Integrated Active and Reactive Power Control Methods for Distributed Energy Resources in Distribution Systems for Enhancing Hosting Capacity
Abstract
:1. Introduction
2. Structural and Functional Design of DERMS
2.1. Design of DERMS Structure
2.2. Functions of DERMS
- Stage 1: The establishment of forecasting models for load and PV generation is imperative for predicting key parameters such as maximum PV power generation, power availability, power capability, and minimum loading conditions within the distribution system. The methodology employed in this forecasting stage is the LSTM-RNN as proposed in [32,33].
- Stage 2: Using the input data obtained from stage 1, including maximum load, maximum PV group power, and network data, power flow analysis is performed to analyze the states of system operation such as voltage profiles and line currents throughout the entire distribution system. By sophisticated power flow analysis, it is possible to anticipate overvoltage and overcurrent issues occurring in the distribution system.
- Stage 3: On the basis of the results in stages 1 and 2, the DERMS is responsible for minimizing reactive power compensation and active power curtailment of DERs. This optimization is achieved by employing control algorithms, encompassing conventional methods, Var Precedence, Watt Precedence, and the proposed advanced algorithms. The dispatched commands are meticulously determined, considering overvoltage and thermal current constraints within acceptable ranges, thereby enhancing the DER hosting capacity. Further elaboration on the intricacies of these algorithms is provided in the subsequent subsection.
2.3. Development of a DERMS Simulator
3. Active and Reactive Power Control Algorithms of DERs for DERMS
3.1. Conventional P/Q Dispatch Algorithms
3.1.1. LIFO and Pro-Rata Algorithms
3.1.2. Optimal DER Control Using LP
3.2. Proposed DER Active and Reactive Power Dispatch Algorithms
3.2.1. Voltage Sensitivity Factor
3.2.2. Current Sensitivity Factor
3.2.3. Var Precedence and Watt Precedence Algorithms
3.2.4. Integrated Watt and Var Control Algorithms
- Stage 1: In this stage, the network congestions for voltage and current limits are addressed using three control functions: Q–V, Q–I, and P–V. Initially, the central controller runs the power flow analysis to determine network parameters such as voltage profiles and line current. Subsequently, the power system detection identifies any voltage or thermal current issues. The Q–V control function is applied to rectify the voltage problems, followed by the use of the Q–I control function to mitigate thermal current problems. However, the control of reactive power for thermal current may reintroduce voltage issues in the system, prompting the application of the P–V control function to resolve them. After stage 1, there are no network congestions in terms of voltage and thermal current. The output of stage 1 comprises an unoptimized list of reactive and active power commands.
- Stage 2: The control process in stage 1 solves the voltage and thermal current issues in the overall distribution system. However, the P–V control function not only maintains the maximum voltage at the threshold but also reduces the thermal current below the threshold. This may result in the hosting capacity not being optimized. In this stage, two control functions, namely, Q–I and P–I, are employed to tune the control values of active and reactive power to maximize the hosting capacity. By incrementing a small amount of reactive power, the maximum current is increased toward the threshold, while the maximum bus voltage decreases below the threshold values. This gap is utilized to control the active power injection to enhance the hosting capacity with the P–I control function. The active power injection may bring the voltage back to the threshold while increasing the maximum thermal current. This tuning process is repeated until the difference between the thresholds and measurements is less than a defined value of ε.
4. Case Studies
4.1. System Description
4.2. Simulation Results and Discussion
4.2.1. Case 1: DERs Concentrated near Substation
4.2.2. Case 2: DERs Concentrated at the End of the Feeder
4.2.3. Case 3: DERs Distributed throughout the Distribution System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erdiwansyah; Mahidin; Husin, H.; Nasaruddin; Zaki, M.; Muhibbuddin. A critical review of the integration of renewable energy sources with various technologies. Prot. Control Mod. Power Syst. 2021, 6, 3. [Google Scholar] [CrossRef]
- Alshahrani, A.; Omer, S.; Su, Y.; Mohamed, E.; Alotaibi, S. The Technical Challenges Facing the Integration of Small-Scale and Large-scale PV Systems into the Grid: A Critical Review. Electronics 2019, 8, 1443. [Google Scholar] [CrossRef]
- Rahman, M.T.; Hasan, K.N.; Sokolowski, P. Impact of Renewable Integration in Distribution Networks on Static Load Model Parameters. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), The Hague, The Netherlands, 26–28 October 2020; pp. 725–729. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Arababadi, R.; Saffari Pour, M. Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs. Energies 2018, 11, 3271. [Google Scholar] [CrossRef]
- Gisela, M.; Marta, F.D.; Margarita, R. Evaluation of the environmental impacts related to the wind farms end-of-life. Energy Rep. 2022, 8 (Suppl. S3), 35–40. [Google Scholar] [CrossRef]
- Dolf, G.; Francisco, B.; Deger, S.; Morgan, D.B.; Nicholas, W.; Ricardo, G. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Bird, L.; Milligan, M.; Lew, D. Integrating Variable Renewable Energy: Challenges and Solutions; Technical report 2013, NREL/TP-6A20-60451; National Renewable Energy Laboratory: Golden, CO, USA, 2013. [Google Scholar]
- Rostirolla, G.; Grange, L.; Minh-Thuyen, T.; Stolf, P.; Pierson, J.M.; Costa, G.D.; Baudic, G.; Haddad, M.; Kassab, A.; Nicod, J.M.; et al. A survey of challenges and solutions for the integration of renewable energy in datacenters. Renew. Sustain. Energy Rev. 2022, 155, 111787. [Google Scholar] [CrossRef]
- Ashish, K.K.; Krishneel, P.; Siddique, M.N.I.; Hossain, M.A.; Pota, H. Electric vehicle hosting capacity analysis: Challenges and solutions. Renew. Sustain. Energy Rev. 2024, 189 Pt A, 113916. [Google Scholar] [CrossRef]
- Tareen, W.U.K.; Aamir, M.; Mekhilef, S.; Nakaoka, M.; Seyedmahmoudian, M.; Horan, B.; Memon, M.A.; Baig, N.A. Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review. Energies 2018, 11, 1491. [Google Scholar] [CrossRef]
- Li, Y.; Tian, X.; Liu, C.; Su, Y.; Li, L.; Zhang, L.; Sun, Y.; Li, J. Study on voltage control in distribution network with renewable energy integration. In Proceedings of the IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Akinyemi, A.S.; Musasa, K.; Davidson, I.E. Analysis of voltage rise phenomena in electrical power network with high concentration of renewable distributed generations. Sci. Rep. 2022, 12, 7815. [Google Scholar] [CrossRef] [PubMed]
- Zarco-Soto, F.J.; Zarco-Periñán, P.J.; Martínez-Ramos, J.L. Centralized Control of Distribution Networks with High Penetration of Renewable Energies. Energies 2021, 14, 4283. [Google Scholar] [CrossRef]
- Oyekale, J.; Petrollese, M.; Tola, V.; Cau, G. Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies. Energies 2020, 13, 4856. [Google Scholar] [CrossRef]
- Azibek, B.; Abukhan, A.; Kumar Nunna, H.S.V.S.; Mukatov, B.; Kamalasadan, S.; Doolla, S. Hosting Capacity Enhancement in Low Voltage Distribution Networks: Challenges and Solutions. In Proceedings of the IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2–4 January 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Bollen, M.H.J.; Rönnberg, S.K. Hosting Capacity of the Power Grid for Renewable Electricity Production and New Large Consumption Equipment. Energies 2017, 10, 1325. [Google Scholar] [CrossRef]
- Darwin, A.Q.; Ozy, D.M.D.; Carlos, S.; Venkatesh, B.; Padilha-Feltrin, A. Increasing Distributed Generation Hosting Capacity in Distribution Systems via Optimal Coordination of Electric Vehicle Aggregators. IET Gener. Transm. Distrib. 2020, 15, 359–370. [Google Scholar] [CrossRef]
- Chen, X.; Dall’Anese, E.; Zhao, C.; Li, N. Aggregate Power Flexibility in Unbalanced Distribution Systems. IEEE Trans. Smart Grid 2020, 11, 258–269. [Google Scholar] [CrossRef]
- Chen, X.; Li, N. Leveraging Two-Stage Adaptive Robust Optimization for Power Flexibility Aggregation. IEEE Trans. Smart Grid 2021, 12, 3954–3965. [Google Scholar] [CrossRef]
- Abbas, A.S.; Abou El-Ela, A.A.; El-Sehiemy, R.A. Maximization Approach of Hosting Capacity Based on Uncertain Renewable Energy Resources Using Network Reconfiguration and Soft Open Points. Int. Trans. Electr. Energy Syst. 2022, 2022, 2947965. [Google Scholar] [CrossRef]
- Strezoski, L.; Stefani, I. Utility DERMS for Active Management of Emerging Distribution Grids with High Penetration of Renewable DERs. Electronics 2021, 10, 2027. [Google Scholar] [CrossRef]
- Strezoski, L.; Padullaparti, H.; Ding, F.; Baggu, M. Integration of Utility Distributed Energy Resource Management System and Aggregators for Evolving Distribution System Operators. J. Mod. Power Syst. Clean Energy 2022, 10, 277–285. [Google Scholar] [CrossRef]
- Petrovic, N.; Strezoski, L.; Dumnic, B. Overview of software tools for integration and active management of high penetration of DERs in emerging distribution networks. In Proceedings of the IEEE EUROCON 2019-18th International Conference on Smart Technologies, Novi Sad, Serbia, 1–4 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, J. Performance Evaluation of Distributed Energy Resource Management via Advanced Hardware-in-the-Loop Simulation. In Proceedings of the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Golnazari, R.; Hasanzadeh, S.; Heydarian-Forushani, E.; Kamwa, I. Coordinated active and reactive power management for enhancing PV hosting capacity in distribution networks. IET Renew. Power Gener. 2023, 1–13. [Google Scholar] [CrossRef]
- Li, A.; Mahmoud, K.; Lehtonen, M. Maximizing hosting capacity of uncertain photovoltaics by coordinated management of OLTC, VAr sources and stochastic EVs. Int. J. Electr. Power Energy Syst. 2021, 127, 106627. [Google Scholar]
- Xu, X.; Li, J.; Xu, Z.; Zhao, J.; Lai, C.S. Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks. Appl. Energy 2019, 238, 952–962. [Google Scholar] [CrossRef]
- Baran, M.E.; El-Markabi, I.M. A multi agent base dispatching scheme for distributed generators for voltage support on distribution feeders. IEEE Trans. Power Syst. 2007, 22, 52–59. [Google Scholar] [CrossRef]
- Trinh, P.-H.; Chung, I.-Y. Optimal Control Strategy for Distributed Energy Resources in a DC Microgrid for Energy Cost Reduction and Voltage Regulation. Energies 2021, 14, 992. [Google Scholar] [CrossRef]
- Hai, T.P.; Cho, H.; Chung, I.-Y.; Kang, H.-K.; Cho, J.; Kim, J. A Novel Voltage Control Scheme for Low-Voltage DC Distribution Systems Using Multi-Agent Systems. Energies 2017, 10, 41. [Google Scholar] [CrossRef]
- Abad, M.S.S.; Ma, J.; Zhang, D.; Ahmadyar, A.S.; Marzooghi, H. Probabilistic Assessment of Hosting Capacity in Radial Distribution Systems. IEEE Trans. Sustain. Energy 2018, 9, 1935–1947. [Google Scholar] [CrossRef]
- Zafar, R.; Vu, B.H.; Husein, M.; Chung, I.-Y. Day-Ahead Solar Irradiance Forecasting Using Hybrid Recurrent Neural Network with Weather Classification for Power System Scheduling. Appl. Sci. 2021, 11, 6738. [Google Scholar] [CrossRef]
- Zafar, R.; Vu, B.H.; Chung, I.-Y. A Deep Neural Network-Based Optimal Power Flow Approach for Identifying Network Congestion and Renewable Energy Generation Curtailment. IEEE Access 2022, 10, 95647–95657. [Google Scholar] [CrossRef]
- Sedzro, K.S.A.; Horowitz, K.; Jain, A.K.; Ding, F.; Palmintier, B.; Mather, B. Evaluating the Curtailment Risk of Non-Firm Utility-Scale Solar Photovoltaic Plants under a Novel Last-In First-Out Principle of Access Interconnection Agreement. Energies 2021, 14, 1463. [Google Scholar] [CrossRef]
- Christakou, K.; LeBoudec, J.-Y.; Paolone, M.; Tomozei, D.-C. Efficient Computation of Sensitivity Coefficients of Node Voltages and Line Currents in Unbalanced Radial Electrical Distribution Networks. IEEE Trans. Smart Grid 2013, 4, 741–750. [Google Scholar] [CrossRef]
- IEEE Std 1547™-2018; IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE Standards Association: Piscataway, NJ, USA, 2018.
Bus No. | Loads | DER Capacity (MW) | |||
---|---|---|---|---|---|
P (MW) | Q (MVar) | Case 1 | Case 2 | Case 3 | |
1 | - | - | - | - | - |
2 | 0.03 | 0.05 | 4 | - | 4 |
3 | - | - | 4 | - | - |
4 | 0.03 | 0.02 | 4 | - | 4 |
5 | - | - | 4 | - | - |
6 | 0.05 | 0.02 | 4 | 4 | 4 |
7 | 0.04 | 0.05 | - | 4 | - |
8 | 0.03 | 0.05 | - | 4 | 4 |
9 | 0.06 | 0.03 | - | 4 | - |
10 | 0.07 | 0.04 | - | 4 | 4 |
No. of PVs | PV#1 (Bus 2) | PV#2 (Bus 3) | PV#3 (Bus 4) | PV#4 (Bus 5) | PV#5 (Bus 6) | Total DER Control | |
---|---|---|---|---|---|---|---|
Methods | |||||||
LIFO | P (MW) | 0.000 | 3.904 | 0.000 | 0.000 | 0.000 | 3.904 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Pro-Rata | P (MW) | 0.785 | 0.785 | 0.785 | 0.785 | 0.785 | 3.925 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
LP | P (MW) | 3.902 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Var Pre. | P (MW) | 3.801 | 0.000 | 0.000 | 0.000 | 0.000 | 3.801 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Watt Pre. | P (MW) | 3.801 | 0.000 | 0.000 | 0.000 | 0.000 | 3.801 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Int. Watt/Var | P (MW) | 3.801 | 0.000 | 0.000 | 0.000 | 0.00 | 3.801 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Parameters | DER HC | Maximum Voltage and Current | ||||
---|---|---|---|---|---|---|
Methods | Max V (p.u.) | Margin (%) | Max I (A) | Margin (%) | ||
LIFO | 16.096 | 1.0161 | 0.39% | 393 | 0.50% | |
Pro-Rata | 16.075 | 1.0149 | 0.51% | 393 | 0.50% | |
LP | 16.098 | 1.0160 | 0.40% | 394 | 0.25% | |
Var Precedence | 16.199 | 1.0174 | 0.26% | 395 | 0.00% | |
Watt Precedence | 16.199 | 1.0174 | 0.26% | 395 | 0.00% | |
Int. Watt/Var | 16.199 | 1.0174 | 0.26% | 395 | 0.00% |
No. of PVs | PV#1 (Bus 6) | PV#2 (Bus 7) | PV#3 (Bus 8) | PV#4 (Bus 9) | PV#5 (Bus 10) | Total DER Control | |
---|---|---|---|---|---|---|---|
Methods | |||||||
LIFO | P (MW) | 4.000 | 4.000 | 4.000 | 0.000 | 0.100 | 12.10 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Pro-Rata | P (MW) | 2.100 | 2.100 | 2.100 | 2.100 | 2.10 | 10.500 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
LP | P (MW) | 4.000 | 1.182 | 0.000 | 0.000 | 0.00 | 5.182 |
Q (MVar) | 0.000 | 0.000 | 0.000 | −0.420 | −1.760 | −2.180 | |
Var Pre. | P (MW) | 4.000 | 0.304 | 0.000 | 0.000 | 0.000 | 4.304 |
Q (MVar) | 0.000 | 0.000 | 0.000 | −1.625 | −1.760 | −3.385 | |
Watt Pre. | P (MW) | 3.968 | 0.054 | 0.000 | 0.000 | 0.000 | 4.022 |
Q (MVar) | 0.000 | 0.000 | 0.000 | −0.763 | −1.760 | −2.523 | |
Int. Watt/Var | P (MW) | 0.000 | 0.000 | 0.000 | 1.350 | 2.577 | 3.927 |
Q (MVar) | 0.000 | 0.000 | 0.000 | −0.250 | −1.760 | −2.010 |
Parameters | DER HC | Maximum Voltage and Current | ||||
---|---|---|---|---|---|---|
Methods | Max V (p.u) | Margin (%) | Max I (A) | Margin (%) | ||
LIFO | 7.900 | 1.0200 | 0.00% | 187.89 | 52.43% | |
Pro-Rata | 9.500 | 1.0200 | 0.00% | 227.80 | 42.33% | |
LP | 14.818 | 1.0196 | 0.04% | 363.30 | 8.03% | |
Var Precedence | 15.696 | 1.0139 | 0.61% | 395.30 | 0.08% | |
Watt Precedence | 15.978 | 1.0193 | 0.07% | 395.10 | 0.03% | |
Int. Watt/Var | 16.073 | 1.0200 | 0.00% | 395.00 | 0.00% |
No. of PVs | PV#1 (Bus 2) | PV#2 (Bus 4) | PV#3 (Bus 6) | PV#4 (Bus 8) | PV#5 (Bus 10) | Total DER Control | |
---|---|---|---|---|---|---|---|
Methods | |||||||
LIFO | P (MW) | 4.000 | 4.000 | 3.500 | 0.000 | 0.000 | 11.50 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Pro-Rata | P (MW) | 1.370 | 1.370 | 1.370 | 1.370 | 1.370 | 6.850 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
LP | P (MW) | 4.000 | 0.985 | 0.000 | 0.000 | 0.000 | 4.985 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | −1.150 | −1.150 | |
Var Pre. | P (MW) | 3.857 | 0.000 | 0.000 | 0.000 | 0.000 | 3.857 |
Q (MVar) | 0.000 | 0.000 | 0.000 | 0.000 | −1.598 | −1.598 | |
Watt Pre. | P (MW) | 3.827 | 0.000 | 0.000 | 0.000 | 0.000 | 3.827 |
Q(MVar) | 0.000 | 0.000 | 0.000 | 0.000 | −1.412 | −1.412 | |
Int. Watt/Var | P(MW) | 0.000 | 0.000 | 0.000 | 0.000 | 3.803 | 3.803 |
Q(MVar) | 0.000 | 0.000 | 0.000 | 0.000 | −0.113 | −0.113 |
Parameters | DER HC (MW) | Maximum Voltage and Current | ||||
---|---|---|---|---|---|---|
Methods | Max V (p.u) | Margin (%) | Max I (A) | Margin (%) | ||
LIFO | 8.5000 | 1.0200 | 0.00% | 202.92 | 48.630% | |
Pro-Rata | 13.150 | 1.0200 | 0.00% | 319.44 | 19.130% | |
LP | 15.015 | 1.0209 | 0.09% | 365.60 | 7.440% | |
Var Precedence | 16.143 | 1.0186 | 0.14% | 395.10 | 0.025% | |
Watt Precedence | 16.173 | 1.0199 | 0.01% | 395.10 | 0.025% | |
Int. Watt/Var | 16.197 | 1.0200 | 0.00% | 395.00 | 0.000% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinh, P.-H.; Chung, I.-Y. Integrated Active and Reactive Power Control Methods for Distributed Energy Resources in Distribution Systems for Enhancing Hosting Capacity. Energies 2024, 17, 1642. https://doi.org/10.3390/en17071642
Trinh P-H, Chung I-Y. Integrated Active and Reactive Power Control Methods for Distributed Energy Resources in Distribution Systems for Enhancing Hosting Capacity. Energies. 2024; 17(7):1642. https://doi.org/10.3390/en17071642
Chicago/Turabian StyleTrinh, Phi-Hai, and Il-Yop Chung. 2024. "Integrated Active and Reactive Power Control Methods for Distributed Energy Resources in Distribution Systems for Enhancing Hosting Capacity" Energies 17, no. 7: 1642. https://doi.org/10.3390/en17071642
APA StyleTrinh, P. -H., & Chung, I. -Y. (2024). Integrated Active and Reactive Power Control Methods for Distributed Energy Resources in Distribution Systems for Enhancing Hosting Capacity. Energies, 17(7), 1642. https://doi.org/10.3390/en17071642