Renewable Energy Proliferation and the New Local Energy Community Paradigm: Analysis of a Case Study in Italy
Abstract
:1. Introduction
- (i)
- A description of the first-of-its-kind public call for REC formation in an area where social revitalization is the focal point;
- (ii)
- A description of the REC project presented to the evaluating commission, based upon the requirements and indications of the proposal;
- (iii)
- The characterization of the environmental impact of RECs using the LCA methodology, including BPV system installation where possible.
2. Materials and Methods
2.1. Public Call
2.1.1. Allowable Entities and Community Formation
2.1.2. Ranking System
2.2. Participating Municipality
2.2.1. Single Municipality
2.2.2. Cluster of Municipalities
2.3. Public Call
2.3.1. Goal and Scope
2.3.2. Inventory
2.3.3. Impact Assessment
3. Results and Discussion
3.1. SM Citizenship Response
3.2. CM Citizenship Response
3.3. LCA of SM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bednar-Friedl, B.; Biesbroek, R.; Schmidt, D.N.; Alexander, P.; Børsheim, K.Y.; Carnicer, J.; Georgopoulou, E.; Haasnoot, M.; Le Cozannet, G.; Lionello, P.; et al. Europe. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 1817–1927. [Google Scholar] [CrossRef]
- Clean Energy for All Europeans Package. Available online: https://energy.ec.europa.eu/topics/energy-strategy/clean-energy-all-europeans-package_en (accessed on 28 July 2023).
- Gržanić, M.; Capuder, T.; Zhang, N.; Huang, W. Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges. Renew. Sustain. Energy Rev. 2022, 154, 111859. [Google Scholar] [CrossRef]
- Mäkivierikko, A.; Siepelmeyer, H.; Shahrokni, H.; Enarsson, D.; Kordas, O. Reducing electricity peak loads through “pause hours”—A community-based behavioural demand response approach. J. Clean. Prod. 2023, 408, 137064. [Google Scholar] [CrossRef]
- Luttenberger Marić, L.; Keko, H.; Delimar, M. The Role of Local Aggregator in Delivering Energy Savings to Household Consumers. Energies 2022, 15, 2793. [Google Scholar] [CrossRef]
- Lowitzsch, J.; Hoicka, C.E.; Van Tulder, F.J. Renewable energy communities under the 2019 European Clean Energy Package—Governance model for the energy clusters of the future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [Google Scholar] [CrossRef]
- DIRECTIVE (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018—On the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj (accessed on 25 February 2024).
- Gjorgievski, V.Z.; Cundeva, S.; Georghiou, G.E. Social arrangements, technical designs and impacts of energy communities: A review. Renew. Energy 2021, 169, 1138–1156. [Google Scholar] [CrossRef]
- Brummer, V. Community energy—Benefits and barriers: A comparative literature review of Community Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces. Renew. Sustain. Energy Rev. 2018, 94, 187–196. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Cimen, H.; Vasquez, J.C.; Guerrero, J.M. Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading. Appl. Energy 2022, 314, 119003. [Google Scholar] [CrossRef]
- Rossi, F.; Heleno, M.; Basosi, R.; Sinicropi, A. LCA driven solar compensation mechanism for Renewable Energy Communities: The Italian case. Energy 2021, 235, 121374. [Google Scholar] [CrossRef]
- Cielo, A.; Margiaria, P.; Lazzeroni, P.; Mariuzzo, I.; Repetto, M. Renewable Energy Communities business models under the 2020 Italian regulation. J. Clean. Prod. 2021, 316, 128217. [Google Scholar] [CrossRef]
- ARERA—Definizione, ai Sensi del Decreto Legislativo 199/21 e del Decreto Legislativo 210/21, della Regolazione Dell’autoconsumo Diffuso. Approvazione del Testo Integrato Autoconsumo Diffuso. Available online: https://www.arera.it/it/docs/22/727-22.htm (accessed on 28 July 2023).
- Modifiche al Testo Integrato Autoconsumo Diffuso e Verifica delle Regole Tecniche per il Servizio per L’autoconsumo Diffuso Predisposte dal Gestore dei Servizi Energetici S.p.A. Available online: https://www.arera.it/atti-e-provvedimenti/dettaglio/24/15-24 (accessed on 18 February 2024).
- Reynaud, C.; Miccoli, S. Depopulation and the Aging Population: The Relationship in Italian Municipalities. Sustainability 2018, 10, 1004. [Google Scholar] [CrossRef]
- Raimondi, G.; Spazzafumo, G. Exploring Renewable Energy Communities integration through a hydrogen Power-to-Power system in Italy. Renew. Energy 2023, 206, 710–721. [Google Scholar] [CrossRef]
- Dal Cin, E.; Carraro, G.; Volpato, G.; Lazzaretto, A.; Danieli, P. A multi-criteria approach to optimize the design-operation of Energy Communities considering economic-environmental objectives and demand side management. Energy Convers. Manag. 2022, 263, 115677. [Google Scholar] [CrossRef]
- Fioriti, D.; Frangioni, A.; Poli, D. Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role and business model of aggregators and users. Appl. Energy 2021, 299, 117328. [Google Scholar] [CrossRef]
- Fina, B.; Monsberger, C.; Auer, H. Simulation or estimation?—Two approaches to calculate financial benefits of energy communities. J. Clean. Prod. 2022, 330, 129733. [Google Scholar] [CrossRef]
- Volpato, G.; Carraro, G.; Cont, M.; Danieli, P.; Rech, S.; Lazzaretto, A. General guidelines for the optimal economic aggregation of prosumers in energy communities. Energy 2022, 258, 124800. [Google Scholar] [CrossRef]
- Moncecchi, M.; Meneghello, S.; Merlo, M. A Game Theoretic Approach for Energy Sharing in the Italian Renewable Energy Communities. Appl. Sci. 2020, 10, 8166. [Google Scholar] [CrossRef]
- Masip, X.; Fuster-Palop, E.; Prades-Gil, C.; Viana-Fons, J.D.; Payá, J.; Navarro-Peris, E. Case study of electric and DHW energy communities in a Mediterranean district. Renew. Sustain. Energy Rev. 2023, 178, 113234. [Google Scholar] [CrossRef]
- Backe, S.; Zwickl-Bernhard, S.; Schwabeneder, D.; Auer, H.; Korpås, M.; Tomasgard, A. Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses. Appl. Energy 2022, 323, 119470. [Google Scholar] [CrossRef]
- Caratù, M.; Brescia, V.; Pigliautile, I.; Biancone, P. Assessing Energy Communities’ Awareness on Social Media with a Content and Sentiment Analysis. Sustainability 2023, 15, 6976. [Google Scholar] [CrossRef]
- Guarino, F.; Longo, S.; Vermette, C.H.; Cellura, M.; La Rocca, V. Life cycle assessment of solar communities. Sol. Energy 2020, 207, 209–217. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre; Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook: General Guide for Life Cycle Assessment: Detailed Guidance; Publications Office: Luxembourg, 2010; Available online: https://data.europa.eu/doi/10.2788/38479 (accessed on 24 July 2022).
- ISO 14040; Environmental Management—Life Cycle Assessment Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- Biancini, G.; Marchetti, B.; Cioccolanti, L.; Moglie, M. Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration. Sustainability 2022, 14, 14961. [Google Scholar] [CrossRef]
- Maniscalco, M.; Longo, S.; Miccichè, G.; Cellura, M.; Ferraro, M. A Critical Review of the Environmental Performance of Bifacial Photovoltaic Panels. Energies 2023, 17, 226. [Google Scholar] [CrossRef]
- Deline, C.; Ayala, S.; Marion, B.; Sekulic, B.; Woodhouse, M.; Stein, J. Bifacial PV System Performance: Separating Fact from Fiction; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2019. [Google Scholar]
- Li, Z.; Zhang, W.; He, B.; Xie, L.; Chen, M.; Li, J.; Zhao, O.; Wu, X. A Comprehensive Life Cycle Assessment Study of Innovative Bifacial Photovoltaic Applied on Building. Energy 2022, 245, 123212. [Google Scholar] [CrossRef]
- Fontani, D.; Jafrancesco, D.; Sansoni, P.; Nicolini, A.; Di Giuseppe, A.; Pazzaglia, A.; Castellani, B.; Rossi, F.; Mercatelli, L. Field optimization for bifacial modules. Opt. Mater. 2023, 138, 113715. [Google Scholar] [CrossRef]
- Jordahl, K.; Van den Bossche, J.; Fleischmann, M.; Wasserman, J.; McBride, J.; Gerard, J.; Tratner, J.; Perry, M.; Badaracco, A.G.; Farmer, C.; et al. Geopandas/Geopandas: v0.8.1. Zenodo. July 2020. Available online: https://zenodo.org/records/3946761 (accessed on 25 February 2024).
- Mappa Interattiva delle Cabine Primarie. Available online: https://www.gse.it/servizi-per-te/autoconsumo/mappa-interattiva-delle-cabine-primarie (accessed on 21 February 2024).
- JRC. Photovoltaic Geographical Information System (PVGIS)—European Commission. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 16 July 2023).
- Azioni Longi-Hi-MO 4m. Longi. Available online: https://www.longi.com/it/products/modules/hi-mo-4m/ (accessed on 16 July 2023).
- Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. The ecoinvent Database: Overview and Methodological Framework. Int. J. Life Cycle Assess. 2005, 10, 3–9. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Ecoinvent Database. Ecoinvent. Available online: https://ecoinvent.org/the-ecoinvent-database/ (accessed on 14 July 2022).
- SimaPro|LCA Software for Informed-Change Makers. SimaPro. Available online: https://simapro.com/ (accessed on 3 February 2023).
- Pérez-López, P.; De Vree, J.H.; Feijoo, G.; Bosma, R.; Barbosa, M.J.; Moreira, M.T.; Wijffels, R.H.; Van Boxtel, A.J.; Kleinegris, D.M. Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Appl. Energy 2017, 205, 1151–1164. [Google Scholar] [CrossRef]
- Maiolo, S.; Parisi, G.; Biondi, N.; Lunelli, F.; Tibaldi, E.; Pastres, R. Fishmeal partial substitution within aquafeed formulations: Life cycle assessment of four alternative protein sources. Int. J. Life Cycle Assess. 2020, 25, 1455–1471. [Google Scholar] [CrossRef]
Ossberger Turbine Characteristics | |
---|---|
Hydraulic jump [m] | 9.93 |
Flow rate [m3/s] | 4.62 |
Power [kW] | 450 |
Energy production [MWh/year] | 2041 |
Cost [k/EUR] | 5600 |
PVCS Characteristics | |
---|---|
Number of car slots per PVCS [-] | 4 |
Number of panels [-] | 30 |
Power [kW] | 11.25 |
Number of fast charging stations [-] | 1 |
Area [m2] | 60 |
Shed slope [°] | 15 |
Number of BES systems (9.8 kWh) [-] | 1 |
Cost [k/EUR] | 90 |
Consumers | Prosumers and Partners | ||||
---|---|---|---|---|---|
ID | Type | Consumption [kWh] * | ID | Consumption [kWh] * | Existing Plant [kW] |
CONS1 | Company | 100 | PROS1 | 1,386,600 | 137 |
CONS2 | Family | 3800 | PROS1 ** | - | Partner |
CONS3 | Family | 4000 | PROS2 | 492,400 | 348 |
CONS4 | Company | 205,000 | PROS3 | 18,900 | Partner |
CONS5 | Company | 175,700 | PROS4 | 54,800 | 280 |
CONS6 | Company | 21,600 | PROS4 ** | - | Partner |
CONS7 | Company | 263,300 | PROS5 | - | Partner |
CONS8 | Company | 112,600 | PROS6 | 17,200 | Partner |
CONS9 | Company | 15,000 | PROS7 | 13,900 | Partner |
CONS10 | Family | 3400 | PROS8 | 36,500 | Partner |
CONS11 | Family | 2800 | |||
CONS12 | Family | 2000 | |||
CONS13 | Company | 275,100 |
Renewable Energy Systems | |||||
---|---|---|---|---|---|
ID | Location | Peak Power [kW] | Yearly Energy Production [kWh] | Incidence on the Total [%] | Incidence on the Total, Only PV [%] |
PV1 | Municipality | 45.36 | 49,400 | 1.52 | 4.06 |
PV2 | Municipality | 70.56 | 68,400 | 2.10 | 5.63 |
PV3 | Municipality | 26.46 | 26,000 | 0.80 | 2.14 |
PV4 | Municipality | 46.20 | 40,000 | 1.23 | 3.29 |
PV5 | Municipality | 40.32 | 42,300 | 1.30 | 3.48 |
PV6 | Municipality | 21.00 | 23,900 | 0.73 | 1.97 |
PV7 | Municipality | 12.60 | 13,700 | 0.42 | 1.13 |
PV8 | Municipality | 7.56 | 8800 | 0.27 | 0.72 |
PV9 | Municipality | 23.94 | 27,300 | 0.84 | 2.25 |
PV10 | Municipality | 69.72 | 76,000 | 2.33 | 6.25 |
PV11 | Municipality | 88.20 | 97,500 | 2.99 | 8.02 |
PV12 | Municipality | 20.16 | 21,000 | 0.64 | 1.73 |
PV13 | Municipality | 71.82 | 82,000 | 2.52 | 6.75 |
PV14 | Municipality | 40.32 | 40,800 | 1.25 | 3.36 |
PV15 | PROS1 | 215.88 | 213,800 | 6.57 | 17.59 |
PV16 | PROS3 | 145.32 | 165,200 | 5.07 | 13.59 |
PV17 | PROS4 | 6.30 | 6900 | 0.21 | 0.57 |
PV18 | PROS5 | 42.00 | 48,000 | 1.47 | 3.95 |
PV19 | PROS6 | 16.80 | 17,300 | 0.53 | 1.42 |
PV20 | PROS7 | 67.20 | 76,800 | 2.36 | 6.32 |
PV21 | PROS8 | 61.74 | 70,300 | 2.16 | 5.78 |
HT1 | Municipality | 450.00 | 2,041,000 | 62.68 | - |
REC Cluster Summary | ||||||
---|---|---|---|---|---|---|
REC ID | Number of Private Citizens | Total Consumption [kWh/year] | Total PV Systems | Number of Plant Locations Suitable for BPV System Installation | Number of Public PV Systems on Private Rooftops | Energy Yield [kWh/year] |
REC1 | 62 | 2,110,000 | 114 | 10 | 69 | 1,504,000 |
REC2 | 36 | 1,286,000 | 41 | 5 | 18 | 935,000 |
REC3 | 16 | 590,000 | 24 | 7 | 9 | 435,000 |
Impact Category | U.M. | Centralized Systems | Decentralized Systems | Variation [%] |
---|---|---|---|---|
Acidification | mol H+eq | 593.81 | 711.16 | −16.5% |
Climate change | kg CO2eq | 89,270.56 | 86,892.02 | 2.7% |
Ecotoxicity, freshwater | CTUe | 3,462,232.74 | 4,974,901.34 | −30.4% |
Eutrophication, freshwater | kg Peq | 51.85 | 70.0052 | −25.9% |
Eutrophication, marine | kg Neq | 104.30 | 108.31 | −3.7% |
Eutrophication, terrestrial | mol Neq | 1073.54 | 1100.40 | −2.4% |
Human toxicity, cancer | CTUh | 0.00012 | 0.00012 | 5.8% |
Human toxicity, non-cancer | CTUh | 0.0040 | 0.0055 | −27.3% |
Ionizing radiation | kBq U-235 eq | 7564.724 | 7795.51 | −3.0% |
Land use | Pt | 13,504,877.66 | 351,924.06 | n.a. |
Ozone depletion | kg CFC11 eq | 0.00879 | 0.0087 | 0.7% |
Particulate matter | disease inc. | 0.0059 | 0.0059 | 1.1% |
Photochemical ozone formation | kg NMVOC eq | 355.47 | 368.31 | −3.5% |
Resource use, fossils | MJ | 1,086,134.61 | 1,074,625.63 | 1.1% |
Resource use, minerals and metals | kg Sb eq | 14.59 | 11.88 | 22.7% |
Water use | m3 depriv. | 81,664.98 | 82,474.29 | −1.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchetti, B.; Vitali, M.; Biancini, G. Renewable Energy Proliferation and the New Local Energy Community Paradigm: Analysis of a Case Study in Italy. Energies 2024, 17, 1599. https://doi.org/10.3390/en17071599
Marchetti B, Vitali M, Biancini G. Renewable Energy Proliferation and the New Local Energy Community Paradigm: Analysis of a Case Study in Italy. Energies. 2024; 17(7):1599. https://doi.org/10.3390/en17071599
Chicago/Turabian StyleMarchetti, Barbara, Matteo Vitali, and Giovanni Biancini. 2024. "Renewable Energy Proliferation and the New Local Energy Community Paradigm: Analysis of a Case Study in Italy" Energies 17, no. 7: 1599. https://doi.org/10.3390/en17071599
APA StyleMarchetti, B., Vitali, M., & Biancini, G. (2024). Renewable Energy Proliferation and the New Local Energy Community Paradigm: Analysis of a Case Study in Italy. Energies, 17(7), 1599. https://doi.org/10.3390/en17071599