biomass: A Focus on Zeolite Synthesis Processes and Issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Mlonka-Mędrala, A.; Gołombek, K.; Buk, P.; Cieślik, E.; Nowak, W. The Influence of KCl on Biomass Ash Melting Behaviour and High-Temperature Corrosion of Low-Alloy Steel. Energy 2019, 188, 116062. [Google Scholar] [CrossRef]
Sample | Moisture | Ash | Higher Heating Value | Lower Heating Value | ||
---|---|---|---|---|---|---|
M a.r. | A d.b. | HHV d.b. | HHV a.r. | LHV d.b. | LHV a.r. | |
% | % | MJ/kg | MJ/kg | MJ/kg | MJ/kg | |
PL1 | 6.8 | 15.8 | 16.93 | 15.78 | 15.89 | 14.81 |
PL2 | 8.7 | 48.9 | 11.79 | 10.76 | 10.96 | 9.79 |
Sample | C | H | N | S | Cl | Cl/S |
---|---|---|---|---|---|---|
% | % | % | % | % | - | |
PL1 | 43.8 | 4.74 | 1.53 | 0.09 | 0.56 | 5.64 |
PL2 | 30.3 | 3.85 | 2.60 | 0.36 | 0.47 | 1.18 |
Sample | Cl | Clrec. | SO3 | K2O | SiO2 | Fe2O3 | Al2O3 | Mn3O4 | TiO2 | CaO | MgO | P2O5 | Na2O | BaO | SrO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL1 | 6.38 | 6.38 | 1.37 | 11.2 | 59.20 | 2.60 | 3.51 | 0.12 | 0.25 | 6.53 | 2.20 | 5.02 | 0.68 | 0.03 | 0.02 |
PL1 halloysite | 3.42 | 3.93 | 1.04 | 8.40 | 56.20 | 6.95 | 8.57 | 0.21 | 1.07 | 5.45 | 1.94 | 4.19 | 0.68 | 0.05 | 0.02 |
PL1 kaolin | 2.97 | 3.48 | 0.98 | 8.53 | 58.90 | 2.34 | 12.30 | 0.09 | 0.37 | 5.41 | 1.83 | 4.06 | 0.58 | 0.03 | 0.02 |
PL1 bentonite | 3.74 | 4.25 | 1.10 | 8.55 | 58.90 | 2.65 | 7.00 | 0.11 | 0.23 | 5.63 | 2.41 | 4.06 | 4.55 | 0.04 | 0.02 |
PL2 | 0.42 | 0.42 | 1.30 | 6.10 | 65.90 | 1.90 | 4.80 | 0.08 | 0.26 | 5.30 | 1.70 | 5.20 | 0.80 | 0.03 | 0.01 |
PL2 halloysite | 0.30 | 0.46 | 1.20 | 6.90 | 60.70 | 5.20 | 8.00 | 0.17 | 0.87 | 5.30 | 1.60 | 3.90 | 0.75 | 0.05 | 0.02 |
PL2 kaolin | 0.22 | 0.38 | 1.10 | 6.40 | 66.60 | 1.70 | 8.90 | 0.07 | 0.31 | 5.00 | 1.50 | 4.20 | 0.61 | 0.03 | 0.01 |
PL2 bentonite | 0.33 | 0.49 | 1.00 | 6.80 | 65.30 | 1.90 | 6.20 | 0.08 | 0.21 | 5.90 | 1.80 | 3.40 | 1.26 | 0.05 | 0.02 |
Sample | SST | DT | HT | FT |
---|---|---|---|---|
PL1 | 1040 | 1170 | 1330 | 1370 |
PL1 halloysite | 1130 | 1210 | 1280 | 1300 |
PL1 kaolin | 1100 | 1270 | 1330 | 1380 |
PL1 bentonite | 1150 | 1220 | 1300 | 1350 |
PL2 | 1140 | 1240 | 1390 | 1490 |
PL2 halloysite | 1160 | 1240 | 1310 | 1380 |
PL2 kaolin | 1170 | 1270 | 1340 | 1420 |
PL2 bentonite | 1150 | 1260 | 1380 | 1470 |
Symbol | Phase |
---|---|
SiO2 Quartz; Quartz low | |
KCl | |
Ca-Phosphates (TCMP, Mg-Whitlockite; Cl-Hydroxylapatite) | |
KAlSiO4 | |
KAlSi2O6 | |
KAlSi3O8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maj, I.; Niesporek, K.; Matus, K.; Miccio, F.; Mazzocchi, M.; Łój, P. The Impact of Aluminosilicate Additives upon the Chlorine Distribution and Melting Behavior of Poultry Litter Ash. Energies 2024, 17, 1854. https://doi.org/10.3390/en17081854
Maj I, Niesporek K, Matus K, Miccio F, Mazzocchi M, Łój P. The Impact of Aluminosilicate Additives upon the Chlorine Distribution and Melting Behavior of Poultry Litter Ash. Energies. 2024; 17(8):1854. https://doi.org/10.3390/en17081854
Chicago/Turabian StyleMaj, Izabella, Kamil Niesporek, Krzysztof Matus, Francesco Miccio, Mauro Mazzocchi, and Paweł Łój. 2024. "The Impact of Aluminosilicate Additives upon the Chlorine Distribution and Melting Behavior of Poultry Litter Ash" Energies 17, no. 8: 1854. https://doi.org/10.3390/en17081854
APA StyleMaj, I., Niesporek, K., Matus, K., Miccio, F., Mazzocchi, M., & Łój, P. (2024). The Impact of Aluminosilicate Additives upon the Chlorine Distribution and Melting Behavior of Poultry Litter Ash. Energies, 17(8), 1854. https://doi.org/10.3390/en17081854