Applicability of Face Masks as Recyclable Raw Materials for Self-Made Insulation Panels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Activities
2.1.1. Sample Morphology Detected by Optical Microscopy
2.1.2. Fire Resistance Analysis
2.1.3. Water Permeability
2.1.4. Thermal Conductivity
3. Discussion
3.1. SFM Characterization and Fire-Resistance of SFMs
3.2. Vapor Permeability and Thermal Conductivity
3.3. Comparison with Properties of Materials in the Literature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Sustainable Development. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 6 November 2023).
- IEA. Buildings; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/buildings (accessed on 6 November 2023).
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Neri, M.; Pilotelli, M.; Traversi, M.; Levi, E.; Piana, E.A.; Bannó, M.; Cuerva, E.; Pujadas, P.; Guardo, A. Conversion of end-of-life household materials into building insulating low-cost solutions for the development of vulnerable contexts: Review and outlook towards a circular and sustainable economy. Sustainability 2021, 13, 4397. [Google Scholar] [CrossRef]
- Dissanayake, D.G.K.; Weerasinghe, D.U.; Thebuwanage, L.M.; Bandara, U.A.A.N. An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber. J. Build. Eng. 2021, 33, 101606. [Google Scholar] [CrossRef]
- Hadded, A.; Benltoufa, S.; Fayala, F.; Jemni, A. Thermo physical characterisation of recycled textile materials used for building insulating. J. Build. Eng. 2016, 5, 34–40. [Google Scholar] [CrossRef]
- Wang, J.; Du, B. Experimental studies of thermal and acoustic properties of recycled aggregate crumb rubber concrete. J. Build. Eng. 2020, 32, 101836. [Google Scholar] [CrossRef]
- Limami, H.; Manssouri, I.; Cherkaoui, K.; Khaldoun, A. Physicochemical, mechanical and thermal performance of lightweight bricks with recycled date pits waste additives. J. Build. Eng. 2021, 34, 101867. [Google Scholar] [CrossRef]
- Othmani, C.; Taktak, M.; Zein, A.; Hentati, T.; Elnady, T.; Fakhfakh, T.; Haddar, M. Experimental and theoretical investigation of the acoustic performance of sugarcane wastes based material. Appl. Acoust. 2016, 109, 90–96. [Google Scholar] [CrossRef]
- Gómez Escobar, V.; Maderuelo-Sanz, R. Acoustical performance of samples prepared with cigarette butts. Appl. Acoust. 2017, 125, 166–172. [Google Scholar] [CrossRef]
- Gruhler, K.; Schiller, G. Grey energy impact of building material recycling—A new assessment method based on process chains. RCR Adv. 2023, 18, 200139. [Google Scholar] [CrossRef]
- Taaffe, J.; O’Sullivan, S.; Rahman, M.E.; Pakrashi, V. Experimental characterisation of Polyethylene Terephthalate (PET) bottle Eco-bricks. Mater. Des. 2014, 60, 50–56. [Google Scholar] [CrossRef]
- Kang, C.W.; Kim, M.; Jang, E.S.; Lee, Y.H.; Jang, S.S. Sound absorption coefficient and sound transmission loss of porous sponge attached corrugated cardboard of noise insulation cover. Palpu Chongi Gisul/J. Korea Tech. Assoc. Pulp Pap. Ind. 2020, 52, 38–44. [Google Scholar] [CrossRef]
- Algaily, B.; Puttajukr, S.; Navarat, T. Acoustic absorption, rheological and mechanical characteristics of waste egg boxes fibers filled SBR. J. Teknol. 2015, 77, 45–52. [Google Scholar] [CrossRef]
- Neri, M. Thermal and Acoustic Characterization of Innovative and Unconventional Panels Made of Reused Materials. Atmosphere 2022, 13, 1825. [Google Scholar] [CrossRef]
- Badillo-Goicoechea, E.; Chang, T.H.; Kim, E.; LaRocca, S.; Morris, K.; Deng, X.; Chiu, S.; Bradford, A.; Garcia, A.; Kern, C.; et al. Global trends and predictors of face mask usage during the COVID-19 pandemic. BMC Public Health 2021, 21, 2099. [Google Scholar] [CrossRef] [PubMed]
- Ibn-Mohammed, T.; Mustapha, K.B.; Godsell, J.; Adamu, Z.; Babatunde, K.A.; Akintade, D.D.; Acquaye, A.; Fujii, H.; Ndiaye, M.M.; Yamoah, F.A.; et al. A critical analysis of the impacts of COVID-19 on the global economy and ecosystems and opportunities for circular economy strategies. Resour. Conserv. Recycl. 2021, 164, 105169. [Google Scholar] [CrossRef] [PubMed]
- Akhbarizadeh, R.; Dobaradaran, S.; Nabipour, I.; Tangestani, M.; Abedi, D.; Javanfekr, F.; Jeddi, F.; Zendehboodi, A. Abandoned COVID-19 personal protective equipment along the Bushehr shores, the Persian Gulf: An emerging source of secondary microplastics in coastlines. Mar. Pollut. Bull. 2021, 168, 112386. [Google Scholar] [CrossRef]
- Wang, F.; Wu, H.; Li, J.; Liu, J.; Xu, Q.; An, L. Microfiber released into urban rivers from face masks during COVID-19. J. Environ. Manag. 2022, 319, 115741. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Hosseinzadeh-Bandbafha, H.; Yang, Y.; Aghbashlo, M.; Lam, S.S.; Montgomery, H.; Peng, W. Exergy intensity and environmental consequences of the medical face masks curtailing the COVID-19 pandemic: Malign bodyguard? J. Clean. Prod. 2021, 313, 127880. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Li, Y.; Huang, H.; Xu, Y.; Du, S.; Wan, F.; Xie, R.; Huang, P.; Liu, B.; Dong, T.; et al. Fast and deep disinfection for face masks recycle using vacuum ultraviolet irradiation. J. Clean. Prod. 2022, 368, 133221. [Google Scholar] [CrossRef]
- Alcaraz, J.-P.; Le Coq, L.; Pourchez, J.; Thomas, D.; Chazelet, S.; Boudry, I.; Barbado, M.; Silvent, S.; Dessale, C.; Antoine, F.; et al. Reuse of medical face masks in domestic and community settings without sacrificing safety: Ecological and economical lessons from the COVID-19 pandemic. Chemosphere 2022, 288, 132364. [Google Scholar] [CrossRef]
- Whyte, H.E.; Joubert, A.; Leclerc, L.; Sarry, G.; Verhoeven, P.; Le Coq, L.; Pourchez, J. Reusability of face masks: Influence of washing and comparison of performance between medical face masks and community face masks. Environ. Technol. Innov. 2022, 28, 102710. [Google Scholar] [CrossRef]
- Neri, M.; Cuerva, E.; Levi, E.; Pujadas, P.; Müller, E.; Guardo, A. Thermal, acoustic, and fire performance characterization of textile face mask waste for use as low-cost building insulation material. Dev. Built Environ. 2023, 14, 100164. [Google Scholar] [CrossRef]
- Miah, M.J.; Pei, J.; Kim, H.; Sharma, R.; Jang, J.G.; Ahn, J. Property assessment of an eco-friendly mortar reinforced with recycled mask fiber derived from COVID-19 single-use face masks. J. Build. Eng. 2023, 66, 105885. [Google Scholar] [CrossRef]
- Kilmartin-Lynch, S.; Saberian, M.; Li, J.; Roychand, R.; Zhang, G. Preliminary evaluation of the feasibility of using polypropylene fibers from COVID-19 single-use face masks to improve the mechanical properties of concrete. J. Clean. Prod. 2021, 296, 126460. [Google Scholar] [CrossRef] [PubMed]
- Koniorczyk, M.; Bednarska, D.; Masek, A.; Cichosz, S. Performance of concrete containing recycled masks used for personal protection during coronavirus pandemic. Constr. Build. Mater. 2022, 324, 126712. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, K.; Ali, M.; Almuzaiqer, R.; Al-Suhaibani, Z.; Nuhait, A. Recycling Discarded Facemasks of COVID-19 Pandemic to New Novel Composite Thermal Insulation and Sound-Absorbing Materials. Sustainability 2023, 15, 1475. [Google Scholar] [CrossRef]
- Neubauer, K. The Determination of Metals in Disposable, Non-Medical Face Masks by ICP-OES. ICP-OES ICP-MS Tech. Today’s Spectrosc. 2021, 36, 16–23. [Google Scholar]
- Mocé-Llivina, L.; Muniesa, M.; Pimenta-Vale, H.; Lucena, F.; Jofre, J. Survival of bacterial indicator species and bacteriophages after thermal treatment of sludge and sewage. Appl. Environ. Microbiol. 2003, 69, 1452–1456. [Google Scholar] [CrossRef] [PubMed]
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef]
- Bhatia, S.; Beltramini, J.; Do, D.D. Temperature programmed analysis and its applications in catalytic systems. Catal. Today 1990, 7, 309–438. [Google Scholar] [CrossRef]
- UNI EN 12086:2013; Thermal Insulating Products for Building Applications—Determination of Water Vapor Transmission Properties. UNI: Milano, Italy, 2013.
- UNI ISO 8301:1991; Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Heat Flow Meter Apparatus. ISO: Geneva, Switzerland, 1991.
- EN 1946-2:1999; Thermal Performance of Building Products and Components—Specific Criteria for the Assessment of Laboratories Measuring Heat Transfer Properties—Part 2: Measurements by Guarded Hot Plate Method. UNI: Milano, Italy, 1999.
- Zhang, S.; Horrocks, A.R. A review of flame retardant polypropylene fibres. Prog. Polym. Sci. 2003, 28, 1517–1538. [Google Scholar] [CrossRef]
- Manić, N.; Janković, B.; Stojiljković, D.; Angelopoulos, P.; Radojević, M. Thermal characteristics and combustion reactivity of coronavirus face masks using TG-DTG-MS analysis. J. Therm. Anal. 2022, 147, 10131–10143. [Google Scholar] [CrossRef] [PubMed]
- Majewsky, M.; Bitter, H.; Eiche, E.; Horn, H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci. Total Environ. 2016, 568, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Seidi, F.; Movahedifar, E.; Naderi, G.; Akbari, V.; Ducos, F.; Shamsi, R.; Vahabi, H.; Saeb, M.R. Flame retardant polypropylenes: A review. Polymers 2020, 12, 1701. [Google Scholar] [CrossRef]
- Dong, Y.; Kong, J.; Mousavi, S.; Rismanchi, B.; Yap, P.S. Wall Insulation Materials in Different Climate Zones: A Review on Challenges and Opportunities of Available Alternatives. Thermo 2023, 3, 38–65. [Google Scholar] [CrossRef]
Test Name | Sample Characteristics | ρ (kg/m3) | λeq (W/mK) |
---|---|---|---|
O_60 | Masks in an ordered arrangement | 60 | 0.046 |
O_90 | Masks in an ordered arrangement | 90 | 0.039 |
D_90 | Masks in a disordered arrangement | 90 | 0.042 |
C_30_1 | Crumpled masks | 30 | 0.072 |
C_30_2 | Crumpled masks—repetition | 30 | 0.064 |
C_40_1 | Crumpled masks | 40 | 0.055 |
C_40_2 | Crumpled masks—repetition | 40 | 0.047 |
C_50_1 | Crumpled masks | 50 | 0.051 |
C_50_2 | Crumpled masks—repetition | 50 | 0.059 |
C_60_1 | Crumpled masks | 60 | 0.047 |
C_60_2 | Crumpled masks—repetition | 60 | 0.052 |
C_70_1_W | Crumpled masks without clip-on | 70 | 0.045 |
C_70_2_W | Crumpled masks without clip-on | 70 | 0.047 |
C_76_1 | Crumpled masks | 76 | 0.052 |
C_76_2 | Crumpled masks—repetition | 76 | 0.052 |
S_30 | Shredded masks without clip-on | 30 | 0.052 |
S_50 | Shredded masks without clip-on | 50 | 0.043 |
S_54_W | 0.355 kg of shredded masks in polyurethane foam (44%) without clip-on | 54 | 0.048 |
S_63_W | 0.59 kg of shredded masks in polyurethane foam (21%) without clip-on | 63 | 0.041 |
Test Name | Sanitized | Flame Retardant | ρ (kg/m3) | λeq (W/(mK)) |
---|---|---|---|---|
T1 | 75 | 0.053 | ||
Sa_60 | ✔ | 60 | 0.066 | |
Sa_70 | ✔ | 70 | 0.060 | |
Sa_75 | ✔ | 75 | 0.059 | |
Sa_80 | ✔ | 80 | 0.054 | |
Sa_90 | ✔ | 90 | 0.050 | |
SFR_60 | ✔ | ✔ | 60 | 0.053 |
SFR_64 | ✔ | ✔ | 64 | 0.052 |
SFR_70 | ✔ | ✔ | 70 | 0.050 |
SFR_75 | ✔ | ✔ | 75 | 0.059 |
SFR_80 | ✔ | ✔ | 80 | 0.044 |
SFR_83 | ✔ | ✔ | 83 | 0.043 |
SFR_90 | ✔ | ✔ | 90 | 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi di Schio, E.; Ballerini, V.; Kašpar, J.; Neri, M.; Pilotelli, M.; Piana, E.A.; Valdiserri, P. Applicability of Face Masks as Recyclable Raw Materials for Self-Made Insulation Panels. Energies 2024, 17, 1648. https://doi.org/10.3390/en17071648
Rossi di Schio E, Ballerini V, Kašpar J, Neri M, Pilotelli M, Piana EA, Valdiserri P. Applicability of Face Masks as Recyclable Raw Materials for Self-Made Insulation Panels. Energies. 2024; 17(7):1648. https://doi.org/10.3390/en17071648
Chicago/Turabian StyleRossi di Schio, Eugenia, Vincenzo Ballerini, Jan Kašpar, Manuela Neri, Mariagrazia Pilotelli, Edoardo Alessio Piana, and Paolo Valdiserri. 2024. "Applicability of Face Masks as Recyclable Raw Materials for Self-Made Insulation Panels" Energies 17, no. 7: 1648. https://doi.org/10.3390/en17071648
APA StyleRossi di Schio, E., Ballerini, V., Kašpar, J., Neri, M., Pilotelli, M., Piana, E. A., & Valdiserri, P. (2024). Applicability of Face Masks as Recyclable Raw Materials for Self-Made Insulation Panels. Energies, 17(7), 1648. https://doi.org/10.3390/en17071648