Conversion of Sewage Sludge into Biofuels via Different Pathways and Their Use in Agriculture: A Comprehensive Review
Abstract
:1. Introduction
2. Characteristics of Sludge from Municipal Wastewater Treatment
3. Sewage Sludge Applications
Sewage Sludge Management in Poland
4. Sewage Sludge Use in Agriculture
Benefits and Risks of Using Sewage Sludge
5. Thermal Treatment of Sewage Sludge
Thermochemical Treatment of Sewage Sludge for Energy Conversion
6. HTC Hydrothermal Carbonisation of Sewage Sludge
Hydrothermal Carbonisation of Sewage Sludge According to the Ingelia Technology
7. Economic Evaluation of Biocarbon Pellet Production from Sewage Sludge
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- U.S. Energy Information Administration. Biomass Explained. Available online: https://www.eia.gov/energyexplained/biomass/ (accessed on 10 November 2023).
- Biosolids Program Strategy: Fiscal Year 2020–2025; U.S. Environmental Protection Agency Office of Water Office of Science and Technology: Washington, DC, USA, 2021. Available online: https://static1.squarespace.com/static/54806478e4b0dc44e1698e88/t/6192943a23b235491251859c/1636996157317/epa+biosolids+strategy+2020-2025_october2021 (accessed on 12 November 2023).
- United States Environmental Protection Agency. Basic Information about Biosolids. Available online: https://www.epa.gov/biosolids/basic-information-about-biosolids#Biosolids%20Uses5 (accessed on 10 November 2023).
- Vaithyanathan, V.K.; Cabana, H. Integrated Biotechnology Management of Biosolids: Sustainable Ways to Produce Value—Added Products. Front. Water. 2021, 3, 729679. [Google Scholar] [CrossRef]
- Prajapat, N.; Raval, A.D.; Pitroda, J.R.; Kulkarni, V.V. A Review on Sewage Sludge Applications and Utilization. Int. J. Eng. Res. 2019, 8, 109–112. [Google Scholar]
- Speight, J.G.; Singh, K. Environmental Management of Energy from Biofuels and Biofeedstocks; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Aziz, S.Q.; Mustafa, J.S. Wastewater sludge characteristics, treatment techniques, and energy production. Recycl. Sustain. Develop. 2022, 15, 9–27. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, F.; Li, Q.; Xue, C.; Xia, X.; Yu, H.; Zhao, Q.; Jiang, J.; Bai, S. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivalent emissions analysis. Environ. Int. 2020, 144, 106093. [Google Scholar] [CrossRef]
- Pelkmans, L.; Kejun, D.; Zhongying, W.; Dongming, R. Implementation of Bioenergy in China; Country Reports; IEA Bioenergy: Paris, France, 2021; p. 10. Available online: https://www.ieabioenergy.com/wp-content/uploads/2021/11/CountryReport2021_China_final.pdf (accessed on 16 November 2023).
- Eurostat. Sewage Sludge Production and Disposal. Available online: https://data.europa.eu/data/datasets/g1a4auwbnkfrmzm3dg6zg?locale=en (accessed on 10 November 2023).
- Sewage Sludge Generation in Europe 2020, by Country. Published by Statista Research Department. Available online: https://www.statista.com/statistics/1393771/sewage-sludge-generation-europe/ (accessed on 4 November 2023).
- Bianchini, A.; Bonfiglioli, L.; Pellegrini, M.; Saccani, C. Sewage sludge management in Europe: A critical analysis of data quality. Int. J. Environ. Waste Manag. 2016, 18, 226–238. [Google Scholar] [CrossRef]
- Council Directive of 18 March 1991 Amending Directive 75/442/EEC on Waste (91/156/EEC). Official Journal of the European Communities. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0156 (accessed on 2 November 2023).
- Council Directive of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (86/278/EEC) Consolidated Text Access the Current Version (01/01/2023). Available online: http://data.europa.eu/eli/dir/1986/278/2009-04-20 (accessed on 2 November 2023).
- Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Official Journal of the European Communities. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031 (accessed on 2 November 2023).
- European Commission, Working Document Sludge and Biowaste, 21 September 2010, Brussels. Available online: https://www.compostnetwork.info/download/no-012010-eu-working-document-sludge-biowaste/ (accessed on 19 December 2023).
- Vávrová, K.; Králík, T.; Janota, L.; Šolcováb, O.; Čárský, M.; Soukup, K.; Vítek, M. Process Economy of Alternative Fuel Production from Sewage Sludge and Waste Celluloses Biomass. Energies 2023, 16, 518. [Google Scholar] [CrossRef]
- Canziani, R.; Spinosa, L. 1—Sludge from wastewater treatment plants. In Industrial and Municipal Sludge. Emerging Concerns and Scope for Resource Recovery; Prasad, M.N.V., Favas, P., Vithanage, M., Mohan, S.V., Eds.; Elsevier: Amsterdam, The Netherlands; Butterworth-Heinemann: Oxford, UK, 2019; pp. 3–30. [Google Scholar]
- Facchini, F.; Mummolo, G.; Vitti, M. Scenario Analysis for Selecting Sewage Sludge-to-Energy/Matter Recovery Processes. Energies 2021, 14, 276. [Google Scholar] [CrossRef]
- Bonfiglioli, L.; Bianchini, A.; Pellegrini, M.; Saccani, C. Sewage sludge: Characteristics and recovery options. J. Alma Mater Stud.—Univ. Di Bologna 2014, 1–21. [Google Scholar] [CrossRef]
- Kumar, V.; Chopra, A.K.; Kumar, A. A review on sewage sludge (Biosolids) a resource for sustainable agriculture. Arch. Agric. Environ. Sci. 2017, 2, 340–347. [Google Scholar] [CrossRef]
- Grobelak, A.; Czerwińska, K.; Murtaś, A. 7—General considerations on sludge disposal, industrial and municipal sludge. In Industrial and Municipal Sludge. Emerging Concerns and Scope for Resource Recovery; Prasad, M.N.V., de Campos Favas, P.J., Vithanage, M., Mohan, S.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 135–153. [Google Scholar] [CrossRef]
- Iticescu, C.; Georgescu, L.P.; Murariu, G.; Circiumaru, A.; Timofti, M. The Characteristics of Sewage Sludge Used on Agricultural Lands. AIP Conf. Proc. 2018, 2022, 020001. [Google Scholar] [CrossRef]
- Delibacak, S.; Voronina, L.; Morachevskaya, E.; Ongun, A.R. Use of sewage sludge in agricultural soils: Useful or harmful. Eur. J. Soil Sci. 2020, 9, 126–139. [Google Scholar] [CrossRef]
- Hudcová, H.; Vymazal, J.; Rozkošný, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef]
- El Hammoudani, Y.; Dimane, F.; El Ouarghi, H. Characterization of Sewage Sludge Generated from Wastewater Treatment Plant in Relation to Agricultural Use. Environ. Water Sci. Public Health Territ. Intell. J. 2019, 3, 47–52. Available online: http://revues.imist.ma/?journal=ewash-ti (accessed on 12 December 2023).
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A review on wastewater sludge valorisation and its challenges in the context of a circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Kowalski, Z.; Kulczycka, J.; Makara, A.; Verhé, R.; De Clercq, G. Assessment of Energy Recovery from Municipal Waste Management Systems Using Circular Economy Quality Indicators. Energies 2022, 15, 8625. [Google Scholar] [CrossRef]
- European Commission, Environment Action Programme to 2030. Available online: https://environment.ec.europa.eu/strategy/environment-action-programme-2030_en (accessed on 16 November 2023).
- United Nations 2030 Agenda for Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 16 November 2023).
- Chojnacka, K. Valorization of biorefinery residues for sustainable fertilizer production: A comprehensive review. Biomass Convers. Biorefin. 2023, 13, 14359–14388. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of June 5, 2019, Laying Down Rules for Making EU Fertilizer Products Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1009 (accessed on 10 December 2023).
- Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-fuels from thermochemical conversion of renewable resources: A review. Renew. Sustain. Energy Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Achaw, O.W. Bioenergy and biofuel production from biomass using thermochemical conversions technologies—A review. AIMS Energy 2022, 10, 585–647. [Google Scholar] [CrossRef]
- Child, M. Industrial-Scale Hydrothermal Carbonization of Waste Sludge Materials for Fuel Production. Master’s Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2014. [Google Scholar]
- Kowalski, Z.; Kulczycka, J.; Verhé, R.; Desender, L.; De Clercq, G.; Makara, A.; Generowicz, N.; Harazin, P. Second-generation biofuel production from the organic fraction of municipal solid waste. Front. Energy Res. 2022, 10, 919415. [Google Scholar] [CrossRef]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Fröling, M.; Antal, M.J.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32–65. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Towards the Circular Economy, Vol. 3: Accelerating the Scale-up across Global Supply Chains. 2014. Available online: https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-3-accelerating-the-scale-up-across-global (accessed on 12 November 2023).
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular economy: The concept and its limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Kowalski, Z.; Makara, A. The circular economy model used in the Polish agro-food consortium: A case study. J. Clean. Prod. 2021, 284, 124751. [Google Scholar] [CrossRef]
- Kowalski, Z.; Makara, A. Sustainable Systems for the Production of District Heating Using Meat-Bone Meal as Biofuel: A Polish Case Study. Energies 2022, 15, 3615. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Conversion of biomass to biofuels and life cycle assessment: A review. Environ. Chem. Lett. 2021, 19, 4075–4118. [Google Scholar] [CrossRef]
- Huang, C.; Mohamed, B.A.; Li, L.Y. Comparative life-cycle energy and environmental analysis of sewage sludge and biomass co-pyrolysis for biofuel and biochar production. Chem. Eng. J. 2023, 457, 141284. [Google Scholar] [CrossRef]
- Carrier, M.; Hugo, T.; Gorgens, J.; Knoetze, H. Comparison of slow and vacuum pyrolysis of sugar cane bagasse. J. Anal. Appl. Pyrol. 2011, 90, 18–26. [Google Scholar] [CrossRef]
- Kowalski, Z.; Kulczycka, J.; Makara, A.; Harazin, P. Quantification of material recovery from meat waste incineration—An approach to an updated food waste hierarchy. J. Hazard Mater. 2021, 416, 126021. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, Z.; Banach, M.; Makara, A. Optimisation of the co-combustion of meat–bone meal and sewage sludge in terms of the quality produced ashes used as substitute of phosphorites. Environ. Sci. Pollut. Res. 2021, 28, 8205–8214. [Google Scholar] [CrossRef]
- Fijalkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The presence of contaminations in sewage sludge—The current situation. J Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef]
- Moško, J.; Pohořelý, M.; Cajthaml, T.; Jeremiáš, M.; Robles-Aguilar, A.A.; Skoblia, S.; Beňo, Z.; Innemanová, P.; Linhartová, L.; Michalíková, K.; et al. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge. Chemosphere 2021, 265, 129082. [Google Scholar] [CrossRef]
- Abbasi, T.; Patnaik, P.; Rahi, R.; Abbasi, S.A. A circular biorefinery-integrating wastewater treatment with the generation of an energy precursor and an organic fertilizer. Sustainability 2022, 14, 5714. [Google Scholar] [CrossRef]
- Escala, M.; Zumbühl, T.; Koller, C.; Junge, R.; Krebs, R. Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge: A feasibility study on a laboratory scale. Energy Fuels 2013, 27, 454–460. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Conrad, M.; Sun, S.-N.; Sanchez, A.; Rocha, G.J.M.; Romaní, A.; Castro, E.; Torres, A.; Rodríguez-Jasso, R.M.; Andrade, L.P.; et al. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour. Technol. 2020, 299, 122685. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Garg, A. 18-A review on hydrothermal pretreatment of sewage sludge: Energy recovery options and major challenges. In Advanced Organic Waste Management, Sustainable Practices and Approaches; Hussain, C., Hait, S., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 297–314. [Google Scholar] [CrossRef]
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Kwapinski, W.; Kolinovic, I.; Leahy, J.J. Sewage Sludge Thermal Treatment Technologies with a Focus on Phosphorus Recovery: A Review. Waste Biomass Valorization 2021, 12, 5837–5852. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. SUN, McKinsey Centre for Business and Environment. Growth Within: A Circular Economy Vision for a Competitive Europe. 2015. Available online: https://www.ellenmacarthurfoundation.org/growth-within-a-circular-economy-vision-for-a-competitive-europe (accessed on 12 November 2023).
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in the context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Rizos, V.; Behrens, A.; Van der Gaast, W.; Hofman, E.; Ioannou, A.; Kafyeke, T.; Flamos, A.; Rinaldi, R.; Papadelis, S.; Hirschnitz-Garbers, M.; et al. Implementation of circular economy business models by small and medium-sized enterprises (SMEs): Barriers and enablers. Sustainability 2016, 8, 1212. [Google Scholar] [CrossRef]
- Kowalski, Z.; Wzorek, Z.; Gorazda, K.; Jodko, M.; Przewrocki, P.; Kulczycka, J. Thermal utilization of sewage sludge in Poland. Miner. Energy 2003, 18, 34–41. [Google Scholar] [CrossRef]
- Wiśniowska, E.; Grobelak, A.; Kokot, P.; Kacprzak, M. 10—Sludge legislation-comparison between different countries. In Industrial and Municipal Sludge. Emerging Concerns and Scope for Resource Recovery; Prasad, M.N.V., de Campos Favas, P.J., Vithanage, M., Mohan, S.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 201–224. [Google Scholar] [CrossRef]
- Lamastra, L.; Suciu, N.A.; Trevisan, M. Sewage sludge for sustainable agriculture: Contaminants’ contents and potential use as fertilizer. Chem. Biol. Technol. Agric. 2018, 5, 10. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges, and considerations. Renew. Sust. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Statistics Poland. 2022. Available online: https://stat.gov.pl (accessed on 2 November 2023).
- Przydatek, G.; Wota, A.K. Analysis of the comprehensive management of sewage sludge in Poland. J. Mater. Cycles Waste Manag. 2020, 22, 80–88. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef]
- Sewage Sludge in Agriculture: Code of Practice for England, Wales and Northern Ireland. Department for Environment, Food & Rural Affairs and Environment Agency. Available online: https://www.gov.uk/government/publications/sewage-sludge-in-agriculture-code-of-practice (accessed on 14 November 2023).
- Energy Technology Perspectives: Scenarios and Strategies to 2050. International Energy Agency. Available online: https://iea.blob.core.windows.net/assets/0e190efb-daec-4116-9ff7-ea097f649a77/etp2008.pdf (accessed on 8 November 2023).
- Kim, Y.; Parker, W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresour. Technol. 2008, 99, 1409–1416. [Google Scholar] [CrossRef]
- Özbay, N.; Pütün, A.E.; Uzun, B.B.; Pütün, E. Biocrude from biomass: Pyrolysis of cottonseed cake. Renew. Energy 2001, 24, 615–625. [Google Scholar] [CrossRef]
- Tan, Y.Y.; Huong, Y.Z.; Tang, F.E.; Saptoro, A. A review of sewage sludge dewatering and stabilization in reed bed system: Towards the process-based modeling. Int. J. Environ. Sci. Technol. 2024, 21, 997–1020. [Google Scholar] [CrossRef]
- Qiu, C.; Xu, W.; Wang, Y.; Yang, J.; Su, X.; Lin, Z. Hydrothermal alkaline conversion of sewage sludge: Optimization of process parameters and characterization of humic acid. Environ Sci. Pollut. Res. 2021, 28, 57695–57705. [Google Scholar] [CrossRef] [PubMed]
- Rathika, K.; Kumar, S.; Yadav, B.R. Enhanced energy and nutrient recovery via hydrothermal carbonisation of sewage sludge: Effect of process parameters. Sci. Total Environ. 2024, 906, 167828. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Nakakubo, T. Design of a sewage sludge energy conversion technology introduction scenario for large city sewage treatment plants in Japan: Focusing on zero fuel consumption. J. Clean. Prod. 2022, 379, 134794. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energ. Combust. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Sharma, R.; Jasrotia, K.; Singh, N.; Ghosh, P.; Srivastava, S.; Sharma, N.R.; Singh, J.; Kanwar, R.; Kumar, A. A Comprehensive Review on Hydrothermal Carbonization of Biomass and its Applications. Chem. Afr. 2020, 3, 1–19. [Google Scholar] [CrossRef]
- Stirling, R.J.; Snape, C.E.; Meredith, W. The impact of hydrothermal carbonisation on the char reactivity of biomass. Fuel Process. Technol. 2018, 177, 152–158. [Google Scholar] [CrossRef]
- Suresh, A.; Alagusundaram, A.; Kumar, P.S.; Nguyen Vo, D.-V.; Christopher, F.C.; Balaji, B.; Viswanathan, V.; Sankar, S. Microwave pyrolysis of coal, biomass and plastic waste: A review. Environ Chem. Lett. 2021, 19, 3609–3629. [Google Scholar] [CrossRef]
- Watson, J.; Zhang, Y.; Si, B.; Chen, W.T.; de Souza, R. Gasification of biowaste: A critical review and outlooks. Renew. Sustain. Energy Rev. 2018, 83, 1–17. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, J.; Pis, J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef]
- Bergman, P.C.A.; Kiel, J.H.A. Torrefaction for biomass upgrading. In Proceedings of the 14th European Biomass Conference & Exhibition, Paris, France, 17–21 October 2005. [Google Scholar]
- Niu, Y.; Lv, Y.; Lei, Y.; Liu, S.; Liang, Y.; Wang, D.; Hui, S. Biomass torrefaction: Properties, applications, challenges, and economy. Renew. Sust. Energ. Rev. 2019, 115, 109395. [Google Scholar] [CrossRef]
- Sadaka, S.; Negi, S. Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ. Prog. Sustain. Energy 2009, 28, 427–434. [Google Scholar] [CrossRef]
- Li, L.; Rowbotham, J.S.; Greenwell, H.C.; Dyer, P.W. Chapter 8—An introduction to pyrolysis and catalytic pyrolysis: Versatile techniques for biomass conversion. In New and Future Developments in Catalysis; Suib, S.L., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2013; pp. 173–208. [Google Scholar] [CrossRef]
- Demirbas, A.; Arin, G. An overview of biomass pyrolysis. Energy Sources 2002, 24, 471–482. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Iliopoulou, E.F.; Triantafyllidis, K.S.; Lappas, A.A. Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high-value chemicals. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e322. [Google Scholar] [CrossRef]
- Ratnasari, D.K.; Yang, W.; Jönsson, P.G. Catalytic pyrolysis of lignocellulosic biomass: The influence of the catalyst regeneration sequence on the composition of upgraded pyrolysis oils over a H ZSM-5/Al-MCM-41 catalyst mixture. ACS Omega 2020, 5, 28992–29001. [Google Scholar] [CrossRef]
- Czernik, S.; Bridgwater, A.V. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 2004, 18, 590–598. [Google Scholar] [CrossRef]
- Luna-Murillo, B.; Pala, M.; Paioni, A.L.; Baldus, M.; Ronsse, F.; Prins, W.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Catalytic fast pyrolysis of biomass: Catalyst characterization reveals the feed-dependent deactivation of a technical ZSM-5-based catalyst. ACS Sustain. Chem. Eng. 2021, 9, 291–304. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag. 2007, 48, 87–92. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Liu, S.; Fan, L.; Zhou, N.; Min, M.; Cheng, Y.; Peng, P.; Anderson, E.; Wang, Y.; et al. Microwave-assisted pyrolysis of biomass for bio-oil production. In Pyrolysis; Samer, M., Ed.; IntechOpen: London, UK, 2017; pp. 129–166. [Google Scholar] [CrossRef]
- Budarin, V.L.; Shuttleworth, P.S.; De Bruyn, M.; Farmer, T.J.; Gronnow, M.J.; Pfaltzgraff, L.; Macquarrie, D.J.; Clark, J.H. The potential of microwave technology for the recovery, synthesis and manufacturing of chemicals from bio-wastes. Catal. Today 2015, 239, 80–89. [Google Scholar] [CrossRef]
- Werle, S.; Dudziak, M. 25-Gasification of sewage sludge. In Industrial and Municipal Sludge, Emerging Concerns and Scope for Resource Recovery; Prasad, M.N.V., de Campos Favas, P.J., Vithanage, M., Mohan, S.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 575–593. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Zawawi, N.A.; Kasim, F.H.; Inayat, A.; Khasri, A. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization, and economic evaluation. Renew. Sustain. Energy Rev. 2016, 53, 1333–1347. [Google Scholar] [CrossRef]
- Choi, Y.K.; Cho, M.H.; Kim, J.S. Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal. Energy 2015, 91, 160–167. [Google Scholar] [CrossRef]
- Matsumura, Y.; Minowa, T. Fundamental design of a continuous biomass gasification process using a supercritical water fluidized bed. Int. J. Hydrog. Energy 2004, 29, 701–707. [Google Scholar] [CrossRef]
- Sansaniwal, S.K.; Pal, K.; Rosen, M.A.; Tyagi, S.K. Recent advances in the development of biomass gasification technology: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 72, 363–384. [Google Scholar] [CrossRef]
- Sandquist, J.; Tschentscher, R.; del Alamo Serrano, G. Hydrothermal liquefaction of organic resources in biotechnology: How does it work and what can be achieved? Appl. Microbiol. Biotechnol. 2019, 103, 673–684. [Google Scholar] [CrossRef]
- Chuntanapum, A.; Matsumura, Y. Formation of tarry material from 5-HMF in subcritical and supercritical water. Ind. Eng. Chem. Res. 2009, 48, 9837–9846. [Google Scholar] [CrossRef]
- Matsumura, Y. Chapter 9—Hydrothermal Gasification of Biomass. In Recent Advances in Thermo-Chemical Conversion of Biomass; Pandey, A., Bhaskar, T., Stöcker, M., Sukumaran, R.K., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2015; pp. 251–267. [Google Scholar] [CrossRef]
- Kruse, A.; Bernolle, P.; Dahmen, N.; Dinjus, E.; Maniam, P. Hydrothermal gasification of biomass: Consecutive reactions to long-living intermediates. Energy Environ. Sci. 2010, 3, 136–143. [Google Scholar] [CrossRef]
- Kruse, A. Hydrothermal biomass gasification. J. Supercrit. Fluids 2009, 47, 391–399. [Google Scholar] [CrossRef]
- Alptekin, F.M.; Celiktas, M.S. Review on Catalytic Biomass Gasification for Hydrogen Production as a Sustainable Energy Form and Social, Technological, Economic, Environmental, and Political Analysis of Catalysts. ACS Omega 2022, 7, 24918–24941. [Google Scholar] [CrossRef]
- IEA International Energy Agency. Tracking Clean Energy Progress 2023. Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 17 November 2023).
- Working Party on Agricultural Policies and Markets. Available online: https://one.oecd.org/document/TAD/CA/APM/WP(2009)11/FINAL/en/pdf (accessed on 15 November 2023).
- Kumar, A.; Kumar, N.; Baredar, P.; Shukla, A. A review of biomass energy resources, potential, conversion, and policy in India. Renew. Sustain. Energy Rev. 2015, 45, 530–539. [Google Scholar] [CrossRef]
- Arauzo, P.J.; Atienza-Martínez, M.; Ábrego, J.; Olszewski, M.P.; Cao, Z.; Kruse, A. Combustion characteristics of hydrochar and pyrochar derived from digested sewage sludge. Energies 2020, 13, 4164. [Google Scholar] [CrossRef]
- Marinovic, A.; Pileidis, F.D.; Titirici, M.M. Chapter—5: Hydrothermal Carbonisation (HTC): History, State-of-the-Art and Chemistry. In Porous Carbon Materials from Sustainable Precursors; White, R.J., Ed.; Royal Society of Chemistry: London, UK, 2015; pp. 129–155. [Google Scholar] [CrossRef]
- Kruse, A.; Funke, A.; Titirici, M.-M. Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 2013, 17, 515–521. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Holdich, R.G.; Shama, G.; Wheatley, A.D.; Sohail, M.; Martin, S.J. Kinetics of faecal biomass hydrothermal carbonisation for hydrochar production. Appl. Energy 2013, 111, 351–357. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fühenr, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Cebi, D.; Celiktas, M.S.; Sarptas, H. A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy. Circ. Econ. Sustain. 2022, 2, 1345–1367. [Google Scholar] [CrossRef]
- Bergius, F. Die Anwendung Hoher Drucke bei Chemischen Vorgängen und Eine Nachbildung des Entstehungsprozesses der Steinkohle; Publisher Knapp: Halle, Germany, 1913. [Google Scholar]
- Kowalski, Z.; Kulczycka, J.; Makara, A.; Mondello, G.; Salomone, R. Industrial Symbiosis for Sustainable Management of Meat Waste: The Case of Smiłowo Eco-Industrial Park, Poland. Int. J. Environ. Res. Public Health 2023, 20, 5162. [Google Scholar] [CrossRef]
- Choudhary, C. Industrial Ecology: Concepts, System View and Approaches. Int. J. Eng. Res. Technol. 2012, 1, 1–6. [Google Scholar] [CrossRef]
- Djandja, O.S.; Yin, L.-X.; Wang, Z.-C.; Duan, P.-G. From wastewater treatment to resources recovery through hydrothermal treatments of municipal sewage sludge: A critical review. Process Saf. Environ. Prot. 2021, 151, 101–127. [Google Scholar] [CrossRef]
- Dos Santos Dalbelo, T.; Rutkowski, E.W. Industrial Ecology: Ultimate of the Industrial Revolution Toward Sustainability. In Industry, Innovation and Infrastructure; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Cham, Switzerland, 2021; pp. 553–563. [Google Scholar] [CrossRef]
- Li, A.; Antizar-Ladislao, B.; Khraisheh, M. Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst. Eng. 2007, 30, 189–196. [Google Scholar] [CrossRef]
- Lu, X.; Jordan, B.; Berge, N.D. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques. Waste Manag. 2012, 32, 1353–1365. [Google Scholar] [CrossRef]
- Nicolae, S.A.; Au, H.; Modugno, P.; Luo, H.; Szego, A.E.; Qiao, M.; Li, L.; Yin, W.; Heeres, H.J.; Berge, N.; et al. Recent advances in hydrothermal carbonisation: From tailored carbon materials and biochemicals to applications and bioenergy. Green Chem. 2020, 22, 4747–4800. [Google Scholar] [CrossRef]
- Owsianiak, M.; Ryberg, M.; Renz, M.; Hitzl, M.; Hauschild, M. Environmental performance of hydrothermal carbonization of four wet biomass waste streams at industry-relevant scales. ACS Sustain. Chem. Eng. 2016, 4, 6783–6791. [Google Scholar] [CrossRef]
- González-Arias, J.; Sánchez, M.E.; Cara-Jiménez, J.; Baena-Moreno, F.M.; Zhang, Z. Hydrothermal carbonization of biomass and waste: A review. Environ. Chem. Lett. 2022, 20, 211–221. [Google Scholar] [CrossRef]
- Fuertes, A.B.; Camps Arbestain, M.; Sevilla, M.; Maciá-Agulló, J.A.; Fiol, S.; López, R.; Smernik, R.J.; Aitkenhead, W.P.; Arce, F.; Macias, F. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonization of corn stover. Aust. J. Soil Res. 2010, 48, 618–626. [Google Scholar] [CrossRef]
- Liu, X.; Zhai, Y.; Li, S.; Wang, B.; Wang, T.; Liu, Y.; Qiu, Z.; Li, C. Hydrothermal carbonization of sewage sludge: Effect of feed-water pH on hydrochar’s physicochemical properties, organic component and thermal behavior. J. Hazard. Mater. 2020, 388, 122084. [Google Scholar] [CrossRef]
- Zhai, Y.; Peng, C.; Xu, B.; Wang, T.; Li, C.; Zeng, G.; Zhu, Y. Hydrothermal carbonization of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling. Energy 2017, 127, 167–174. [Google Scholar] [CrossRef]
- Wang, W.; Chen, W.-H.; Jang, M.-F. Characterization of Hydrochar Produced by Hydrothermal Carbonization of Organic Sludge. Future Cities Environ. 2020, 6, 13. [Google Scholar] [CrossRef]
- Titirici, M.M. Chapter 12—Hydrothermal Carbons: Synthesis, Characterization, and Applications. In Novel Carbon Adsorbents; Tascón, J.M.D., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; pp. 351–399. [Google Scholar] [CrossRef]
- Titirici, M.M.; Thomas, A.; Antonietti, M. Back in the black: Hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J. Chem. 2007, 31, 787–789. [Google Scholar] [CrossRef]
- Burguete, P.; Corma, A.; Hitzl, M.; Modrego, R.; Ponce, E.; Renz, M. Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization. Green Chem. 2016, 18, 1051–1060. [Google Scholar] [CrossRef]
- Davies, G.; El Sheikh, A.; Collett, C.; Yakub, I.; McGregor, J. Chapter 5—Catalytic carbon materials from biomass. In Emerging Carbon Materials for Catalysis; Sadjadi, S., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 161–195. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Shama, G.; Wheatley, A.D.; Martin, S.J.; Holdich, R.G. Hydrothermal carbonization of sewage sludge: Effect of process conditions on product characteristics and methane production. Bioresour Technol. 2015, 177, 318–327. [Google Scholar] [CrossRef]
- Parmar, K.R.; Ross, A.B. Integration of Hydrothermal Carbonisation with Anaerobic Digestion; Opportunities for Valorisation of Digestate. Energies 2019, 12, 1586. [Google Scholar] [CrossRef]
- Picone, A.; Volpe, M.; Giustra, M.G.; Di Bella, G.; Messineo, A. Hydrothermal carbonization of lemon peel waste: Preliminary results on the effects of temperature during process water recirculation. Appl. Syst. Innov. 2021, 4, 19. [Google Scholar] [CrossRef]
- Inagaki, M.; Kang, F.; Toyoda, M.; Konno, H. Advanced materials science and engineering of carbon. MRS Bull. 2014, 39, 1018. [Google Scholar] [CrossRef]
- Hernandez, M.; Salimbeni, A.; Hitzl, M.; Zhang, J.; Wang, G.; Wang, K.; Wang, C. Evaluation of Utilising Ingelia Hydrochar Produced from Organic Residues for Blast Furnaces Injection—Comparison with Anthracite and Bituminous Coal. In Proceedings of the 26th European Biomass Conference & Exhibition (EUBCE 2018) in Copenhagen, Copenhagen, Denmark, 14–17 May 2018; pp. 1560–1568. [Google Scholar] [CrossRef]
- Hernandez, M.L.; Hitzl, M.; Corma, A.; Renz, M. Hydrothermal Carbonisation of Organic Fraction Municipal Solid Waste. In Proceedings of the HTC 2017—The 1st International Symposium on Hydrothermal Carbonisation: Possibilities and Limits for Feedstocks, Processes and Applications, London, UK, 3–4 April 2017. [Google Scholar]
- Hitzl, M.; Corma, A.; Pomares, F.; Renz, M. The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catal. Today 2015, 257, 154–159. [Google Scholar] [CrossRef]
- Titirici, M.M.; Antonietti, M.; Baccile, N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem. 2008, 10, 1204–1212. [Google Scholar] [CrossRef]
- Hernández, M.L.; Latorre, M.B.A.; Hitzl, M. Industrial HTC Technology applied to Sewage Sludge Treatment. In Proceedings of the International VDI Conference 2017 Sewage Sludge Treatment, Copenhagen, Denmark, 17–18 May 2017. [Google Scholar]
- Renz, M.; Corma, A.; Hitzl, M. Biocoal Water Fuel (BWF) obtained by Hydro Thermal Carbonization (HTC). In Proceedings of the 21st European Biomass Conference and Exhibition, Copenhagen, Denmark, 3–7 June 2013. [Google Scholar]
- Tasca, A.L.; Puccini, M.; Gori, R.; Corsi, I.; Raspolli Galletti, A.M.; Vitolo, S. Hydrothermal carbonization of sewage sludge: A critical analysis of process severity, hydrochar properties and environmental implications. Waste Manag. 2019, 93, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ingelia. Ingelia Biorefinery—from Organic Waste to High Value Bioproducts. Available online: https://ingelia.com/index.php/quienes-somos/english-ingelias-hystory/?lang=en (accessed on 10 November 2023).
- PN-EN ISO 17225-8:2023-10; Solid Biofuels—Fuel Specifications and Classes—Part 8: Fuel Classes from Thermally Processed and Compressed Biomass for Non-Industrial and Industrial Use. Polish Committee for Standardization: Warsaw, Poland, 2023.
- Natural Gas (Henry Hub). Markets Insider. Available online: https://markets.businessinsider.com/news/commodities/natural-gas-price?miRedirects=1 (accessed on 15 December 2023).
Country | 2016 | 2018 | 2020 |
---|---|---|---|
Germany | 1749.86 | ||
Spain | 1174.4 | 1210.4 | |
France | 1006.0 | 1174.0 | 1174.0 |
Italy | 1100.25 | 1098.08 | |
United Kingdom | 1136.7 | ||
Poland | 568.33 | 583.07 | 568.86 |
Netherlands | 347.6 | 341.03 | 353.85 |
Turkey | 299.30 | 318.50 | 314.33 |
Romania | 240.41 | 247.76 | 254.22 |
Austria | 228.01 | ||
Hungary | 215.08 | 217.842 | 227.89 |
Czech Republic | 206.71 | 228.22 | 219.11 |
Sweden | 211.60 | ||
Switzerland | 177.0 | 177.0 | |
Belgium | 166.0 | ||
Finland | 160.20 | ||
Norway | 14.6 | 157.15 | |
Portugal | 119.17 | 119.17 | |
Greece | 119.77 | 103.28 | |
Albania | 98.12 | 94.5 | 97.1 |
Ireland | 56.02 | 58.77 | 58.45 |
Slovakia | 53.05 | 55.93 | 55.52 |
Bulgaria | 65.8 | 68.6 | 44.43 |
Lithuania | 44.42 | 44.19 | 41.05 |
Slovenia | 32.8 | 38.1 | 31.0 |
Latvia | 25.92 | 24.59 | 23.15 |
Croatia | 19.72 | 19.23 | 22.51 |
Estonia | 18.34 | 18.99 | |
Malta | 10.77 | 8.28 | 10.36 |
Serbia | 11.2 | 9.6 | 10.0 |
Bosnia and Herzegovina | 9.5 | 9.5 | 9.5 |
Luxembourg | 8.92 | 8.28 | 9.47 |
Cyprus | 7.41 | 8.41 | 8.41 |
Country | Production | Landfill | Agriculture | Incineration | Compost and Other Applications |
---|---|---|---|---|---|
Austria * | 263 | 21 | 44 | 115 | 83 |
Belgium * | 176 | 0 | 17 | 113 | 0 |
Denmark * | 141 | 1 | 74 | 34 | 0 |
Finland *** | 149 | 4 | 8 | 0 | 133 |
France * | 966 | 42 | 727 | 181 | 0 |
Germany * | 1780 | 0 | 566 | 1004 | 317 |
Greece ** | 147 | 80 | 6 | 36 | 0 |
Ireland ** | 86 | 0 | 58 | 0 | 28 |
Italy * | 1103 | 462 | 316 | 37 | 0 |
Luxembourg * | 10 | 0 | 5 | 1 | 0 |
Netherlands * | 351 | 0 | 0 | 330 | 0 |
Portugal *** | 344 | 22 | 226 | 0 | 0 |
Spain * | 1205 | 96 | 995 | 62 | 0 |
Sweden * | 204 | 8 | 50 | 2 | 65 |
UK * | 1419 | 9 | 1118 | 260 | 0 |
Bulgaria ** | 52 | 28 | 18 | 0 | 1 |
Cyprus * | 8 | 0 | 7 | 0 | 0 |
Czech Republic ** | 218 | 14 | 108 | 7 | 73 |
Estonia ** | 18 | 2 | 1 | 0 | 15 |
Hungary ** | 168 | 2 | 78 | 30 | 43 |
Latvia * | 22 | 2 | 8 | 0 | 0 |
Lithuania ** | 52 | 0 | 10 | 0 | 11 |
Malta ** | 6 | 6 | 0 | 0 | 0 |
Poland ** | 519 | 51 | 116 | 42 | 31 |
Romania ** | 114 | 54 | 2 | 0 | 0 |
Slovakia ** | 59 | 8 | 0 | 0 | 38 |
Slovenia ** | 26 | 2 | 0 | 5 | 2 |
Parameter | Type of Sludge | |||
---|---|---|---|---|
Unit | Poorly Fermented | Well Fermented | Very Well Fermented | |
pH | - | 6.5–7 | 7.2–7.5 | 7.4–7.8 |
Dry matter, DM | [%] | 4–12 | 4–12 | 4–12 |
Loss on ignition | [% DM at 550 °C] | 55–70 | 45–55 | 30–45 |
Calorific value | [MJ/kg DM] | 15–16 | 10.5–15 | 6.3–10.5 |
Alkalinity | [mmol/dm3] | 40–100 | 120–180 | 160–220 |
Volatile acids | [mmol CH3/dm3] | 40–70 | 2–15 | <2 |
Ntotal | [% DM] | 1.5 | 0.5–3.0 | 0.5–2.5 |
P | 0.3–0.8 | 0.3–0.8 | 0.3–0.8 | |
K | 0.1–0.3 | 0.1–0.3 | 0.1–0.3 | |
Na | 0.041 | 0.049 | 0.045 | |
Mg | 0.43 | 0.79 | 0.61 | |
Al | 1.07 | |||
Si | 4.32 | |||
K | 0.16 | 0.31 | 0.23 | |
Ca | 1.64 | |||
Fe | 2.22 | 5.43 | 3.83 | |
P | 1.47 | 1.63 | 1.55 | |
S | 0.68 | |||
Cl | 0.16 | |||
As | [mg/kg DM] | 12.3 | 6.6 | 21.4 |
Cr | 110.5 | 51 | 169.9 | |
Zn | 1170 | 1124 | 1216 | |
Cd | 2.9 | 1.8 | 4.02 | |
Pb | 190.5 | 130 | 251 | |
Ni | 43.8 | 42.2 | 45.4 | |
Cu | 112.6 | 94 | 131.2 | |
Ag | 43 | 6.6 | 127 | |
Hg | 2.6 | 2.16 | 3.12 |
Countries | Heavy Metal [mg/kg Dry Matter] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Hg | Ni | Pb | Zn | As | Co | |
Upper Austria | 2 | 50 | 300 | 2 | 25 | 100 | 1500 | - | 10 |
Lower Austria | 10 | 500 | 500 | 10 | 100 | 400 | 2000 | - | - |
Belgium (Flanders) | 6 | 250 | 375 | 5 | 100 | 300 | 900 | 150 | - |
Belgium (Wallonia) | 10 | 500 | 600 | 5 | 100 | 500 | 2000 | 150 | - |
Denmark | 0.8 | 100 | 1000 | 0.8 | 30 | 120 | 4000 | 25 | - |
Finland | 3 | 300 | 600 | 2 | 100 | 150 | 1500 | - | - |
France | 20 | 1000 | 1000 | 10 | 200 | 800 | 3000 | - | - |
Germany | 10 | 900 | 800 | 8 | 200 | 900 | 2500 | - | - |
Greece | 20–40 | 500 | 1000–1750 | 16–25 | 300–400 | 750–1200 | 2500–4000 | - | - |
Ireland | 20 | - | 1000 | 16 | 300 | 750 | 2500 | - | - |
Italy | 20 | - | 1000 | 10 | 300 | 750 | 2500 | - | - |
Luxembourg | 20–40 | 1000–1750 | 1000–1750 | 16–25 | 300–400 | 750–1200 | 2500–4000 | - | - |
Netherlands | 1.25 | 75 | 75 | 0.75 | 30 | 100 | 300 | - | - |
Portugal | 20 | 1000 | 1000 | 16 | 300 | 750 | 2500 | - | - |
Spain | 20 | 1000 | 1000 | 16 | 300 | 750 | 2500 | - | - |
Sweden | 2 | 100 | 600 | 2.5 | 50 | 100 | 800 | - | - |
Estonia | 15 | 1200 | 800 | 16 | 400 | 900 | 2900 | - | - |
Latvia | 20 | 2000 | 1000 | 16 | 300 | 750 | 2500 | - | - |
Poland | 10 | 500 | 800 | 5 | 100 | 500 | 2500 | - | - |
Population | Municipal Wastewater [m3/r] | Sewage Sludge (70% H2O) [t/r] | Sewage Sludge Dry Matter [t/r] |
---|---|---|---|
10,000 | 800,000 | 803 | 242 |
30,000 | 2,400,000 | 2409 | 726 |
100,000 | 8,000,000 | 8030 | 2419 |
1,000,000 | 80,000,000 | 80,300 | 24,190 |
5,000,000 | 400,000,000 | 401,500 | 120,950 |
10,000,000 | 800,000,000 | 803,000 | 241,900 |
30,000,000 | 2,400,000,000 | 2,409,000 | 725,700 |
Sewage Sludge Used | Unit | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|
In agriculture | [t/y] | 109,325 | 116,241 | 115,024 | 105,448 | 107,222 | 107,536 | 116,028 |
[%] | 32 | 33 | 32 | 31 | 30 | 31 | 34 | |
To improve soils (including in agriculture) | [t/y] | 54,279 | 54,386 | 50,280 | 29,407 | 21,961 | 19,167 | 20,075 |
[%] | 16 | 16 | 14 | 9 | 6 | 5 | 6 | |
To grow crops for compost production | [t/y] | 30,940 | 30,998 | 33,335 | 32,556 | 46,339 | 47,103 | 31,817 |
[%] | 9 | 9 | 9 | 10 | 13 | 13 | 9 | |
Thermally processed | [t/y] | 19,818 | 41,629 | 56,644 | 72,900 | 84,237 | 79,274 | 101,144 |
[%] | 6 | 12 | 16 | 21 | 24 | 23 | 30 | |
Stored | [t/y] | 58,917 | 51,447 | 46,796 | 31,369 | 31,503 | 40,458 | 20,666 |
[%] | 17 | 15 | 13 | 9 | 9 | 12 | 6 | |
Temporary storage | [t/y] | 68,228 | 53,103 | 52,684 | 70,028 | 62,192 | 56,397 | 47,253 |
[%] | 20 | 15 | 15 | 20 | 18 | 16 | 14 |
Treatment | Method |
---|---|
Conventional Methods | |
Pasteurisation | Minimum 0.5 h at 70 °C or minimum 4 h at 55 °C (or proper indirect parameters), followed by anaerobic mesophilic fermentation |
Anaerobic mesophilic fermentation | Average retention time minimum of 12 days of initial fermentation at 35 ± 3 °C or at least 20 days at 25 ± 3 °C, followed by an average retention time of a minimum of 14 days |
Thermophilic anaerobic fermentation | Average retention time minimum of 20 days at 55 °C |
Thermophilic aerobic fermentation | Average retention period of at least 7 days during fermentation with at least 55 °C for at least 4 h |
Thermophilic aerobic stabilisation | At >55 °C with an average retention time of 20 days |
Mesophilic anaerobic digestion | Average retention period of 15 days at 35 °C |
Simultaneous aerobic stabilisation | At ambient temperature |
Intensive aeration | At ambient temperature, with no additives or interruptions in the sludge treatment process |
Composting (in aerated ditches or piles) | Compost has to be retained for a minimum of 5 days at 40 °C, including 4 h with at least 55 °C, followed by a certain period required to terminate the composting reactions |
Stabilisation of liquid sludge with lime | Addition of calcium to increase the pH to >12 for a minimum of 2 h |
Storing | Storing of raw liquid sludge for at least 3 months |
Dewatering and storing | Conditioning of raw sludge using lime or another coagulant and dewatering and storing for at least 3 months. If the sludge was processed first with mesophilic anaerobic fermentation, it is stored for at least 14 days |
Lime stabilisation of liquid sludge | Adding lime to increase the pH to >12.0 for a minimum time of 2 h. The sludge can then be used directly |
Lime conditioning to ensure homogenisation of the lime–sludge mixture | Sludge should have a pH > 12 immediately after liming and retain it for at least 24 h |
Storage of the batch of feedstock in liquid form | At ambient temperature, without additives or interruptions during storage. The suspension should obtain a minimum 2 Log10 reduction in Escherichia coli |
Liquid Storing | Storing of raw liquid sludge for the time at least 3 months |
Advanced methods of sludge treatment (sanitation) * | |
Thermal treatment | Ensuring that the sludge particles reach a temperature > 800 °C with a reduction in moisture content to <10% while maintaining an active water content of approximately 0.9 during the first hour of processing |
Aerobic thermophilic stabilisation | At a temperature of at least 550 °C for 20 h, without admixtures or interruptions in the process |
Thermal processing of the liquid suspension | For a minimum of 30 min at 70 °C, preceded by mesophilic anaerobic digestion at 35 °C, with an average retention time of 12 days |
Lime conditioning | To achieve and maintain a pH ≥ 12 or higher for 3 months. The method is first evaluated by a 6 Log10 reduction in bacteria such as Salmonella Senftenberg W 775 |
Processed Sludge Applied during the Cultivation of Plants | |
---|---|
Cereals, oilseed rape | No limitations |
Grasses | No grazing or mowing within 3 weeks of using sludge |
Turf | At the latest 3 months before harvest |
Fruity trees | At the latest 3 months before harvest |
Processed Sludge Applied before the Cultivation of Plants | |
Cereal, grass, feeds, sugar beets, rapeseed, and fruity trees | No limitations |
Soft fruits and vegetable | In advance 10 months before harvest if the plants are in direct contact with the soil and can be consumed raw |
Potatoes | In advance 10 months before harvest. No sludge is used on soil that is or will be used in a crop rotation that contains essential seed potatoes or seed potatoes for export |
Unprocessed Sludge Applied To The Soil Along With Plant Crops | |
Grasses | No grazing or mowing within 3 weeks |
Turf | In advance 6 months before harvest |
PTE | Maximum Permitted Content of PTE in Soil [mg/kg Dry Weight] | Maximum Permitted Yearly Dose of PTE for 10 Years [kg/ha] | |||
---|---|---|---|---|---|
pH | 5–5.5 | 5.5–6.0 | 6.0–7.0 | >7.0 | |
Zinc | 200.0 | 200.0 | 200.0 | 300.0 | 15 |
Copper | 80.0 | 100.0 | 135.0 | 200.0 | 7.5 |
Nickel | 50.0 | 60.0 | 75.0 | 110.0 | 3 |
pH ≥ 5.0 | |||||
Cadmium | 3 | 0.15 | |||
Lead | 300 | 15 | |||
Mercury | 1 | 0.1 | |||
Chrome | 400 | 15 | |||
Molybdenum | 4 | 0.2 | |||
Selenium | 3 | 0.15 | |||
Arsenic | 50 | 0.7 | |||
Fluorine | 500 | 20 |
City | Type of Combustion | Combustion Capacity [t/y Dry Matter] | Ash Production in 2018 [t] |
---|---|---|---|
Krakow | Fluidised bed boiler | 23,000 | 4885 |
Lodz | 21,000 | 3824 | |
Gdansk | 14,000 | 3279 | |
Gdynia | 9000 | 1676 | |
Szczecin | Rotary kiln | 6000 | 1426 |
Kielce | Fluidised bed boiler | 6200 | 719 |
Treatment | Results | Products/Use | Advantages | Disadvantages |
---|---|---|---|---|
Anaerobic digestion | Limitation of organic substances with biological activity in the sludge. | Biogas and digestate used in agriculture. | Recovery of energy from sewage sludge and pathogen reduction. | High investment and operating costs and limited low-scale applications. |
Composting (aerated ditches or piles) | Stabilisation of biodegradable organic matter to destroy pathogenic organisms. | Used in agriculture for fertilisation. | Reduction in organic pollutants; high content of organic matter; and reduced waste volume. | Limited fertilisation effect (low contents of N, P, and K); high operation costs. |
Lime conditioning for the homogenisation of the lime–sludge mixture | pH > 12 immediately after liming, retained for a minimum of 24 h to destroy pathogenic organisms. | Direct use in agriculture. | Reduction in organic pollutants and pathogens. | Limited fertilisation effect (low contents of N, P, and K); no decrease in sludge amount. |
Storage | Stabilisation of biodegradable organic matter for a minimum of 3 months. | Stabilised sludge can be used in agriculture. | A simple method with low operation costs. | Decrease in water content. |
Combustion | Reuse of sludge for energy recovery and reduction in the amount of waste. The process involves a chemical process with oxygen to manufacture light and heat. Combustion takes place only at the ignition temperature. | The renewable energy obtained from sewage sludge incineration can be used for the production of electricity or heat. | Simple, available technology, generating heat and electricity; negligible organic pollutants; using existent infrastructure; can be used together with other solid fuel to decrease costs; and saving energy for wastewater-processing units. | High costs of drying, and higher moisture content, resulting in decreased efficiency, requires feedstock pretreatment. Waste such as soot, dust, ash, NOx, CO, and CO2. Produced flue gas should be cleaned, and efficiency is low at a small scale. |
Torrefaction | Conversion of sewage sludge biomass to a coal-like product. | Coal-like products with a low moisture content and high caloric value can be used instead of coal. | Zero-waste method improving the incineration behaviour of sludge. | The technology requires dried biomass as the raw materials contain > 20% water. |
Pyrolysis | Pyrolysis requires heating the biomass at 300–800 °C or higher without oxygen, resulting in the decomposition or carbonisation of the sewage sludge biomass. | Biofuels such as biochar, bio-oil, and syngas for bioenergy are obtained, eliminating harmful organic substances and pathogens. | Clean and efficient method with minimal waste generation; production of usable biofuel residues; lower emissions and reduced levels of heavy metals in comparison to other methods; available for large wastewater treatment units; and lower carbon potential of power generation. | Requires sludge dewatering; complex reactions; early-phase technology; and costly process. |
Gasification | Manufacturing of syngas. An alternative is passing the biomass through steam, causing a steam-reforming process to manufacture hydrogen and methane at high volumes. | Gasification results in the production of electricity. The efficiency of energy conversion is 14–30%, but it needs a set of stages to purify the gas. | Energy-efficient, with liquid fuel potential; low waste amounts; lower emissions; promotes treatment installations from an economic viewpoint; and lower carbon potential for power production. | Requires sludge dewatering; release of heavy metals and organic pollutants; costly process with high investment and operational costs; and byproducts such as tars, heavy metals, dust, acid gases, and sulphur. |
Hydrothermal liquefaction (HTL) | Production of liquid bio-oil fuel (crude) from sewage sludge via decomposition and repolymerisation reactions. | In addition to bio-oil, other products can be obtained, depending on the sludge type. | Suitable for all biomass types; the wastewater byproduct can be recycled. | High costs due to high energy demand as well as heat exchanger and reactor costs. Catalyst deactivation decreases product efficiency and quality. Limited high-scale implementation. |
Hydrothermal gasification | Supercritical water gasification in which the sludge biomass is heated in water at a supercritical state to produce syngas. | High-quality syngas with high carbon yield as the liquid phase has a low organic carbon content, is free from char and tar at low temperatures. | Applicable for all sewage sludge also those with high water content. | Higher costs due to high energy consumption. High temperature, pressure, and chemical compounds could result in reactor corrosion. Coke and tar can be obtained in nongasified parts of the biomass. |
Hydrothermal carbonisation | Biomass is converted to carbonaceous materials typically named ‘hydrochar’, together with soluble byproducts (~1–5%). | Solid biocarbon as a high-quality biofuel; the byproduct is a concentrated liquid rich in nutrients with fertilising properties (N, K, and P). | Much higher energy recovery compared to other used valorisation techniques, either from an environmental or economic viewpoint. It uses simple and easy scalable reactors and has lower energy consumption. | Post-treatment of the byproducts or wastewater to decrease the ash content in the biocarbon pellets. |
Parameters | Unit | Value |
---|---|---|
Moisture | [%] | 4–8 |
Ash | [%, DM *] | 5–20 |
Ctotal | [%, DM *] | 58–64 |
Ntotal | [%, DM *] | 1–2 |
Csolid | [% C] | 20–30 |
Volatile components | [% C] | 60–70 |
Lower heating value of LHV | [MJ/kg] | 19–24 |
Amount of sewage sludge (30% DM) [t/y] | 10,000 | 100,000 | 500,000 | 1,000,000 |
Biocarbon pellet production capacity [t/y] | 2500 | 25,000 | 125,000 | 250,000 |
Heat production capacity [GJ/y] | 57,500 | 575,000 | 2,875,000 | 5,750,000 |
Biocarbon pellet price [EUR/t] | ||||
Variant I | 280 | 280 | 280 | 280 |
Variant II | 448 | 448 | 448 | 448 |
Biocarbon pellet heat price [EUR/GJ] * | ||||
Variant I | 12.2 | 12.2 | 12.2 | 12.2 |
Variant II | 19.5 | 19.5 | 19.5 | 19.5 |
Biocarbon pellet production value [EUR/y] | ||||
Variant I | 700,000 | 7,000,000 | 35,000,000 | 70,000,000 |
Variant II | 1,120,000 | 11,200,000 | 56,000,000 | 112,000,000 |
Estimated operating costs [EUR/y] | 307,000 | 3,070,000 | 15,350,000 | 30,700,000 |
Revenue at the sludge collection price (30% DM) of 112 EUR/t [EUR/y] | ||||
Variant I | 1,120,000 | 11,200,000 | 65,600,000 | 112,000,000 |
Variant II | 1,120,000 | 11,200,000 | 65,600,000 | 112,000,000 |
Gross profit EB [EUR/y] | ||||
Variant I | 1,513,000 | 15,130,000 | 32,150,000 | 1,513,000,000 |
Variant II | 2,133,000 | 21,330,000 | 58,150,000 | 213,300,000 |
Return on investment with gross profit EB [years] | ||||
Variant I | 2.4 | 2.4 | 2.4 | 2.4 |
Variant II | 1.7 | 1.7 | 1.7 | 1.7 |
Savings on emission fee amounting to 60 EUR/t CO2 [EUR/y] | 641,000 | 6,410,000 | 32,050,000 | 64,100,000 |
Fertiliser solution AHL figures | ||||
Fertiliser solution, after hydrothermal liquid AHL [t/y] including: (N + K) [t/y] | 3000 10 | 30,000 100 | 150,000 500 | 300,000 1000 |
AHL price [EUR/t] ** | 15 | 15 | 15 | 15 |
AHL production value [EUR/y] | 45,000 | 450,000 | 2,250,000 | 4,500,000 |
Size of fertilised areas [ha] | 50 | 106 | 531 | 1062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, Z.; Makara, A.; Kulczycka, J.; Generowicz, A.; Kwaśnicki, P.; Ciuła, J.; Gronba-Chyła, A. Conversion of Sewage Sludge into Biofuels via Different Pathways and Their Use in Agriculture: A Comprehensive Review. Energies 2024, 17, 1383. https://doi.org/10.3390/en17061383
Kowalski Z, Makara A, Kulczycka J, Generowicz A, Kwaśnicki P, Ciuła J, Gronba-Chyła A. Conversion of Sewage Sludge into Biofuels via Different Pathways and Their Use in Agriculture: A Comprehensive Review. Energies. 2024; 17(6):1383. https://doi.org/10.3390/en17061383
Chicago/Turabian StyleKowalski, Zygmunt, Agnieszka Makara, Joanna Kulczycka, Agnieszka Generowicz, Paweł Kwaśnicki, Józef Ciuła, and Anna Gronba-Chyła. 2024. "Conversion of Sewage Sludge into Biofuels via Different Pathways and Their Use in Agriculture: A Comprehensive Review" Energies 17, no. 6: 1383. https://doi.org/10.3390/en17061383
APA StyleKowalski, Z., Makara, A., Kulczycka, J., Generowicz, A., Kwaśnicki, P., Ciuła, J., & Gronba-Chyła, A. (2024). Conversion of Sewage Sludge into Biofuels via Different Pathways and Their Use in Agriculture: A Comprehensive Review. Energies, 17(6), 1383. https://doi.org/10.3390/en17061383