Hydrogen Micro-Systems: Households’ Preferences and Economic Futility †
Abstract
:1. Introduction
- Is the German population willing to invest in residential hydrogen systems?
- What are their motives?
- Is there an economic case for residential hydrogen systems?
- And finally: What is the potential market for hydrogen home storage systems?
2. Background
2.1. The Perception of Hydrogen and Decentralized Energy Systems
2.2. Hydrogen Usage in Households
2.2.1. Hydrogen for Heat Production
2.2.2. Hydrogen for Power Production
2.2.3. Hydrogen for Mobility
3. The Survey
3.1. Survey Design
3.2. Survey Results
3.2.1. Full Sample
3.2.2. Homeowners
3.2.3. Innovators
4. Economic Assessment
4.1. Baseline Scenario: PV System without Storage System
4.1.1. Scenario A: PV System with Battery
4.1.2. Scenario B: PV System with Residential Hydrogen System
4.2. Calculation of Total Annual Costs including Investment Costs across All Scenarios
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klingler, A.-L.; Tagalidou, N.; Fronemann, N. Energy Rebels? How Households’ Preferences for Decentralized Hydrogen Systems Misalign with Energy System Requirements. In Proceedings of the International Renewable Energy Storage Conference 2021 (IRES 2021), Global Online Event, 16–18 March 2021. [Google Scholar] [CrossRef]
- Munoz, L.H.; Huijben, J.; Verhees, B.; Verbong, G. The power of grid parity: A discursive approach. Technol. Forecast. Soc. Chang. 2014, 87, 179–190. [Google Scholar] [CrossRef]
- Bode, S.; Gorscurth, H. Grid Parity von Photovoltaik-Anlagen: Ein Vollständiger Vergleich unter Berücksichtigung aller Steuern und Umlagen auf den Strombezug von Privaten Haushalten; Discussion Paper; Arrhenius Insittue for Energy and Climate Policy: Hamburg, Germany, 2013. [Google Scholar]
- Khodayar, M.E.; Ehsan, M.; Rahimikian, A.; Kamalinia, S.; Abbasi, E. “A Robust Decision Making Framework for GEP of Grid Connected Micro-Power Systems. In Proceedings of the 2007 Large Engineering Systems Conference on Power Engineering, Montreal, QC, Canada, 10–12 October 2007; pp. 239–243. [Google Scholar] [CrossRef]
- Oberst, C.; Madlener, R. Prosumer Preferences Regarding the Adoption of Micro-Generation Technologies; FCN Working Paper No. 22/2014; Insitute for Future Energy Consumer Needs and Behaviour, RWTH Aachen: Aachen, Germany, 2014. [Google Scholar]
- Figgener, J.; Haberschusz, D.; Kairies, K.-P.; Wessels, O.; Tepe, B.; Sauer, D.U. Wissenschaftliches Mess- und Evaluierungsprogramm Solarstromspeicher 2.0—Jahresbericht 2018; Institut für Stromrichtertechnik und Elektrische Antriebe, RWTH Aachen: Aachen, Germany, 2018. [Google Scholar]
- Figgener, J.; Haberschusz, D.; Kairies, K.-P.; Wessels, O.; Zurmühlen, S.; Sauer, D. Uwe Speichermonitoring BW—Jahresbericht 2019; Institut für Stromrichtertechnik und Elektrische Antriebe, RWTH Aachen: Aachen, Germany, 2019. [Google Scholar]
- Klingler, A.-L. The effect of electric vehicles and heat pumps on the market potential of PV + battery systems. Energy 2018, 161, 1064–1073. [Google Scholar] [CrossRef]
- Maneejuk, P.; Kaewtathip, N.; Yamaka, W. The influence of the Ukraine-Russia conflict on renewable and fossil energy price cycles. Energy Econ. 2024, 129, 107218. [Google Scholar] [CrossRef]
- Bundesverband Solarwirtschaft. Statistische Zahlen der deutschen Solarstrombranche (Speicher/Mobilität). 2023. Available online: https://www.solarwirtschaft.de/datawall/uploads/2022/08/bsw_faktenblatt_stromspeicher.pdf (accessed on 13 March 2024).
- HPS. HPS System—Picea. Available online: https://www.homepowersolutions.de/en/product (accessed on 7 April 2021).
- Hollemuller, P.; Joubert, J.-M.; Lachal, B.; Yvon, K. Evaluation of a 5 kWp photovoltaic hydrogen production and storage installation for a residential home in Switzerland. Int. J. Hydrogen Energy 2000, 25, 97–109. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, H.; Zhang, T.; Jiang, J.; Su, X.; Zeng, N. Study of inductively coupled fuel cell DMPPT converters. Electr. Eng. 2024. [Google Scholar] [CrossRef]
- Energiewirtschaftliches Institut an der Universität zu Köln (EWI). Szenarien für die Preisentwicklung von Energieträgern. 2022. Available online: https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2022/08/EWI-Studie_Preisentwicklung-von-Energietraegern_220822.pdf (accessed on 13 March 2024).
- Sovacool, G. The cultural barriers to a low-carbon future: A review of six mobility and energy transitions across 28 countries. Renew. Sustain. Energy Rev. 2020, 119, 109569. [Google Scholar] [CrossRef]
- Eftaxias, K.; Panin, V.; Deryugin, Y. Improving public acceptance of H2 stations: SWOT-AHP analysis of South Korea. Int. J. Hydrogen Energy 2021, 46, 17597–17607. [Google Scholar] [CrossRef]
- Häußermann, J. Grüner Wasserstoff: Wie steht es um die Akzeptanz in Deutschland? Blogbeitrag. August 2020. Available online: https://blog.iao.fraunhofer.de/gruener-wasserstoff-wie-steht-es-um-die-akzeptanz-in-deutschland/ (accessed on 18 August 2023).
- Tagalidou, N.; Klingler, A.-L.; Fronemann, N.; Schuster, T.; Bühler, L.; Gebauer, H.; Arzt, A.; Haugk, S. PLATON—Digitale Plattformen für den Leitmarkt Wasserstoff: Empirische Studienergebnisse. 2021. Available online: https://publica.fraunhofer.de/entities/publication/ecbe419e-a0f2-4fd0-874d-55738f35a799/details (accessed on 13 March 2024).
- Emmerich, P.; Hülemeier, A.-G.; Jendryczko, D.; Baumann, M.J.; Weil, M.; Baur, D. Public acceptance of emerging energy technologies in context of the German energy transition. Energy Policy 2020, 142, 111516. [Google Scholar] [CrossRef]
- Emodi, N.V.; Lovell, H.; Levitt, C.; Franklin, E. A systematic literature review of societal acceptance and stakeholders’ perception of hydrogen technologies. Int. J. Hydrogen Energy 2021, 46, 30669–30697. [Google Scholar] [CrossRef]
- Lambert, V.; Ashworth, P. The Australian Public’s Perception of Hydrogen for Energy; Report for the Australian Government’s Renewable Energy Agency; University of Queensland: Brisbane, QLD, Australia, 2018. [Google Scholar]
- Gordon, J.A.; Balta-Ozkan, N.; Nabavi, S.A. Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition. Renew. Sustain. Energy Rev. 2022, 164, 112481. [Google Scholar] [CrossRef]
- Scott, M.; Powells, G. Towards a new social science research agenda for hydrogen transitions: Social practices, energy justice, and place attachment. Energy Res. Soc. Sci. 2019, 61, 101346. [Google Scholar] [CrossRef]
- UK Department for Business Energy & Industrial Strategy (BEIS). BEIS Public Attitudes Tracker: Heat and Energy in the Home Spring 2022. Available online: https://assets.publishing.service.gov.uk/media/62a8a4dad3bf7f0368efbee3/BEIS_PAT_Spring_2022_Heat_and_Energy_in_the_Home.pdf (accessed on 13 March 2024).
- Segreto, M.; Principe, L.; Desormeaux, A.; Torre, M.; Tomassetti, L.; Tratzi, P.; Paolini, V.; Petracchini, F. Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review. Int. J. Environ. Res. Public Health 2020, 14, 9161. [Google Scholar] [CrossRef] [PubMed]
- Destatis. Energieverbrauch privater Haushalte für Wohnen 2017 Erneut Gestiegen. 2018. Available online: https://www.destatis.de/DE/Presse/Pressemitteilungen/2018/10/PD18_378_85.html (accessed on 28 August 2023).
- Umweltbundesamt. Energieverbrauch Privater Haushalte. 2020. Available online: https://www.umweltbundesamt.de/daten/private-haushalte-konsum/wohnen/energieverbrauch-privater-haushalte#mehr-haushalte-grossere-wohnflachen-energieverbrauch-pro-wohnflache-sinkt (accessed on 28 August 2023).
- Deutsche Energieagentur. Dena-Gebäudereport: Wärmewende Kommt Seit 2010 Nicht Voran. 2019. Available online: https://www.dena.de/newsroom/meldungen/2019/dena-gebaeudereport-waermewende-kommt-seit-2010-nicht-voran/ (accessed on 28 August 2023).
- BMWi Schlaglichter. Wie kann das Energiesystem der Zukunft aussehen? Die BMWi-Langfristszenarien bilden eine wissenschaftliche Grundlage für die Ableitung einer Gesamtstrategie zur Energiewende. March 2021. Available online: https://www.kopernikus-projekte.de/lw_resource/datapool/systemfiles/cbox/1713/live/lw_datei/ariadne-analyse_wasserstoffgebaeudesektor_september2021.pdf (accessed on 13 March 2024).
- RP-Energielexikon. Wärmepumpe. 2021. Available online: https://www.energie-lexikon.info/waermepumpe.html (accessed on 28 August 2023).
- Klöpfer, R. Wie Schaffen wir im Gebäudesektor 65% CO2-Minderung bis 2030? Vortrag Smart-Grids Kongress 2021 in Fellbach. 2021. Available online: https://www.coreventus.de/wp-content/uploads/2021/12/002-Wie-schaffen-wir-65-Prozent-CO2-Minderung-im-Geb%C3%A4udesektor-bis-2030_Ralf-Kl%C3%B6pfer-MVV-Energie-AG.pdf (accessed on 28 August 2023).
- Zukunft Gas: Erdgas in Deutschland—Zahlen und Fakten für das Jahr 2021. Mai 2022. Available online: https://gas.info/fileadmin/Public/PDF-Download/Faktenblatt-Erdgas.pdf (accessed on 13 March 2024).
- Energiewirtschaftliches Institut an der Universität zu Köln (EWI). Entwicklungen der Globalen Gasmärkte bis 2030—Szenarienbetrachtung eines Beschränkten Handels mit Russland. 2022. Available online: https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2022/12/EWI_Endbericht_Zukunft_Gas_Globale_Gasmaerkte_2022-12-06.pdf (accessed on 13 March 2024).
- Fischer, D.; Harbrecht, A.; Surmann, A.; McKenna, R. Electric vehicles’ impacts on residential electric local profiles—A sto-chastic modelling approach considering socio-economic, behavioural and spatial factors. Appl. Energy 2019, 233–234, 644–658. [Google Scholar] [CrossRef]
- Aki, H.; Taniguchi, Y.; Tamura, I.; Kegasa, A.; Hayakawa, H.; Ishikawa, Y.; Yamamoto, S.; Sugimoto, I. Fuel cells and energy networks of electricity, heat, and hydrogen: A demonstration in hydrogen-fueled apartments. Int. J. Hydrogen Energy 2012, 37, 1204–1213. [Google Scholar] [CrossRef]
- Umweltbundesamt. Energieverbrauch und Kraftstoffe. 2023. Available online: https://www.umweltbundesamt.de/daten/verkehr/endenergieverbrauch-energieeffizienz-des-verkehrs#verkehr-braucht-energie (accessed on 13 March 2024).
- Rat der Europäischen Union: Infografik—“Fit für 55”: Warum Verschärft die EU die CO2-Emissionsnormen für Pkw und Leichte Nutzfahrzeuge? Available online: https://www.consilium.europa.eu/de/infographics/fit-for-55-emissions-cars-and-vans/ (accessed on 13 March 2024).
- Powell, S.; Cezar, G.V.; Min, L.; Azevedo, I.M.L.; Rajagopal, R. Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption. Nat. Energy 2022, 7, 932–945. [Google Scholar] [CrossRef]
- Bundesministerium für Wirtschaft und Energie. Die Nationale Wasserstoffstrategie; Status Juni 2020. 2020. Available online: https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/die-nationale-wasserstoffstrategie.pdf?__blob=publicationFile (accessed on 13 March 2024).
- Statistisches Bundesamt. Wirtschaftsrechnungen—Einkommens- und Verbrauchsstichprobe Wohnverhältnisse Privater Haushalte; Fachserie 15, Sonderheft 1; Statistisches Bundesamt: Wiesbaden, Germany, 2018. [Google Scholar]
- DZ-4/Forsa, forsa-Umfrage im Auftrag von DZ-4. Available online: https://www.dz-4.de/ueber-uns/presse/pm/forsa-studie-jeder-zweite-wuerde-eine-solaranlage-mieten (accessed on 7 April 2021).
- Rogers, E. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Zhang, H. The Optimality of Naïve Bayes. 2004. Available online: http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf (accessed on 13 March 2024).
- Bundesamt für Bauwesen und Raumordnung (BBSR): Testreferenzjahre. Available online: https://www.bbsr-geg.bund.de/GEGPortal/DE/Regelungen/Testreferenzjahre/TRY_node.html (accessed on 25 August 2023).
- Wetterdienst, D. Entwicklung der Globalstrahlung 1983–2020 in Deutschland. 2023. Available online: https://www.dwd.de/DE/leistungen/solarenergie/download_dekadenbericht.html (accessed on 13 March 2024).
- Eurostat. Gas Prices for Household Consumers. 2023. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_202/default/table?lang=en (accessed on 17 July 2023).
- Eurostat. Strompreise nach Art des Benutzers. 2023. Available online: https://ec.europa.eu/eurostat/databrowser/view/ten00117/default/table?lang=de (accessed on 8 September 2023).
- Verbraucherzentrale. EEG 2023: Das Hat Sich für Photovoltaik-Anlagen Geändert. 2023. Available online: https://www.verbraucherzentrale.de/wissen/energie/erneuerbare-energien/eeg-2023-das-hat-sich-fuer-photovoltaikanlagen-geaendert-75401 (accessed on 8 September 2023).
- Graulich, K.; Hilbert, I.; Heinemann, C. Einsatz und Wirtschaftlichkeit von Photovoltaik-Batteriespeichern in Kombination mit Stromsparen. 2018. Available online: https://www.oeko.de/fileadmin/oekodoc/PV-Batteriespeicher-Endbericht.pdf (accessed on 13 March 2024).
- Weniger, J.; Orth, N.; Meissner, L.; Schlüter, C.; Meyne, J. Stromspeicher-Inspektion 2023. 2023. Available online: https://solar.htw-berlin.de/wp-content/uploads/HTW-Stromspeicher-Inspektion-2023.pdf (accessed on 13 March 2024).
- Bundesministerium für Wirtschaft und Energie (BMWi). Batteriespeicher in Netzen. 2022. Available online: https://www.bmwk.de/Redaktion/DE/Publikationen/Studien/studie-batteriespeicher-in-netzen-schlussbericht.pdf?__blob=publicationFile&v=1 (accessed on 13 March 2024).
- Bundesverband der Energie- und Wasserwirtschaft. BDEW-Heizkostenvergleich Neubau 2021. 2021. Available online: https://www.bdew.de/media/documents/BDEW-HKV_Neubau.pdf (accessed on 13 March 2024).
- Brandstätt, C.; Gabriel, J.; Jahn, K.; Peters, F.; Serkowsky, J. Innovation Energiespeicher. Chancen der deutschen Industrie. Hans Böckler Stiftung. 2018. Available online: https://www.boeckler.de/pdf/p_study_hbs_404.pdf (accessed on 13 March 2024).
- Bakman, M.; Gramann, J.; Reinholz, T.; Sailer, K.; Schmid, E.; Schmidt, C. Geschäftsmodelle für Dezentrale Wasserstoffkonzepte Zeit zum Nachsteuern. Desutsche Energie-Agentur GmbH (dena). 2023. Available online: https://www.dena.de/fileadmin/dena/Publikationen/PDFs/2023/STUDIE_Geschaeftsmodelle_fuer_dezentrale_Wasserstoffkonzepte_-_Zeit_zum_Nachsteuern.pdf (accessed on 13 March 2024).
- Bundesamt, S. Umweltökonomische Gesamtrechnung—Private Haushalte und Umwelt Berichtszeitraum 2000–2020. 2022. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Publikationen/Downloads/haushalte-umwelt-pdf-5851319.pdf?__blob=publicationFile (accessed on 8 September 2023).
Group | Tenants a | Homeowners b without PV | Homeowners b with PV |
---|---|---|---|
Nb. of participants | 106 | 110 | 134 |
Share in survey | 30% | 31% | 38% |
Share in population c | 58% | 26% | 6.6% |
Will Gain + Likely Gain Importance | Neither | Will Lose + Likely Lose Importance | Do Not Know | |
---|---|---|---|---|
Sample | 71% | 11% | 1% | 17% |
Weighted sample | 66% | 14% | 1% | 19% |
Pretty Accurate Idea | Rough Idea | No Idea | |
---|---|---|---|
Sample | 6% | 39% | 55% |
Weighted sample | 4% | 38% | 57% |
Yes + More Likely Yes | More Likely No + No | Do Not Know | |
---|---|---|---|
Sample | 54% | 29% | 17% |
Weighted sample | 43% | 38% | 19% |
Yes + More Likely Yes | More Likely No + No | Do Not Know | |
---|---|---|---|
Tenants | 38% | 42% | 21% |
Homeowners | 49% | 36% | 15% |
Homeowner with PV | 70% | 14% | 16% |
Homeowner with PV + Battery | 69% | 17% | 13% |
Mean Values | Unit | Survey | Population | |
---|---|---|---|---|
Innovators | Home-Owners | Home-Owners | ||
PV owners | 0/1 dummy | 1 | 0.36 | ~0.2 a |
Battery ownership | 0/1 dummy | 0.49 | 0.23 | NA |
Battery ownership or interest | 0/1 dummy | 1 | 0.59 | NA |
HH size | Number | 3.2 | 2.7 | 2.4 b |
Avg. age | Number | 50 | 54 | 58 c |
Children | 0/1 dummy | 0.59 | 0.33 | 0.21 b |
Floor size | m2 | 171 | 186 | 133 b |
Electr. Consumption | kWh/year | 3951 | 4476 | 3774 d |
Baseline Scenario: PV System | |||||||
---|---|---|---|---|---|---|---|
Month | Standard Load Profile Total Consumption in kWh | Total Production PV System in kWh | Consumption Grid Electricity in kWh | Surplus Electricity in kWh | Monthly Costs Grid Electricity 1 in EUR | Feed-in Compensation 2 in EUR | Total Electricity Costs in EUR |
January | 571.54 | 206.86 | 493.96 | 129.28 | 157.72 | 9.18 | 148.54 |
February | 523.34 | 285.13 | 433.32 | 195.11 | 138.36 | 13.85 | 124.51 |
March | 562.38 | 693.72 | 413.38 | 544.72 | 131.99 | 38.68 | 93.32 |
April | 573.76 | 1312.2 | 367.11 | 1105.54 | 117.22 | 78.49 | 38.72 |
May | 551.01 | 1582.32 | 324.37 | 1355.68 | 103.57 | 96.25 | 7.32 |
June | 527.21 | 1673.92 | 295.06 | 1441.77 | 94.21 | 102.37 | 8.15 |
July | 563.84 | 1501.73 | 315.97 | 1253.86 | 100.89 | 89.02 | 11.87 |
August | 542.99 | 1288.32 | 347.23 | 1092.56 | 110.87 | 77.57 | 33.30 |
September | 557.38 | 883.78 | 396.63 | 723.22 | 126.64 | 51.35 | 75.30 |
October | 559.53 | 552.27 | 431.82 | 424.36 | 137.88 | 30.13 | 107.75 |
November | 555.97 | 213.24 | 471.59 | 128.85 | 150.58 | 9.15 | 141.43 |
December | 595.83 | 121.92 | 536.37 | 62.45 | 171.26 | 4.43 | 166.83 |
∑ | 6684.78 | 10,315.41 | 4826.81 | 8457.4 | 1541.20 | 600.48 | 940.73 |
Scenario A: PV System with Battery | |||||||
---|---|---|---|---|---|---|---|
Month | Standard Load Profile Total Consumption in kWh | Total Production PV System in kWh | Consumption Grid Electricity in kWh | Surplus Electricity in kWh | Monthly Costs Grid Electricity 1 in EUR | Feed-in Compensation 2 in EUR | Monthly Costs Grid Electricity in EUR |
January | 571.54 | 206.86 | 377.36 | - | 120.49 EUR | - | 120.49 |
February | 523.34 | 285.13 | 283.66 | 19.84 | 90.57 EUR | 1.41 | 89.16 |
March | 562.38 | 693.72 | 154.53 | 253.85 | 49.34 EUR | 18.02 | 31.32 |
April | 573.76 | 1312.2 | 60.52 | 775.71 | 19.32 EUR | 55.08 | −35.75 |
May | 551.01 | 1582.32 | 44.02 | 1057.8 | 14.06 EUR | 75.10 | −61.05 |
June | 527.21 | 1673.92 | 43.9 | 1156.68 | 14.02 EUR | 82.12 | −68.11 |
July | 563.84 | 1501.73 | 42.37 | 958.07 | 13.53 EUR | 68.02 | −54.49 |
August | 542.99 | 1288.32 | 57.26 | 784.16 | 18.28 EUR | 55.68 | −37.39 |
September | 557.38 | 883.78 | 75.26 | 365.27 | 24.03 EUR | 25.93 | −1.90 |
October | 559.53 | 552.27 | 121.86 | 96.84 | 38.91 EUR | 6.88 | 32.03 |
November | 555.97 | 213.24 | 352.93 | - | 112.69 EUR | - | 112.69 |
December | 595.83 | 121.92 | 480.16 | - | 153.32 EUR | - | 153.32 |
∑ | 6684.78 | 103,15.41 | 2093.83 | 5468.22 | 668.56 | 388.24 | 280.32 EUR |
Scenario B: PV System + Residential Hydrogen System | ||||||||
---|---|---|---|---|---|---|---|---|
Month | Surplus Electricity in kWh | Electricity Demand before 1 in kWh | SOCH2 in kWh | Electricity Demand after 2 in kWh | Electricity for Feed-in 3 in kWh | Monthly Costs Grid Electricity 4 in EUR | Feed-in Compensation 5 in EUR | Monthly Costs Grid Electricity in EUR |
January | - | 377.36 | - | 377.36 | - | 120.49 | - | 120.49 |
February | 19.84 | 283.66 | 12.15 | 276.98 | - | 88.44 | - | 88.44 |
March | 253.85 | 154.53 | 155.48 | 69.01 | - | 22.04 | - | 22.04 |
April | 775.71 | 60.52 | 475.12 | - | - | - | - | - |
May | 1057.8 | 44.02 | 545.45 | - | 763.33 | - | 54.20 | −54.20 |
June | 1156.68 | 43.9 | 545.45 | - | 1026.01 | - | 72.85 | −72.85 |
July | 958.07 | 42.37 | 545.45 | - | 827.75 | - | 58.77 | −58.77 |
August | 784.16 | 57.26 | 545.45 | - | 658.39 | - | 46.75 | −46.75 |
September | 365.27 | 75.26 | 545.45 | - | 195.30 | - | 13.87 | −13.87 |
October | 96.84 | 121.86 | 467.93 | - | - | - | - | - |
November | - | 352.93 | 246.36 | 217.43 | - | 67.43 | - | 69.43 |
December | - | 480.16 | - | 480.16 | - | 153.32 | - | 153.32 |
∑ | 5468.22 | 2093.83 | 1403.11 | 3674.13 | 448.01 | 260.86 | 207.28 |
CapEx in EUR | Calculated Service Life in Years | Annualised CapEx in EUR | OpEx in EUR | Annual Costs in EUR | ||
---|---|---|---|---|---|---|
Annual Electricity Costs | Maintenance | |||||
Baseline Scenario: PV System | -- 1 | -- 1 | -- 1 | 940 | -- 1 | 940 |
Scenario A: PV System + Battery | 18,000 2 | 20 4 | 900 | 280 | 0 6 | 1180 |
Scenario B: PV System + Hydrogen Storage System | 87,125 3 | 18 5 | 4840 | 207 | 499 7 | 5546 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klingler, A.-L.; Dörr, J. Hydrogen Micro-Systems: Households’ Preferences and Economic Futility. Energies 2024, 17, 1524. https://doi.org/10.3390/en17071524
Klingler A-L, Dörr J. Hydrogen Micro-Systems: Households’ Preferences and Economic Futility. Energies. 2024; 17(7):1524. https://doi.org/10.3390/en17071524
Chicago/Turabian StyleKlingler, Anna-Lena, and Julian Dörr. 2024. "Hydrogen Micro-Systems: Households’ Preferences and Economic Futility" Energies 17, no. 7: 1524. https://doi.org/10.3390/en17071524
APA StyleKlingler, A. -L., & Dörr, J. (2024). Hydrogen Micro-Systems: Households’ Preferences and Economic Futility. Energies, 17(7), 1524. https://doi.org/10.3390/en17071524