Experimental Investigation of Glycerol Derivatives and C1–C4 Alcohols as Gasoline Oxygenates
Abstract
:1. Introduction
1.1. Engine Knock
1.2. C1–C4 Alcohols
1.3. Glycerol Derivatives
1.4. Article Outline
2. Materials and Methods
2.1. Engine and Instrumentation
2.2. Heat Release Calculation
2.3. Fuels Tested
2.4. Test Procedure
3. Results and Discussion
3.1. Choice of Engine Parameters
- 3.7 wt.% oxygen part I: Includes the reference blends TPRF and EtOH10.0, plus the glycerol derivatives:
- TPRF
- EtOH10.0
- 25M75D11.7
- 75M25D9.5
- Solketal7.3
- Triacetin5.5
- 2.
- 3.7 wt.% oxygen part II: Includes the reference blends TPRF and EtOH10.0, plus the other alcohols:
- TPRF
- EtOH10.0
- MeOH7.0
- i-PrOH13.0
- n-BuOH16.0
- i-BuOH16.0
- 3.
- 7.4 wt.% oxygen: Includes the alcohols plus solketal (the only glycerol derivative that could be blended at that oxygen level). The EtOH20.0 blend is the only reference fuel in this part:
- EtOH20.0
- MeOH14.0
- i-PrOH26.0
- n-BuOH32.0
- i-BuOH32.0
- Solketal14.6
3.2. Combustion Characteristics
3.2.1. Combustion Phasing
3.2.2. Heat-Release Rates
3.3. Knock Characterization
Cumulative Frequency Distributions
3.4. wt.% Fuel Oxygen Blends
3.5. wt.% Fuel Oxygen Blends
4. Conclusions
- Among the glycerol derivatives, both GTBE mixtures resulted in good knock reduction, while the performance of solketal was inferior;
- Triacetin gave good results, but its miscibility with hydrocarbons can be a problem at higher concentrations and/or cold temperatures;
- Among the alcohols, all performed well, with the notable exception of n-butanol, which gave very poor knock results, likely by virtue of its straight-chain molecular structure;
- Methanol and ethanol, unsurprisingly, exhibited very good knock inhibition performance, but their effect on the volatility of their blends with gasoline can be an issue.
- Isopropanol was also very effective in decreasing knock and its ability to distort the volatility characteristics of the base fuel was lower, compared to methanol and ethanol. However, the technology to produce it feasibly from renewable sources does not seem to be very developed yet;
- Isobutanol exhibited very good knock-inhibiting characteristics, while having a higher energy density and lower water affinity, when compared to the smaller alcohols, due to its molecular structure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalghatgi, G. Is it really the end of internal combustion engines and petroleum in transport? Appl. Energy 2018, 225, 965–974. [Google Scholar] [CrossRef]
- Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transp. Eng. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.K.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER editorial: The future of the internal combustion engine. Int. J. Engine Res. 2019, 21, 3–10. [Google Scholar] [CrossRef]
- Kalghatgi, G.T. The outlook for fuels for internal combustion engines. Int. J. Engine Res. 2014, 15, 383–398. [Google Scholar] [CrossRef]
- Senecal, P.K.; Leach, F. Diversity in transportation: Why a mix of propulsion technologies is the way forward for the future fleet. Results Eng. 2019, 4, 100060. [Google Scholar] [CrossRef]
- Reitz, R.D. Directions in internal combustion engine research. Combust. Flame 2013, 160, 1–8. [Google Scholar] [CrossRef]
- Turner, J.W.G.; Popplewell, A.; Patel, R.; Johnson, T.R.; Darnton, N.J.; Richardson, S.; Bredda, S.W.; Tudor, R.J.; Bithell, C.I.; Jackson, R.; et al. Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing. SAE Int. J. Engines 2014, 7, 387–417. [Google Scholar] [CrossRef]
- Joshi, A. Review of Vehicle Engine Efficiency and Emissions. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 2, 2479–2507. [Google Scholar] [CrossRef]
- Gaspar, D. Top Ten Blendstocks for Turbocharged Gasoline Engines: Bio-Blendstocks with the Potential to Deliver the Highest Engine Efficiency; PNNL-28713; Pacific Northwest National Laboratory: Richland, WA, USA, 2019. [Google Scholar]
- Larsson, T.; Stenlåås, O.; Erlandsson, A.C. Future Fuels for DISI Engines: A Review on Oxygenated, Liquid Biofuels; SAE Technical Paper 2019-01-0036; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Malaquias, A.C.T.; Netto, N.A.D.; Filho, F.A.R.; DA Costa, R.B.R.; Langeani, M.; Baêta, J.G.C. The misleading total replacement of internal combustion engines by electric motors and a study of the Brazilian ethanol importance for the sustainable future of mobility: A review. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 567. [Google Scholar] [CrossRef]
- Duarte Souza Alvarenga Santos, N.D.S.A.; Roso, V.R.; Malaquias, A.C.T.; Baêta, J.G.C. Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation. Renew. Sustain. Energy Rev. 2021, 148, 111292. [Google Scholar] [CrossRef]
- Elfasakhany, A. State of Art of Using Biofuels in Spark Ignition Engines. Energies 2021, 14, 779. [Google Scholar] [CrossRef]
- Geissler, C.H.; Ryu, J.; Maravelias, C.T. The future of biofuels in the United States transportation sector. Renew. Sustain. Energy Rev. 2024, 192, 114276. [Google Scholar] [CrossRef]
- Khan, A.; Khan, H.A.; Ravi, S.S.; Turner, J.W.G.; Aziz, M. Potential of clean liquid fuels in decarbonizing transportation—An overlooked net- zero pathway? Renew. Sustain. Energy Rev. 2023, 183, 113483. [Google Scholar] [CrossRef]
- Corrigan, D.J.; Fontanesi, S. Knock: A Century of Research. SAE Int. J. Engines 2021, 15, 57–127. [Google Scholar] [CrossRef]
- Chun, K.M.; Heywood, J.B. Characterization of Knock in a Spark-Ignition Engine. In Proceedings of the International Congress and Exposition, Detroit, MI, USA, 27 February–3 March 1989; p. 890156. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Reitz, R.D. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 2017, 61, 78–112. [Google Scholar] [CrossRef]
- Sarathy, S.M.; Osswald, P.; Hansen, N.; KOHSE-Höinghaus, K. Alcohol combustion chemistry. Prog. Energy Combust. Sci. 2014, 44, 40–102. [Google Scholar] [CrossRef]
- Tanaka, S.; Ayala, F.; Keck, J.C.; Heywood, J.B. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combust. Flame 2003, 132, 219–239. [Google Scholar] [CrossRef]
- Bradley, D.; Head, R.A. Engine autoignition: The relationship between octane numbers and autoignition delay times. Combust. Flame 2006, 147, 171–184. [Google Scholar] [CrossRef]
- Boot, M.D.; Tian, M.; Hensen, M.J.M.; Sarathy, S.M. Impact of fuel molecular structure on auto-ignition behavior—Design rules for future high performance gasolines. Prog. Energy Combust. Sci. 2017, 60, 1–25. [Google Scholar] [CrossRef]
- Cheng, S.; Kang, D.; Fridlyand, A.; Goldsborough, S.S.; Saggese, C.; Wagnon, S.W.; Mcnenly, M.J.; Mehl, M.; Pitz, W.J.; Vuilleumier, D. Autoignition behavior of gasoline/ethanol blends at engine-relevant conditions. Combust. Flame 2020, 216, 369–384. [Google Scholar] [CrossRef]
- Goldsborough, S.S.; Cheng, S.; Kang, D.; Saggese, C.; Wagnon, S.W.; Pitz, W.J. Effects of isoalcohol blending with gasoline on autoignition behavior in a rapid compression machine: Isopropanol and isobutanol. Proc. Combust. Inst. 2021, 38, 5655–5664. [Google Scholar] [CrossRef]
- Cheng, S.; Boehman, A.L.; Goldsborough, S.S.; Saggese, C.; Wagnon, S.W.; Pitz, W.J. Experimental and modeling study of C2–C4 alcohol autoignition at intermediate temperature conditions. Proc. Combust. Inst. 2021, 38, 709–717. [Google Scholar] [CrossRef]
- Cheng, S.; Saggese, C.; Kang, D.; Goldsborough, S.S.; Wagnon, S.W.; Kukkadapu, G.; Zhang, K.; Mehl, M.; Pitz, W.J. Autoignition and preliminary heat release of gasoline surrogates and their blends with ethanol at engine-relevant conditions: Experiments and comprehensive kinetic modeling. Combust. Flame 2021, 228, 57–77. [Google Scholar] [CrossRef]
- Singh, E.; Tingas, E.-A.; Goussis, D.; Im, H.G. Chemical Ignition Characteristics of Ethanol Blending with Primary Reference Fuels. Energy Fuels 2019, 33, 10185–10196. [Google Scholar] [CrossRef]
- Dietler, M. Alcohol: Anthropological/Archaeological Perspectives. Annu. Rev. Anthropol. 2006, 35, 229–249. [Google Scholar] [CrossRef]
- Hartley, W.R.; Englande, A.J.; Harrington, D.J. Health risk assessment of groundwater contaminated with methyl tertiary butyl ether (MTBE). Water Sci. Technol. 1999, 39, 305–310. [Google Scholar] [CrossRef]
- Gainey, B.; O’DONNELL, P.; Yan, Z.; Moser, S.; Lawler, B. LTC performance of C1–C4 water-alcohol blends with the same cooling potential. Fuel 2021, 293, 120480. [Google Scholar] [CrossRef]
- Sheldon, D. Methanol Production—A Technical History. Johns. Matthey Technol. Rev. 2017, 61, 172–182. [Google Scholar] [CrossRef]
- Olah, G.A.; Goeppert, A.; Prakash, G.K.S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. J. Org. Chem. 2009, 74, 487–498. [Google Scholar] [CrossRef]
- Landälv, I. Methanol as a Renewable Fuel—A Knowledge Synthesis; Report No 2015:08; The Swedish Knowledge Centre for Renewable Transportation Fuels: Göteborg, Sweden, 2017. [Google Scholar]
- Verhelst, S.; Turner, J.W.G.; Sileghem, L.; Vancoillie, J. Methanol as a fuel for internal combustion engines. Prog. Energy Combust. Sci. 2019, 70, 43–88. [Google Scholar] [CrossRef]
- Kohse-Höinghaus, K.; Osswald, P.; Cool, T.A.; Kasper, T.; Hansen, N.; Qi, F.; Westbrook, C.K.; Westmoreland, P.R. Biofuel Combustion Chemistry: From Ethanol to Biodiesel. Angew. Chem. Int. Ed. 2010, 49, 3572–3597. [Google Scholar] [CrossRef] [PubMed]
- Dabelstein, W.; Reglitzky, A.; Schütze, A.; Reders, K.; Brunner, A. Automotive Fuels. In Ullmann’s Encyclopedia of Industrial Chemistry; Ley, C., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 1–41. [Google Scholar] [CrossRef]
- Zabed, H.; Sahu, J.N.; Boyce, A.N.; Faruq, G. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev. 2016, 66, 751–774. [Google Scholar] [CrossRef]
- Zabed, H.; Sahu, J.N.; Suely, A.; Boyce, A.N.; Faruq, G. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sustain. Energy Rev. 2017, 71, 475–501. [Google Scholar] [CrossRef]
- Mendiburu, A.Z.; Lauermann, C.H.; Hayashi, T.C.; Mariños, D.J.; Rodrigues Da Costa, R.B.; Coronado, C.J.R.; Roberts, J.J.; DE Carvalho, J.A. Ethanol as a renewable biofuel: Combustion characteristics and application in engines. Energy 2022, 257, 124688. [Google Scholar] [CrossRef]
- Klabunde, J.; Bischoff, C.; Papa, A.J. Propanols. In Ullmann’s Encyclopedia of Industrial Chemistry; Ley, C., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp. 1–14. [Google Scholar] [CrossRef]
- Dürre, P. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl. Microbiol. Biotechnol. 1998, 49, 639–648. [Google Scholar] [CrossRef]
- Koppolu, V.; Vasigala, V.K.R. Role of Escherichia coli in Biofuel Production. Microbiol. Insights 2016, 9, MBI.S10878. [Google Scholar] [CrossRef]
- Ko, Y.J.; Cha, J.; Jeong, W.-Y.; Lee, M.-E.; Cho, B.-H.; Nisha, B.; Jeong, H.J.; Park, S.E.; Han, S.O. Bio-isopropanol production in Corynebacterium glutamicum: Metabolic redesign of synthetic bypasses and two-stage fermentation with gas stripping. Bioresour. Technol. 2022, 354, 127171. [Google Scholar] [CrossRef] [PubMed]
- Inokuma, K.; Liao, J.C.; Okamoto, M.; Hanai, T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J. Biosci. Bioeng. 2010, 110, 696–701. [Google Scholar] [CrossRef]
- Jang, Y.-S.; Malaviya, A.; Lee, J.; Im, J.A.; Lee, S.Y.; Lee, J.; Eom, M.-H.; Cho, J.-H.; Seung, D.Y. Metabolic engineering ofClostridium acetobutylicumfor the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol. Prog. 2013, 29, 1083–1088. [Google Scholar] [CrossRef]
- Schubert, T. Production routes of advanced renewable C1 to C4 alcohols as biofuel components—A review. Biofuels Bioprod. Biorefining 2020, 14, 845–878. [Google Scholar] [CrossRef]
- Sivasubramanian, H.; Pochareddy, Y.K.; Dhamodaran, G.; Esakkimuthu, G.S. Performance, emission and combustion characteristics of a branched higher mass, C 3 alcohol (isopropanol) blends fuelled medium duty MPFI SI engine. Eng. Sci. Technol. Int. J. 2017, 20, 528–535. [Google Scholar] [CrossRef]
- Kumar, N.; Jain, S.; Bagla, A.; Sharma, S.; Tomar, M. Study of Performance and Emission Characteristics of Propan-2-ol and Gasoline Fuel Blends in an Unmodified Spark Ignition Engine. In Proceedings of the WCX SAE World Congress Experience, Detroit, MI, USA, 9–11 April 2019; p. 2019-01-0793. [Google Scholar] [CrossRef]
- Hahn, H.-D.; Dämbkes, G.; Rupprich, N.; Bahl, H.; Frey, G.D. Butanols. In Ullmann’ s Encyclopedia of Industrial Chemistry; Ley, C., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar] [CrossRef]
- Olson, A.L.; Tunér, M.; Verhelst, S. A Review of Isobutanol as a Fuel for Internal Combustion Engines. Energies 2023, 16, 7470. [Google Scholar] [CrossRef]
- Kameoka, A.; Nagai, K.; Sugiyama, G.; Seko, T. Effect of Alcohol Fuels on Fuel-Line Materials of Gasoline Vehicles. In Proceedings of the Powertrain & Fluid Systems Conference & Exhibition, San Antonio, TX, USA, 24–27 October 2005; p. 2005-01-3708. [Google Scholar] [CrossRef]
- Kumar, T.S.; Ashok, B. Material compatibility of SI engine components towards corrosive effects on methanol-gasoline blends for flex fuel applications. Mater. Chem. Phys. 2023, 296, 127344. [Google Scholar] [CrossRef]
- Belincanta, J.; Alchorne, J.A.; Teixeira Da Silva, M. The Brazilian experience with ethanol fuel: Aspects of production, use, quality and distribution logistics. Braz. J. Chem. Eng. 2016, 33, 1091–1102. [Google Scholar] [CrossRef]
- Furey, R.L. Volatility Characteristics of Gasoline-Alcohol and Gasoline-Ether Fuel Blends. In Proceedings of the 1985 SAE International Fall Fuels and Lubricants Meeting and Exhibition, Warrendale, PA, USA, 2 November 1985; p. 852116. [Google Scholar] [CrossRef]
- Andersen, V.F.; Anderson, J.E.; Wallington, T.J.; Mueller, S.A.; Nielsen, O.J. Distillation Curves for Alcohol−Gasoline Blends. Energy Fuels 2010, 24, 2683–2691. [Google Scholar] [CrossRef]
- Andersen, V.F.; Anderson, J.E.; Wallington, T.J.; Mueller, S.A.; Nielsen, O.J. Vapor Pressures of Alcohol−Gasoline Blends. Energy Fuels 2010, 24, 3647–3654. [Google Scholar] [CrossRef]
- Olson, A.L.; Tunér, M.; Verhelst, S. A concise review of glycerol derivatives for use as fuel additives. Heliyon 2023, 9, e13041. [Google Scholar] [CrossRef] [PubMed]
- Versteeg, G.F.; Wermink, W.N. GTBE Compositions, Methods and Installations for Enhanced Octane Boosting. U.S. Patent US20200080014A1, 12 March 2020. [Google Scholar]
- Squillace, P.J.; Zogorski, J.S.; Wilber, W.G.; Price, C.V. Preliminary Assessment of the Occurrence and Possible Sources of MTBE in Groundwater in the United States, 1993−1994. Environ. Sci. Technol. 1996, 30, 1721–1730. [Google Scholar] [CrossRef]
- Wessendorf, R. Glycerol derivatives as fuel components. Erdol Kohle Erdgas Petrochem. 1995, 48, 138–143. [Google Scholar]
- Samoilov, V.O.; Borisov, R.S.; Stolonogova, T.I.; Zarezin, D.P.; Maximov, A.L.; Bermeshev, M.V.; Chernysheva, E.A.; Kapustin, V.M. Glycerol to renewable fuel oxygenates. Part II: Gasoline-blending characteristics of glycerol and glycol derivatives with C3-C4 alkyl(idene) substituents. Fuel 2020, 280, 118585. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M. Performance and emission characteristics of solketal-gasoline fuel blend in a vehicle with spark ignition engine. Appl. Therm. Eng. 2017, 124, 504–509. [Google Scholar] [CrossRef]
- BS EN 228:2012+A1:2017; Automotive Fuels—Unleaded Petrol—Requirements and Test Methods. Swedish Institute for Standards: Stockholm, Sweden, 2017.
- Puche, J.D. Procedure to Obtain Biodiesel Fuel with Improved Properties at Low Temperature. Patent WO2016180498A1, 29 December 2009. [Google Scholar]
- ASTM D2699-23a; Test Method for Research Octane Number of Spark-Ignition Engine Fuel. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- ASTM D2700-16; Test Method for Motor Octane Number of Spark-Ignition Engine Fuel. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Swarts, A.; Yates, A.; Viljoen, C.; Coetzer, R. A Further Study of Inconsistencies between Autoignition and Knock Intensity in the CFR Octane Rating Engine. In Proceedings of the 2005 SAE Brasil Fuels & Lubricants Meeting, Rio De Janiero, Brazil, 11–13 May 2005; p. 2005-01-2081. [Google Scholar] [CrossRef]
- Waukesha Engine Dresser, Inc. Waukesha CFR F-1 & F-2 Octane Rating Units Operation & Maintenance, 2nd ed.; Form 847; Waukesha Engine Dresser, Inc.: Waukesha, WI, USA, 2003. [Google Scholar]
- Tunestål, P. TDC Offset Estimation from Motored Cylinder Pressure Data based on Heat Release Shaping. Oil Gas Sci. Technol. Rev. D’ifp Energ. Nouv. 2011, 66, 705–716. [Google Scholar] [CrossRef]
- Gatowski, J.A.; Balles, E.N.; Chun, K.M.; Nelson, F.E.; Ekchian, J.A.; Heywood, J.B. Heat release analysis of engine pressure data. In Proceedings of the 1984 SAE International Fall Fuels and Lubricants Meeting and Exhibition, Baltimore, MD, USA, 8–11 October 1984; p. 841359. [Google Scholar] [CrossRef]
- Woschni, G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Tech. Pap. Ser. 1967, 670931. [Google Scholar] [CrossRef]
- Truedsson, I.; Tunér, M.; Johansson, B.; Cannella, W. Pressure Sensitivity of HCCI Auto-Ignition Temperature for Primary Reference Fuels. SAE Int. J. Engines 2012, 5, 1089–1108. [Google Scholar] [CrossRef]
- Foong, T.M.; Morganti, K.J.; Brear, M.J.; DA Silva, G.; Yang, Y.; Dryer, F.L. The octane numbers of ethanol blended with gasoline and its surrogates. Fuel 2014, 115, 727–739. [Google Scholar] [CrossRef]
- Gainey, B.; Lawler, B. The role of alcohol biofuels in advanced combustion: An analysis. Fuel 2021, 283, 118915. [Google Scholar] [CrossRef]
- Draper, C.S. Pressure Waves Accompanying Detonation in the Internal Combustion Engine. J. Aeronaut. Sci. 1938, 5, 219–226. [Google Scholar] [CrossRef]
- Checkel, M.D.; Dale, J.D. Computerized Knock Detection from Engine Pressure Records. In Proceedings of the SAE International Congress and Exposition, Detroit, MI, USA, 24–28 February 1986; p. 860028. [Google Scholar] [CrossRef]
- Scholl, D.; Davis, C.E.; Russ, S.; Barash, T. The Volume Acoustic Modes of Spark-Ignited Internal Combustion Chambers. In Proceedings of the International Congress & Exposition, Detroit, MI, USA, 23–26 February 1998; p. 980893. [Google Scholar] [CrossRef]
- Benson, G.; Fletcher, E.A.; Murphy, T.E.; Scherrer, H.C. Knock (Detonation) Control by Engine Combustion Chamber Shape. In Proceedings of the SAE International Congress and Exposition, Detroit, MI, USA, 28 February–4 March 1983; p. 830509. [Google Scholar] [CrossRef]
- Swarts, A.; Anderson, G.L.; Wallace, J.M. Comparing Knock between the CFR Engine and a Single Cylinder Research Engine. In Proceedings of the 2019 JSAE/SAE Powertrains, Fuels and Lubricants, Kyoto, Japan, 26–29 August 2019; p. 2019-01-2156. [Google Scholar] [CrossRef]
- Eng, J.A. Characterization of Pressure Waves in HCCI Combustion. In Proceedings of the SAE Powertrain & Fluid Systems Conference & Exhibition, San Diego, CA, USA, 21–24 October 2002; p. 2002-01-2859. [Google Scholar] [CrossRef]
- Puzinauskas, P.V. Examination of Methods Used to Characterize Engine Knock. SAE Tech. Pap. Ser. 1992, 920808. [Google Scholar] [CrossRef]
- Shahlari, A.J.; Ghandhi, J.B. A Comparison of Engine Knock Metrics. In Proceedings of the 2012 Small Engine Technology Conference & Exhibition, Pisa, Italy, 8–11 September 2012; p. 2012-32-0007. [Google Scholar] [CrossRef]
- Rockstroh, T.; Kolodziej, C.P.; Jespersen, M.C.; Goldsborough, S.S.; Wallner, T. Insights into Engine Knock: Comparison of Knock Metrics across Ranges of Intake Temperature and Pressure in the CFR Engine. SAE Int. J. Fuels Lubr. 2018, 11, 545–561. [Google Scholar] [CrossRef]
- Brunt, M.; Pond, C.D.; Biundo, J. Gasoline Engine Knock Analysis using Cylinder Pressure Data. In Proceedings of the International Congress & Exposition, Detroit, MI, USA, 23–26 February 1998; p. 980896. [Google Scholar] [CrossRef]
- Hoth, A.; Kolodziej, C.P.; Rockstroh, T.; Wallner, T. Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine. In Proceedings of the International Powertrains, Fuels & Lubricants Meeting, Heidelberg, Germany, 17–19 September 2018; p. 2018-01-1672. [Google Scholar] [CrossRef]
- Patterson, D.J. Cylinder Pressure Variations, a Fundamental Combustion Problem. In Proceedings of the 1966 Automotive Engineering Congress and Exposition, Detroit, MI, USA, 10–14 January 1966; p. 660129. [Google Scholar] [CrossRef]
- Barton, R.K.; Kenemuth, D.K.; Lestz, S.S.; Meyer, W.E. Cycle-by-Cycle Variations of a Spark Ignition Engine—A Statistical Analysis. In Proceedings of the Mid-Year Meeting, Detroit, MI, USA, 18–22 May 1970; p. 700488. [Google Scholar] [CrossRef]
- Ghandhi, J.; Kim, K.S. A Statistical Description of Knock Intensity and Its Prediction. In Proceedings of the WCX™ 17: SAE World Congress Experience, Detroit, MI, USA, 3–5 April 2017; p. 2017-01-0659. [Google Scholar] [CrossRef]
- Leppard, W.R. Individual-Cylinder Knock Occurrence and Intensity in Multicylinder Engines. In Proceedings of the SAE International Congress and Exposition, Detroit, MI, USA, 22–26 February 1982; p. 820074. [Google Scholar] [CrossRef]
- Ruppert, D. What is Kurtosis? An Influence Function Approach. Am. Stat. 1987, 41, 1–5. [Google Scholar] [CrossRef]
- Balanda, K.P.; Macgillivray, H.L. Kurtosis: A Critical Review. Am. Stat. 1988, 42, 111–119. [Google Scholar] [CrossRef]
- Decarlo, L.T. On the meaning and use of kurtosis. Psychol. Methods 1997, 2, 292–307. [Google Scholar] [CrossRef]
Waukesha CFR F-1/F-2 Engine Characteristics | |
---|---|
Cylinder type | Cast iron, flat combustion surface, integral coolant jacket |
Compression ratio | Adjustable 4:1 to 18:1 |
Bore | 82.55 mm |
Stroke | 114.3 mm |
Displacement | 611.7 cm3 |
Connecting rod length | 254 mm |
Piston | Cast iron, flat top |
Intake valve opens | 10° ATC |
Intake valve closes | 34° ABC |
Exhaust valve opens | 40° BBC |
Exhaust valve closes | 15° ATC |
Ignition | Electronically triggered capacitive discharge through coil to spark plug |
Isooctane [vol.%] | n-Heptane [vol.%] | Toluene [vol.%] | RON * | H/C | MW * [g/mol] | Density (20 °C) [g/L] | LHV * [MJ/kg] |
---|---|---|---|---|---|---|---|
53 | 17 | 30 | 91 | 1.85 | 103.1 | 742.1 | 43.1 |
Compound Name | Formula | MW [g/mol] | Density (20 °C) [g/L] | LHV [MJ/kg] | RON [74] | Blend Name | |
---|---|---|---|---|---|---|---|
3.7 wt.% Oxygen Level | 7.4 wt.% Oxygen Level | ||||||
Ethanol | C2H5OH | 46 | 790 | 26.9 | 109 | EtOH10.0 | EtOH20.0 |
Di-GTBE-shifted mix * | — | 185 | 925 | 31.6 | N/A ** | 25M75D11.7 | — |
Mono-GTBE-shifted mix * | — | 158 | 975 | 29.8 | N/A | 75M25D9.5 | — |
Triacetin | C9H14O6 | 194 | 1160 | 18.1 | N/A | Triacetin5.5 | — |
Solketal | C6H12O3 | 132 | 1063 | 23.0 | N/A | Solketal7.3 | Solketal14.6 |
Methanol | CH3OH | 32 | 791 | 20.0 | 109 | MeOH7.0 | MeOH14.0 |
Isopropanol | C3H7OH | 60 | 785 | 30.4 | 117 | i-PrOH13.0 | i-PrOH26.0 |
n-Butanol | C4H9OH | 74 | 810 | 33.1 | 98 | n-BuOH16.0 | n-BuOH32.0 |
Isobutanol | 803 | 33.0 | 105 | i-BuOH16.0 | i-BuOH32.0 |
Engine Settings | |
---|---|
Compression Ratio [-] | Spark Timings [deg BTC] |
6.5:1 | 23; 17; 11 |
7.5:1 | 16; 10; 4 |
Fuel Blend | Mean MAPO [bar] | MAPO Standard Deviation [bar] | COV MAPO [-] | Skewness [-] | Kurtosis [-] |
---|---|---|---|---|---|
TPRF | 3.10 | 1.58 | 0.510 | 1.16 | 5.64 |
EtOH10.0 | 1.32 | 0.644 | 0.488 | 0.942 | 3.81 |
EtOH20.0 | 0.295 | 0.154 | 0.522 | 1.28 | 5.10 |
Fuel Blend | Mean MAPO [bar] | MAPO Standard Deviation [bar] | COV MAPO [-] | Skewness [-] | Kurtosis [-] |
---|---|---|---|---|---|
MeOH7.0 | 1.1 | 0.607 | 0.552 | 1.55 | 7.17 |
75M25D9.5 | 1.3 | 0.66 | 0.508 | 1.11 | 4.34 |
EtOH10.0 | 1.32 | 0.644 | 0.488 | 0.942 | 3.81 |
i-PrOH13.0 | 1.4 | 0.673 | 0.481 | 0.996 | 4.17 |
i-BuOH16.0 | 1.46 | 0.731 | 0.501 | 0.994 | 4.08 |
25M75D11.3 | 1.6 | 0.785 | 0.491 | 0.984 | 4.28 |
Triacetin5.5 | 1.96 | 0.945 | 0.482 | 1.05 | 4.43 |
TPRF | 3.1 | 1.58 | 0.510 | 1.16 | 5.64 |
Solketal7.3 | 3.15 | 1.42 | 0.451 | 0.836 | 4.28 |
n-BuOH16.0 | 3.25 | 1.43 | 0.440 | 0.644 | 3.06 |
Fuel Blend | Mean MAPO [bar] | MAPO Standard Deviation [bar] | COV MAPO [-] | Skewness [-] | Kurtosis [-] |
---|---|---|---|---|---|
EtOH20.0 | 0.295 | 0.154 | 0.522 | 1.28 | 5.10 |
i-PrOH26.0 | 0.354 | 0.186 | 0.525 | 1.41 | 5.75 |
i-BuOH32.0 | 0.414 | 0.228 | 0.551 | 1.37 | 5.25 |
MeOH14.0 | 0.481 | 0.258 | 0.536 | 1.28 | 4.92 |
Solketal14.6 | 1.65 | 0.857 | 0.519 | 1.18 | 4.90 |
n-BuOH32.0 | 2.57 | 1.17 | 0.455 | 0.779 | 3.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olson, A.L.; Tunér, M.; Verhelst, S. Experimental Investigation of Glycerol Derivatives and C1–C4 Alcohols as Gasoline Oxygenates. Energies 2024, 17, 1701. https://doi.org/10.3390/en17071701
Olson AL, Tunér M, Verhelst S. Experimental Investigation of Glycerol Derivatives and C1–C4 Alcohols as Gasoline Oxygenates. Energies. 2024; 17(7):1701. https://doi.org/10.3390/en17071701
Chicago/Turabian StyleOlson, André L., Martin Tunér, and Sebastian Verhelst. 2024. "Experimental Investigation of Glycerol Derivatives and C1–C4 Alcohols as Gasoline Oxygenates" Energies 17, no. 7: 1701. https://doi.org/10.3390/en17071701
APA StyleOlson, A. L., Tunér, M., & Verhelst, S. (2024). Experimental Investigation of Glycerol Derivatives and C1–C4 Alcohols as Gasoline Oxygenates. Energies, 17(7), 1701. https://doi.org/10.3390/en17071701