Machine Learning Analysis of Thermal Performance Indicator of Heat Exchangers with Delta Wing Vortex Generators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Computational Details
- Precision is a quantitative measure that indicates the proportion of accurately classified samples.
- Recall is a parameter that indicates what percentage of samples in a given class are correctly classified.
- F1 score is the weighted harmonic mean of precision and recall, with a maximum value of 1 and a minimum of 0.
- Support is the number of samples in the dataset that belong to a specific class.
3. Results and Discussion
3.1. SHAP Analysis
3.2. Decision Tree Analysis
3.3. Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Parameters | |
ANN | artificial neural network |
BR | blockage ratio (-) |
DT | decision tree |
DWVG | delta wing vortex generator |
f | friction factor (-) |
h | convective heat transfer coefficient (W/m2·K) |
L | tube length (m) |
MAE | mean absolute error |
Nu | Nusselt number |
p | pitch distance (m) |
p/W | relative pitch ratio (-) |
PEC | performance evaluation criteria |
Re | Reynolds number (-) |
SHAP | SHapley Additive exPlanations |
VG | vortex generator |
w | width of delta wing (m) |
W | width of the aluminum strip (m) |
Greek Letters | |
α | attack angle (°) |
References
- IEA. Electricity 2024—Analysis. Available online: https://www.iea.org/reports/electricity-2024 (accessed on 29 February 2024).
- Helbling, M.; Meierrieks, D. Global Warming and Urbanization. J. Popul. Econ. 2023, 36, 1187–1223. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2023—Analysis. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 29 February 2024).
- Mahmoudinezhad, S.; Sadi, M.; Ghiasirad, H.; Arabkoohsar, A. A Comprehensive Review on the Current Technologies and Recent Developments in High-Temperature Heat Exchangers. Renew. Sustain. Energy Rev. 2023, 183, 113467. [Google Scholar] [CrossRef]
- Li, K.; Wen, J.; Wang, S.; Li, Y. Multi-Parameter Optimization of Serrated Fins in Plate-Fin Heat Exchanger Based on Fluid-Structure Interaction. Appl. Therm. Eng. 2020, 176, 115357. [Google Scholar] [CrossRef]
- Yang, Q.; He, Y.; Song, K.; Hou, Q.; Zhang, Q.; Wu, X. Thermal Performance Improvement of a Circular Tube-and-Fin Heat Exchanger by Ellipsoidal Protrusions on Fin Surfaces. Int. J. Therm. Sci. 2024, 196, 108746. [Google Scholar] [CrossRef]
- Fazeli, K.; Vafai, K. Analysis of Optimized Combined Microchannel and Heat Pipes for Electronics Cooling. Int. J. Heat Mass Transf. 2024, 219, 124842. [Google Scholar] [CrossRef]
- Azizi, Y.; Bahramkhoo, M.; Kazemi, A. Influence of Non-Uniform Magnetic Field on the Thermal Efficiency Hydrodynamic Characteristics of Nanofluid in Double Pipe Heat Exchanger. Sci. Rep. 2023, 13, 407. [Google Scholar] [CrossRef] [PubMed]
- Ul Atas Khan, A.; Cheema, T.A.; Muhammad Rizwan, H.; Ullah, R.; Tayyab, M.; Park, C.W. Shell and Tube Heat Exchange Comparison with Gravitational Water Vortex Flow Configuration. Appl. Therm. Eng. 2024, 238, 122000. [Google Scholar] [CrossRef]
- Kareem, Z.S.; Mohd Jaafar, M.N.; Lazim, T.M.; Abdullah, S.; Abdulwahid, A.F. Passive Heat Transfer Enhancement Review in Corrugation. Exp. Therm. Fluid Sci. 2015, 68, 22–38. [Google Scholar] [CrossRef]
- Liu, S.; Sakr, M. A Comprehensive Review on Passive Heat Transfer Enhancements in Pipe Exchangers. Renew. Sustain. Energy Rev. 2013, 19, 64–81. [Google Scholar] [CrossRef]
- Bezaatpour, M.; Goharkhah, M. Convective Heat Transfer Enhancement in a Double Pipe Mini Heat Exchanger by Magnetic Field Induced Swirling Flow. Appl. Therm. Eng. 2020, 167, 114801. [Google Scholar] [CrossRef]
- Diao, Y.H.; Guo, L.; Liu, Y.; Zhao, Y.H.; Wang, S. Electric Field Effect on the Bubble Behavior and Enhanced Heat-Transfer Characteristic of a Surface with Rectangular Microgrooves. Int. J. Heat Mass Transf. 2014, 78, 371–379. [Google Scholar] [CrossRef]
- Dhanalakshmi, N.P.; Nagarajan, R.; Sivagaminathan, N.; Prasad, B.V.S.S.S. Acoustic Enhancement of Heat Transfer in Furnace Tubes. Chem. Eng. Process. Process Intensif. 2012, 59, 36–42. [Google Scholar] [CrossRef]
- Izadpanah, E.; Babaie Rabiee, M.; Sadeghi, H.; Talebi, S. Effect of Rotating and Oscillating Blade on the Heat Transfer Enhancement of Non-Newtonian Fluid Flow in a Channel. Appl. Therm. Eng. 2017, 113, 1277–1282. [Google Scholar] [CrossRef]
- Mashayekhi, R.; Arasteh, H.; Talebizadehsardari, P.; Kumar, A.; Hangi, M.; Rahbari, A. Heat Transfer Enhancement of Nanofluid Flow in a Tube Equipped with Rotating Twisted Tape Inserts: A Two-Phase Approach. Heat Transf. Eng. 2022, 43, 608–622. [Google Scholar] [CrossRef]
- Sadeghianjahromi, A.; Kheradmand, S.; Nemati, H.; Liaw, J.-S.; Wang, C.-C. Compound Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers through Boundary Layer Restarting and Swirled Flow. Energies 2018, 11, 1959. [Google Scholar] [CrossRef]
- Välikangas, T.; Singh, S.; Sørensen, K.; Condra, T. Fin-and-Tube Heat Exchanger Enhancement with a Combined Herringbone and Vortex Generator Design. Int. J. Heat Mass Transf. 2018, 118, 602–616. [Google Scholar] [CrossRef]
- Awais, M.; Bhuiyan, A.A. Heat Transfer Enhancement Using Different Types of Vortex Generators (VGs): A Review on Experimental and Numerical Activities. Therm. Sci. Eng. Prog. 2018, 5, 524–545. [Google Scholar] [CrossRef]
- Joardar, A.; Jacobi, A.M. Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers. Int. J. Refrig. 2008, 31, 87–97. [Google Scholar] [CrossRef]
- Samadifar, M.; Toghraie, D. Numerical Simulation of Heat Transfer Enhancement in a Plate-Fin Heat Exchanger Using a New Type of Vortex Generators. Appl. Therm. Eng. 2018, 133, 671–681. [Google Scholar] [CrossRef]
- Abdollahi, A.; Shams, M. Optimization of Shape and Angle of Attack of Winglet Vortex Generator in a Rectangular Channel for Heat Transfer Enhancement. Appl. Therm. Eng. 2015, 81, 376–387. [Google Scholar] [CrossRef]
- Gentry, M.C.; Jacobi, A.M. Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate: Vortex Interactions with the Boundary Layer. Exp. Therm. Fluid Sci. 1997, 14, 231–242. [Google Scholar] [CrossRef]
- Gentry, M.C.; Jacobi, A.M. Heat Transfer Enhancement by Delta-Wing-Generated Tip Vortices in Flat-Plate and Developing Channel Flows. J. Heat Transf. 2002, 124, 1158–1168. [Google Scholar] [CrossRef]
- Zhao, Z.; Luo, L.; Qiu, D.; Wang, S.; Wang, Z.; Sundén, B. On the Topology of Vortex Structures and Heat Transfer of a Gas Turbine Blade Internal Tip with Different Arrangement of Delta-Winglet Vortex Generators. Int. J. Therm. Sci. 2021, 160, 106676. [Google Scholar] [CrossRef]
- Sawhney, J.S.; Maithani, R.; Chamoli, S. Experimental Investigation of Heat Transfer and Friction Factor Characteristics of Solar Air Heater Using Wavy Delta Winglets. Appl. Therm. Eng. 2017, 117, 740–751. [Google Scholar] [CrossRef]
- Huisseune, H.; T’Joen, C.; Jaeger, P.D.; Ameel, B.; Schampheleire, S.D.; Paepe, M.D. Performance Enhancement of a Louvered Fin Heat Exchanger by Using Delta Winglet Vortex Generators. Int. J. Heat Mass Transf. 2013, 56, 475–487. [Google Scholar] [CrossRef]
- Alpaydin, E. Introduction to Machine Learning, 4th ed.; The MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Larose, D.T.; Larose, C.D. Discovering Knowledge in Data: An Introduction to Data Mining; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 978-0-470-90874-7. [Google Scholar]
- Tan, P.-N.; Steinbach, M.; Kumar, V. Introduction to Data Mining; Pearson Education: Noida, India, 2016. [Google Scholar]
- Liao, T.; Zhao, C.Y.; Wang, H.; Ju, S. Data-Driven Design of Multilayer Hyperbolic Metamaterials for near-Field Thermal Radiative Modulator with High Modulation Contrast. Int. J. Heat Mass Transf. 2024, 219, 124831. [Google Scholar] [CrossRef]
- Ren, F.; Zhang, F.; Zhu, Y.; Wang, Z.; Zhao, F. Enhancing Heat Transfer from a Circular Cylinder Undergoing Vortex Induced Vibration Based on Reinforcement Learning. Appl. Therm. Eng. 2024, 236, 121919. [Google Scholar] [CrossRef]
- Wang, C.; Vafai, K. Heat Transfer Enhancement for 3D Chip Thermal Simulation and Prediction. Appl. Therm. Eng. 2024, 236, 121499. [Google Scholar] [CrossRef]
- Seal, M.K.; Noori Rahim Abadi, S.M.A.; Mehrabi, M.; Meyer, J.P. Machine Learning Classification of In-Tube Condensation Flow Patterns Using Visualization. Int. J. Multiph. Flow 2021, 143, 103755. [Google Scholar] [CrossRef]
- Farahani, S.D.; Mamoei, A.J.; Alizadeh, A. Thermal Performance of Microchannel Heat Sink Integrated with Porous Medium, Slip Coefficient and Phase Change Material and Machine Learning Approach. J. Energy Storage 2023, 74, 109357. [Google Scholar] [CrossRef]
- Zhou, L.; Garg, D.; Qiu, Y.; Kim, S.-M.; Mudawar, I.; Kharangate, C.R. Machine Learning Algorithms to Predict Flow Condensation Heat Transfer Coefficient in Mini/Micro-Channel Utilizing Universal Data. Int. J. Heat Mass Transf. 2020, 162, 120351. [Google Scholar] [CrossRef]
- Berber, A.; Gürdal, M. Estimation of Forced Heat Convection in a Rectangular Channel with Curved-Winglet Vortex Generator: A Machine Learning Approach. Therm. Sci. Eng. Prog. 2023, 37, 101563. [Google Scholar] [CrossRef]
- Longo, G.A.; Mancin, S.; Righetti, G.; Zilio, C.; Ceccato, R.; Salmaso, L. Machine Learning Approach for Predicting Refrigerant Two-Phase Pressure Drop inside Brazed Plate Heat Exchangers (BPHE). Int. J. Heat Mass Transf. 2020, 163, 120450. [Google Scholar] [CrossRef]
- Khan, M.Z.A.; Khan, H.A.; Aziz, M. Performance Optimization of Heat-Exchanger with Delta-Wing Tape Inserts Using Machine Learning. Appl. Therm. Eng. 2022, 216, 119135. [Google Scholar] [CrossRef]
- Wijayanta, A.T.; Yaningsih, I.; Aziz, M.; Miyazaki, T.; Koyama, S. Double-Sided Delta-Wing Tape Inserts to Enhance Convective Heat Transfer and Fluid Flow Characteristics of a Double-Pipe Heat Exchanger. Appl. Therm. Eng. 2018, 145, 27–37. [Google Scholar] [CrossRef]
- Eiamsa-ard, S.; Promvonge, P. Influence of Double-Sided Delta-Wing Tape Insert with Alternate-Axes on Flow and Heat Transfer Characteristics in a Heat Exchanger Tube. Chin. J. Chem. Eng. 2011, 19, 410–423. [Google Scholar] [CrossRef]
- Wijayanta, A.T.; Yaningsih, I.; Juwana, W.E.; Aziz, M.; Miyazaki, T. Effect of Wing-Pitch Ratio of Double-Sided Delta-Wing Tape Insert on the Improvement of Convective Heat Transfer. Int. J. Therm. Sci. 2020, 151, 106261. [Google Scholar] [CrossRef]
- Wijayanta, A.; Aziz, M.; Kariya, K.; Miyara, A. Numerical Study of Heat Transfer Enhancement of Internal Flow Using Double-Sided Delta-Winglet Tape Insert. Energies 2018, 11, 3170. [Google Scholar] [CrossRef]
- Yaningsih, I.; Wijayanta, A.T.; Miyazaki, T.; Koyama, S. V-Cut Twisted Tape Insert Effect on Heat Transfer Enhancement of Single Phase Turbulent Flow Heat Exchanger; AIP Publishing: Jatinangor, Indonesia, 2018; p. 030038. [Google Scholar]
- Yaningsih, I.; Wijayanta, A.; Miyazaki, T.; Koyama, S. Impact of Blockage Ratio on Thermal Performance of Delta-Winglet Vortex Generators. Appl. Sci. 2018, 8, 181. [Google Scholar] [CrossRef]
- Wijayanta, A.T.; Istanto, T.; Kariya, K.; Miyara, A. Heat Transfer Enhancement of Internal Flow by Inserting Punched Delta Winglet Vortex Generators with Various Attack Angles. Exp. Therm. Fluid Sci. 2017, 87, 141–148. [Google Scholar] [CrossRef]
- Günay, M.E.; Tapan, N.A. Evaluation of Polymer Electrolyte Membrane Electrolysis by Explainable Machine Learning, Optimum Classification Model, and Active Learning. J. Appl. Electrochem. 2023, 53, 415–433. [Google Scholar] [CrossRef]
- Cohen, S.; Ruppin, E.; Dror, G. Feature Selection Based on the Shapley Value. In Proceedings of the International Joint Conference on Artificial Intelligence, Scotland, UK, 30 July–5 August 2005. [Google Scholar]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, 2nd ed.; Independently published; 2022. [Google Scholar]
- Rokach, L.; Maimon, O. Data Mining with Decision Trees: Theory and Applications; Series in Machine Perception and Artificial Intelligence; World Scientific: Singapore, 2007; Volume 69, ISBN 978-981-277-171-1. [Google Scholar]
- Sharifi, S.; Pakdel, A.; Ebrahimi, M.; Reecy, J.M.; Fazeli Farsani, S.; Ebrahimie, E. Integration of Machine Learning and Meta-Analysis Identifies the Transcriptomic Bio-Signature of Mastitis Disease in Cattle. PLoS ONE 2018, 13, e0191227. [Google Scholar] [CrossRef] [PubMed]
- Günay, M.E.; Tapan, N.A.; Akkoç, G. Analysis and Modeling of High-Performance Polymer Electrolyte Membrane Electrolyzers by Machine Learning. Int. J. Hydrogen Energy 2022, 47, 2134–2151. [Google Scholar] [CrossRef]
- El Habib Daho, M.; Settouti, N.; El Amine Lazouni, M.; El Amine Chikh, M. Weighted Vote for Trees Aggregation in Random Forest. In Proceedings of the 2014 International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 14–16 April 2014; pp. 438–443. [Google Scholar]
- Behfard, M.; Sohankar, A. Numerical Investigation for Finding the Appropriate Design Parameters of a Fin-and-Tube Heat Exchanger with Delta-Winglet Vortex Generators. Heat Mass Transf. 2016, 52, 21–37. [Google Scholar] [CrossRef]
- Da Silva, F.A.S.; Dezan, D.J.; Pantaleão, A.V.; Salviano, L.O. Longitudinal Vortex Generator Applied to Heat Transfer Enhancement of a Flat Plate Solar Water Heater. Appl. Therm. Eng. 2019, 158, 113790. [Google Scholar] [CrossRef]
- Darbari, B.; Rashidi, S.; Keshmiri, A. Nanofluid Heat Transfer and Entropy Generation inside a Triangular Duct Equipped with Delta Winglet Vortex Generators. J. Therm. Anal. Calorim. 2020, 140, 1045–1055. [Google Scholar] [CrossRef]
- Dezan, D.J.; Salviano, L.O.; Yanagihara, J.I. Heat Transfer Enhancement and Optimization of Flat-Tube Multilouvered Fin Compact Heat Exchangers with Delta-Winglet Vortex Generators. Appl. Therm. Eng. 2016, 101, 576–591. [Google Scholar] [CrossRef]
- Dezan, D.J.; Rocha, A.D.; Ferreira, W.G. Parametric Sensitivity Analysis and Optimisation of a Solar Air Heater with Multiple Rows of Longitudinal Vortex Generators. Appl. Energy 2020, 263, 114556. [Google Scholar] [CrossRef]
- Li, H.-Y.; Liao, W.-R.; Li, T.-Y.; Chang, Y.-Z. Application of Vortex Generators to Heat Transfer Enhancement of a Pin-Fin Heat Sink. Int. J. Heat Mass Transf. 2017, 112, 940–949. [Google Scholar] [CrossRef]
- Li, L.; Du, X.; Zhang, Y.; Yang, L.; Yang, Y. Numerical Simulation on Flow and Heat Transfer of Fin-and-Tube Heat Exchanger with Longitudinal Vortex Generators. Int. J. Therm. Sci. 2015, 92, 85–96. [Google Scholar] [CrossRef]
- Song, K.; Tagawa, T.; Chen, Z.; Zhang, Q. Heat Transfer Characteristics of Concave and Convex Curved Vortex Generators in the Channel of Plate Heat Exchanger under Laminar Flow. Int. J. Therm. Sci. 2019, 137, 215–228. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Sundén, B. A Novel Control of Jet Impingement Heat Transfer in Cross-Flow by a Vortex Generator Pair. Int. J. Heat Mass Transf. 2015, 88, 82–90. [Google Scholar] [CrossRef]
- Promvonge, P.; Promthaisong, P.; Skullong, S. Numerical Heat Transfer in a Solar Air Heater Duct with Punched Delta-Winglet Vortex Generators. Case Stud. Therm. Eng. 2021, 26, 101088. [Google Scholar] [CrossRef]
- Deshmukh, P.W.; Prabhu, S.V.; Vedula, R.P. Heat Transfer Enhancement for Laminar Flow in Tubes Using Curved Delta Wing Vortex Generator Inserts. Appl. Therm. Eng. 2016, 106, 1415–1426. [Google Scholar] [CrossRef]
- Gönül, A.; Okbaz, A.; Kayaci, N.; Selim Dalkilic, A. Flow Optimization in a Microchannel with Vortex Generators Using Genetic Algorithm. Appl. Therm. Eng. 2022, 201, 117738. [Google Scholar] [CrossRef]
- Xu, Y.; Islam, M.D.; Kharoua, N. Experimental Study of Thermal Performance and Flow Behaviour with Winglet Vortex Generators in a Circular Tube. Appl. Therm. Eng. 2018, 135, 257–268. [Google Scholar] [CrossRef]
- Lei, Y.; Zheng, F.; Song, C.; Lyu, Y. Improving the Thermal Hydraulic Performance of a Circular Tube by Using Punched Delta-Winglet Vortex Generators. Int. J. Heat Mass Transf. 2017, 111, 299–311. [Google Scholar] [CrossRef]
- Carpio, J.; Valencia, A. Heat Transfer Enhancement through Longitudinal Vortex Generators in Compact Heat Exchangers with Flat Tubes. Int. Commun. Heat Mass Transf. 2021, 120, 105035. [Google Scholar] [CrossRef]
- Zhai, C.; Islam, M.D.; Simmons, R.; Barsoum, I. Heat Transfer Augmentation in a Circular Tube with Delta Winglet Vortex Generator Pairs. Int. J. Therm. Sci. 2019, 140, 480–490. [Google Scholar] [CrossRef]
- Ekrani, S.M.; Ganjehzadeh, S.; Esfahani, J.A. Multi-Objective Optimization of a Tubular Heat Exchanger Enhanced with Delta Winglet Vortex Generator and Nanofluid Using a Hybrid CFD-SVR Method. Int. J. Therm. Sci. 2023, 186, 108141. [Google Scholar] [CrossRef]
Reference | Wing-to-Width Ratio | Relative Pitch Ratio | Attack Angle | Length (mm) | Reynolds Number |
---|---|---|---|---|---|
[40] | 0.31–0.63 | 0.95 | 45° | 2500 | 6000–18,000 |
[41] | 0.5–0.83 | 0.75–1.25 | 45° | 1500 | 4000–20,000 |
[42] | 0.63 | 1.18–1.65 | 45° | 2000 | 5000–21,900 |
[43] | 0.31 | 1.19 | 30–70° | 1200 | 5000–21,900 |
[44] | 0.32–0.48 | 0.48 | 36° | 2500 | 5400–17,350 |
[45] | 0.63 | 1.19 | 70° | 2000 | 5500–14,500 |
[46] | 0.47 | 1.19 | 30°–70° | 2000 | 5500–14,500 |
Variable | Ranges of Variables |
---|---|
w/W | 0.31–0.83 |
p/W | 0.48–1.65 |
α | 30–70° |
Re | 4000–22,000 |
L (mm) | 1200–2500 |
Experimental Data | Predictions | Classification | ||||
---|---|---|---|---|---|---|
Class | No. of Data (Support) | Low | Medium | High | Accuracy (Recall) | |
Training | Low | 69 | 63 | 0 | 6 | 63/69 = 0.91 |
Medium | 60 | 0 | 56 | 4 | 56/60 = 0.93 | |
High | 71 | 4 | 2 | 65 | 65/71 = 0.92 | |
Precision | 63/67 = 0.94 | 56/58 = 0.97 | 65/75 = 0.87 | |||
F1 score | 0.92 | 0.95 | 0.89 | |||
Testing | Low | 31 | 29 | 0 | 2 | 29/31 = 0.94 |
Medium | 40 | 0 | 38 | 2 | 38/40 = 0.95 | |
High | 29 | 4 | 3 | 22 | 22/29 = 0.76 | |
Precision | 29/33 = 0.88 | 38/41 = 0.93 | 22/26 = 0.85 | |||
F1 score | 0.91 | 0.94 | 0.80 |
Experimental Data | Predictions | Classification | ||||
---|---|---|---|---|---|---|
Class | No. of Data (Support) | Low | Medium | High | Accuracy (Recall) | |
Training | Low | 67 | 66 | 0 | 1 | 66/67 = 0.99 |
Medium | 66 | 0 | 63 | 3 | 63/66 = 0.96 | |
High | 67 | 6 | 4 | 57 | 57/67 = 0.85 | |
Precision | 66/72 = 0.92 | 63/67 = 0.94 | 57/61 = 0.93 | |||
F1 score | 0.95 | 0.95 | 0.89 | |||
Testing | Low | 34 | 33 | 0 | 1 | 33/34 = 0.97 |
Medium | 33 | 0 | 32 | 1 | 32/33 = 0.97 | |
High | 33 | 8 | 1 | 24 | 24/33 = 0.73 | |
Precision | 33/41 = 0.81 | 32/33 = 0.97 | 24/26 = 0.92 | |||
F1 score | 0.88 | 0.97 | 0.81 |
Experimental Data | Predictions | Classification | ||||
---|---|---|---|---|---|---|
Class | Data Points (Support) | Low | Medium | High | Accuracy (Recall) | |
Training | Low | 65 | 62 | 0 | 3 | 62/65 = 0.95 |
Medium | 65 | 0 | 54 | 11 | 54/65 = 0.83 | |
High | 70 | 1.00 | 4 | 65.00 | 65/70 = 0.93 | |
Precision | 62/63 = 0.98 | 54/58 = 0.93 | 65/79 = 0.82 | |||
F1 score | 0.96 | 0.88 | 0.87 | |||
Testing | Low | 35 | 32 | 0 | 3 | 32/35 = 0.91 |
Medium | 35 | 0 | 29 | 6 | 29/35 = 0.83 | |
High | 30 | 1 | 2 | 27 | 27/30 = 0.90 | |
Precision | 32/33 = 0.97 | 29/31 = 0.94 | 27/36 = 0.75 | |||
F1 score | 0.94 | 0.88 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksöz, Z.Y.; Günay, M.E.; Aziz, M.; Tunç, K.M.M. Machine Learning Analysis of Thermal Performance Indicator of Heat Exchangers with Delta Wing Vortex Generators. Energies 2024, 17, 1380. https://doi.org/10.3390/en17061380
Aksöz ZY, Günay ME, Aziz M, Tunç KMM. Machine Learning Analysis of Thermal Performance Indicator of Heat Exchangers with Delta Wing Vortex Generators. Energies. 2024; 17(6):1380. https://doi.org/10.3390/en17061380
Chicago/Turabian StyleAksöz, Zafer Yavuz, M. Erdem Günay, Muhammad Aziz, and K. M. Murat Tunç. 2024. "Machine Learning Analysis of Thermal Performance Indicator of Heat Exchangers with Delta Wing Vortex Generators" Energies 17, no. 6: 1380. https://doi.org/10.3390/en17061380
APA StyleAksöz, Z. Y., Günay, M. E., Aziz, M., & Tunç, K. M. M. (2024). Machine Learning Analysis of Thermal Performance Indicator of Heat Exchangers with Delta Wing Vortex Generators. Energies, 17(6), 1380. https://doi.org/10.3390/en17061380