Growing Importance of Micro-Meteorology in the New Power System: Review, Analysis and Case Study
Abstract
:1. Introduction
- This paper reviews the micro-meteorology technology applied and developed in the new power system, including related observations, assimilation, numerical prediction, dynamical downscaling and the artificial intelligence literature.
- This paper analyzes the importance of micro-meteorology in the new power system, including the impact of micro-meteorology on different forms of power generation, the implementation of micro-meteorology in the entire lifecycle of renewable energy power operations, integrated energy system, and disaster prevention and reduction.
- This paper provides a case study in Jiuquan, China to illustrate the importance of micro-meteorology in real applications. Wind power prediction is taken as a representative application to evaluate the performance with a micro-meteorology dataset. The results show that using a micro-meteorological dataset achieved better wind power prediction performance utilized by four common models, presenting the effectiveness of micro-meteorological data.
2. Related Works
2.1. Observation and Assimilation
2.2. Numerical Techniques
2.3. Artificial Intelligence
3. Analysis
3.1. The Impact of Micro-Meteorology on Power Generation
3.1.1. Wind Power
3.1.2. Photovoltaic
3.1.3. Hydropower
3.1.4. Thermal Power
3.1.5. Energy Storage
3.1.6. Heating
3.2. The Impact of Micro-Meteorology on the Entire Lifecycle of New Energy Sources
3.2.1. Survey and Design
3.2.2. Power Forecasting
3.2.3. China Electricity Spot Market Trading
3.3. Integrated Energy System
3.4. Disaster Prevention and Reduction
4. Case Study
4.1. Data Description
4.2. Key Variable Analysis
4.3. Wind Power Prediction
4.3.1. Experimental Setting
4.3.2. Results
5. Discussion
5.1. Observation System
5.2. Data
5.3. Reliable Predictive Models
5.4. Uncertainty
5.5. Cooperation and Support
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olabi, A.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Yang, X.; Pang, J.; Teng, F.; Gong, R.; Springer, C. The environmental co-benefit and economic impact of China’s low-carbon pathways: Evidence from linking bottom-up and top-down models. Renew. Sustain. Energy Rev. 2021, 136, 110438. [Google Scholar] [CrossRef]
- Curtin, J.; McInerney, C.; Gallachóir, B.Ó.; Hickey, C.; Deane, P.; Deeney, P. Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: A review of the literature. Renew. Sustain. Energy Rev. 2019, 116, 109402. [Google Scholar] [CrossRef]
- Olabi, A.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710. [Google Scholar] [CrossRef]
- Gustavsson, L.; Nguyen, T.; Sathre, R.; Tettey, U.Y.A. Climate effects of forestry and substitution of concrete buildings and fossil energy. Renew. Sustain. Energy Rev. 2021, 136, 110435. [Google Scholar] [CrossRef]
- He, X.; Wang, F.; Wallington, T.; Shen, W.; Melaina, M.; Kim, H.; De Kleine, R.; Lin, T.; Zhang, S.; Keoleian, G.; et al. Well-to-wheels emissions, costs, and feedstock potentials for light-duty hydrogen fuel cell vehicles in China in 2017 and 2030. Renew. Sustain. Energy Rev. 2021, 137, 110477. [Google Scholar] [CrossRef]
- Hussain, A.; Arif, S.M.; Aslam, M. Emerging renewable and sustainable energy technologies: State of the art. Renew. Sustain. Energy Rev. 2017, 71, 12–28. [Google Scholar] [CrossRef]
- Madi, E.; Pope, K.; Huang, W.; Iqbal, T. A review of integrating ice detection and mitigation for wind turbine blades. Renew. Sustain. Energy Rev. 2019, 103, 269–281. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of graphene in energy storage device–A review. Renew. Sustain. Energy Rev. 2021, 135, 110026. [Google Scholar] [CrossRef]
- Sayed, E.T.; Abdelkareem, M.A.; Bahaa, A.; Eisa, T.; Alawadhi, H.; Al-Asheh, S.; Chae, K.J.; Olabi, A. Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells. Renew. Sustain. Energy Rev. 2021, 150, 111470. [Google Scholar] [CrossRef]
- Olabi, A.; Elsaid, K.; Rabaia, M.K.H.; Askalany, A.A.; Abdelkareem, M.A. Waste heat-driven desalination systems: Perspective. Energy 2020, 209, 118373. [Google Scholar] [CrossRef]
- Pili, R.; Martínez, L.G.; Wieland, C.; Spliethoff, H. Techno-economic potential of waste heat recovery from German energy-intensive industry with Organic Rankine Cycle technology. Renew. Sustain. Energy Rev. 2020, 134, 110324. [Google Scholar] [CrossRef]
- Impram, S.; Nese, S.V.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strategy Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Li, C.; Shi, H.; Cao, Y.; Wang, J.; Kuang, Y.; Tan, Y.; Wei, J. Comprehensive review of renewable energy curtailment and avoidance: A specific example in China. Renew. Sustain. Energy Rev. 2015, 41, 1067–1079. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, S.; Dai, X.; Lu, Y.; Wang, Y. Research on Regional Micro-meteorological Measurement System for the Operation Control of Distribution Network List the author names here. In Proceedings of the 2020 International Conference on Advanced Electrical and Energy Systems, Osaka, Japan, 18–21 August 2020; Volume 582, p. 012005. [Google Scholar]
- Deng, X.; Lv, T. Power system planning with increasing variable renewable energy: A review of optimization models. J. Clean. Prod. 2020, 246, 118962. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Dragoon, K. Towards 100% renewable energy systems: Uncapping power system flexibility. Energy Policy 2016, 92, 69–82. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Zhang, X.; Li, C. Micrometeorological Data Collection and Application in Internet of Things for Power Systems. IFAC-PapersOnLine 2020, 53, 431–435. [Google Scholar] [CrossRef]
- Moncrieff, J.; Valentini, R.; Greco, S.; Guenther, S.; Ciccioli, P. Trace gas exchange over terrestrial ecosystems: Methods and perspectives in micrometeorology. J. Exp. Bot. 1997, 48, 1133–1142. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Lv, S.; Huang, J.; Zhou, K. Research on effective operation mode of Meteorological Observation Quality Management System. J. Meteorol. Res. Appl. 2023, 44, 103–108. [Google Scholar]
- Change, I.P.O.C. Climate change 2007: The physical science basis. Agenda 2007, 6, 333. [Google Scholar]
- Xu, A.; Li, J. An overview of the integrated meteorological observations in complex terrain region at Dali National Climate Observatory, China. Atmosphere 2020, 11, 279. [Google Scholar] [CrossRef]
- Conover, J.H. The Blue Hill Meteorological Observatory: The First 100 Years, 1885–1985; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Magee, N.B.; Melaas, E.; Finocchio, P.M.; Jardel, M.; Noonan, A.; Iacono, M.J. Blue Hill Observatory sunshine: Assessment of climate signals in the longest continuous meteorological record in North America. Bull. Am. Meteorol. Soc. 2014, 95, 1741–1751. [Google Scholar] [CrossRef]
- Neisser, J.; Adam, W.; Beyrich, F.; Leiterer, U.; Steinhagen, H. Atmospheric boundary layer monitoring at the Meteorological Observatory Lindenberg as a part of the “Lindenberg Column”: Facilities and selected results. Meteorol. Z. 2002, 11, 241–253. [Google Scholar] [CrossRef]
- Adam, W.; Dier, H.; Leiterer, U. 100 years aerology in Lindenberg and first long-time observations in the free atmosphere. Meteorol. Z. 2005, 14, 597–607. [Google Scholar] [CrossRef]
- Berger, F.H.; Hantel, M. Meteorological Observatory Lindenberg 1905–2005. Meteorol. Z. 2005, 14, 596. [Google Scholar] [CrossRef]
- Weller, M.; Gericke, K. Long-term observations of aerosol optical depths at the Meteorological Observatory Lindenberg. Meteorol. Z. 2005, 14, 651–662. [Google Scholar] [CrossRef]
- Overton, A.K. Jungfraujoch high altitude research station. Weather 2008, 63, 76–79. [Google Scholar] [CrossRef]
- Bonasoni, P.; Laj, P.; Angelini, F.; Arduini, J.; Bonafe, U.; Calzolari, F.; Cristofanelli, P.; Decesari, S.; Facchini, M.; Fuzzi, S.; et al. The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements. Sci. Total Environ. 2008, 391, 252–261. [Google Scholar] [CrossRef]
- Bonasoni, P.; Laj, P.; Marinoni, A.; Sprenger, M.; Angelini, F.; Arduini, J.; Bonafè, U.; Calzolari, F.; Colombo, T.; Decesari, S.; et al. Atmospheric Brown Clouds in the Himalayas: First two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmos. Chem. Phys. 2010, 10, 7515–7531. [Google Scholar] [CrossRef]
- Zhili, W.; Xiaofeng, Z.; Guoliang, W. Design and Realization of Micro-meteorological Disaster Morni ng and Pre-warning System in Power Grid. Power D Energy 2014, 35, 712–716. [Google Scholar]
- Yang, J.; Zhang, P.; Lu, N.; Yang, Z.; Shi, J.; Dong, C. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int. J. Digit. Earth 2012, 5, 251–265. [Google Scholar] [CrossRef]
- Lahoz, W.A.; Schneider, P. Data assimilation: Making sense of Earth Observation. Front. Environ. Sci. 2014, 2, 16. [Google Scholar] [CrossRef]
- Lahoz, W. Research satellites. In Data Assimilation: Making Sense of Observations; Springer: Berlin/Heidelberg, Germany, 2010; pp. 301–321. [Google Scholar]
- Ménard, R. Bias estimation. In Data Assimilation: Making Sense of Observations; Springer: Berlin/Heidelberg, Germany, 2010; pp. 113–135. [Google Scholar]
- Lahoz, W.; Khattatov, B.; Ménard, R. Data assimilation and information. In Data Assimilation: Making Sense of Observations; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–12. [Google Scholar]
- Errera, Q.; Daerden, F.; Chabrillat, S.; Lambert, J.; Lahoz, W.; Viscardy, S.; Bonjean, S.; Fonteyn, D. 4D-Var assimilation of MIPAS chemical observations: Ozone and nitrogen dioxide analyses. Atmos. Chem. Phys. 2008, 8, 6169–6187. [Google Scholar] [CrossRef]
- Salby, M.L. Fundamentals of Atmospheric Physics; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Lahoz, W.A.; De Lannoy, G.J. Closing the gaps in our knowledge of the hydrological cycle over land: Conceptual problems. Surv. Geophys. 2014, 35, 623–660. [Google Scholar] [CrossRef]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Bouttier, F.; Courtier, P. Data Assimilation Concepts and Methods; European Centre for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 2002. [Google Scholar]
- Lahoz, W.; Errera, Q.; Swinbank, R.; Fonteyn, D. Data assimilation of stratospheric constituents: A review. Atmos. Chem. Phys. 2007, 7, 5745–5773. [Google Scholar] [CrossRef]
- Courtier, P.; Thépaut, J.N.; Hollingsworth, A. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 1994, 120, 1367–1387. [Google Scholar]
- Simmons, A.J.; Hollingsworth, A. Some aspects of the improvement in skill of numerical weather prediction. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2002, 128, 647–677. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Cohn, S.E.; Da Silva, A.; Guo, J.; Sienkiewicz, M.; Lamich, D. Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Weather Rev. 1998, 126, 2913–2926. [Google Scholar] [CrossRef]
- Eskes, H.; Velthoven, P.V.; Valks, P.; Kelder, H. Assimilation of GOME total-ozone satellite observations in a three-dimensional tracer-transport model. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2003, 129, 1663–1681. [Google Scholar] [CrossRef]
- Lahoz, W.; Errera, Q. Constituent assimilation. In Data Assimilation: Making Sense of Observations; Springer: Berlin/Heidelberg, Germany, 2010; pp. 449–490. [Google Scholar]
- Auvinen, H.; Bardsley, J.M.; Haario, H.; Kauranne, T. The variational Kalman filter and an efficient implementation using limited memory BFGS. Int. J. Numer. Methods Fluids 2010, 64, 314–335. [Google Scholar] [CrossRef]
- Solonen, A.; Haario, H.; Hakkarainen, J.; Auvinen, H.; Amour, I.; Kauranne, T. Variational ensemble Kalman filtering using limited memory BFGS. Electron. Trans. Numer. Anal. 2012, 39, 271–285. [Google Scholar]
- Heikkilä, U.; Sandvik, A.; Sorteberg, A. Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim. Dyn. 2011, 37, 1551–1564. [Google Scholar] [CrossRef]
- Soares, P.M.; Cardoso, R.M.; Miranda, P.M.; de Medeiros, J.; Belo-Pereira, M.; Espirito-Santo, F. WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim. Dyn. 2012, 39, 2497–2522. [Google Scholar] [CrossRef]
- Evans, J.; McCabe, M. Regional climate simulation over Australia’s Murray-Darling basin: A multitemporal assessment. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Zhang, Y.; Dulière, V.; Mote, P.W.; Salathé, E.P. Evaluation of WRF and HadRM mesoscale climate simulations over the US Pacific Northwest. J. Clim. 2009, 22, 5511–5526. [Google Scholar] [CrossRef]
- Koo, M.S.; Hong, S.Y. Diurnal variations of simulated precipitation over East Asia in two regional climate models. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Lo, J.C.F.; Yang, Z.L.; Pielke, R.A., Sr. Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.; Dong, W. Land-atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Liu, Y.; Warner, T.; Liu, Y.; Vincent, C.; Wu, W.; Mahoney, B.; Swerdlin, S.; Parks, K.; Boehnert, J. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications. J. Wind Eng. Ind. Aerodyn. 2011, 99, 308–319. [Google Scholar] [CrossRef]
- Cardoso, R.; Soares, P.; Miranda, P.; Belo-Pereira, M. WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int. J. Climatol. 2013, 33, 2591–2608. [Google Scholar] [CrossRef]
- Kusaka, H.; Hara, M.; Takane, Y. Urban climate projection by the WRF model at 3-km horizontal grid increment: Dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya metropolises. Meteorol. J. 2012, 90, 47–63. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y.; Qian, Y. Simulation of urban climate with high-resolution WRF model: A case study in Nanjing, China. Asia-Pac. J. Atmos. Sci. 2012, 48, 227–241. [Google Scholar] [CrossRef]
- Marta-Almeida, M.; Teixeira, J.C.; Carvalho, M.J.; Melo-Gonçalves, P.; Rocha, A.M. High resolution WRF climatic simulations for the Iberian Peninsula: Model validation. Phys. Chem. Earth, Parts A/B/C 2016, 94, 94–105. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C. A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environ. Model. Softw. 2012, 33, 23–34. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Appl. Energy 2014, 117, 116–126. [Google Scholar] [CrossRef]
- Deppe, A.J.; Gallus, W.A.; Takle, E.S. A WRF ensemble for improved wind speed forecasts at turbine height. Weather Forecast. 2013, 28, 212–228. [Google Scholar] [CrossRef]
- Mattar, C.; Borvarán, D. Offshore wind power simulation by using WRF in the central coast of Chile. Renew. Energy 2016, 94, 22–31. [Google Scholar] [CrossRef]
- Tuy, S.; Lee, H.S.; Chreng, K. Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent CO2 reduction. Renew. Sustain. Energy Rev. 2022, 163, 112501. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, Z.H.; Su, Z.Y.; Zhao, Z.Y.; Xiao, X.; Liu, F. An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Appl. Energy 2016, 162, 808–826. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, Y.; Xiao, X.; Wang, J.; Chi, D.; Guo, Z. Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method. Appl. Energy 2017, 197, 183–202. [Google Scholar] [CrossRef]
- Giannakopoulou, E.M.; Nhili, R. WRF model methodology for offshore wind energy applications. Adv. Meteorol. 2014, 2014, 319819. [Google Scholar] [CrossRef]
- Salvação, N.; Soares, C.G. Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy 2018, 145, 276–287. [Google Scholar] [CrossRef]
- Prósper, M.A.; Otero-Casal, C.; Fernández, F.C.; Miguez-Macho, G. Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations. Renew. Energy 2019, 135, 674–686. [Google Scholar] [CrossRef]
- Shen, X.; Meng, K.; Guo, Z.; Zhang, L. Convolutional Long-Short Term Memory Network for convective weather prediction based on 3D Doppler radar data. In Proceedings of the 2020 International Conference on Cyberspace Innovation of Advanced Technologies, Guangzhou, China, 4–6 December 2020; pp. 459–464. [Google Scholar] [CrossRef]
- Wang, B.; Lu, J.; Yan, Z.; Luo, H.; Li, T.; Zheng, Y.; Zhang, G. Deep Uncertainty Quantification: A Machine Learning Approach for Weather Forecasting. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2087–2095. [Google Scholar] [CrossRef]
- Grover, A.; Kapoor, A.; Horvitz, E. A Deep Hybrid Model for Weather Forecasting. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 379–386. [Google Scholar] [CrossRef]
- Volkovs, K.; Urtans, E.; Caune, V. Primed UNet-LSTM for Weather Forecasting. In Proceedings of the 2023 7th International Conference on Advances in Artificial Intelligence, Istanbul, Turkiye, 13–15 October 2023; pp. 13–17. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar]
- Liu, Y.; Racah, E.; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv 2016, arXiv:1605.01156. [Google Scholar]
- Hernández, E.; Sanchez-Anguix, V.; Julian, V.; Palanca, J.; Duque, N. Rainfall prediction: A deep learning approach. In Proceedings of the 11th International Conference, HAIS 2016, Seville, Spain, 18–20 April 2016; pp. 151–162. [Google Scholar]
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Deep learning for precipitation nowcasting: A benchmark and a new model. Adv. Neural Inf. Process. Syst. 2017, 30, 5622–5632. [Google Scholar]
- You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep gaussian process for crop yield prediction based on remote sensing data. In Proceedings of the The Thirty-First AAAI Conference on Artificial Intelligence; The Twenty-Ninth Innovative Applications of Artificial Intelligence Conferencel; The Seventh Symposium on Educational Advances in Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Papernot, N.; McDaniel, P.; Swami, A.; Harang, R. Crafting adversarial input sequences for recurrent neural networks. In Proceedings of the MILCOM 2016—-2016 IEEE Military Communications Conference, Baltimore, MD, USA, 1–3 November 2016; pp. 49–54. [Google Scholar]
- Lee, W.; Kim, S.; Lee, Y.T.; Lee, H.W.; Choi, M. Deep neural networks for wild fire detection with unmanned aerial vehicle. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 8–10 January 2017; pp. 252–253. [Google Scholar]
- Sharma, J.; Granmo, O.C.; Goodwin, M.; Fidje, J.T. Deep convolutional neural networks for fire detection in images. In Proceedings of the Engineering Applications of Neural Networks: 18th International Conference, EANN 2017, Athens, Greece, 25–27 August 2017; pp. 183–193. [Google Scholar]
- Zhang, Q.; Xu, J.; Xu, L.; Guo, H. Deep convolutional neural networks for forest fire detection. In Proceedings of the 2016 International Forum on Management, Education and Information Technology Application, Guangzhou, China, 30–31 January 2016; pp. 568–575. [Google Scholar]
- Chen, I.C.; Hu, S.C. Realizing Specific Weather Forecast through Machine Learning Enabled Prediction Model. In Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference, Guangzhou, China, 22–24 June 2019; pp. 71–74. [Google Scholar] [CrossRef]
- Egbueze, P.U.; Wang, Z. Weather Recognition Based on Still Images Using Deep Learning Neural Network with Resnet-15. In Proceedings of the 2022 6th International Conference on Deep Learning Technologies, Xi’an, China, 26–28 July 2022; pp. 8–13. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Lu, X. A Multi-Task Framework for Weather Recognition. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1318–1326. [Google Scholar] [CrossRef]
- Awami, S.H.; Shakmak, Y.H.; Mohammed, R.A. A Novel Approach for Forecasting Average Temperature Using Artificial Neural Networks (Applied to Benghazi City’s Weather). In Proceedings of the 6th International Conference on Engineering & MIS 2020, Almaty, Kazakhstan, 14–16 September 2020. [Google Scholar] [CrossRef]
- Shi, E.; LI, Q.; GU, D.; Zhao, Z. Weather radar echo extrapolation method based on convolutional neural networks. J. Comput. Appl. 2018, 38, 661. [Google Scholar]
- Agrawal, S.; Barrington, L.; Bromberg, C.; Burge, J.; Gazen, C.; Hickey, J. Machine learning for precipitation nowcasting from radar images. arXiv 2019, arXiv:1912.12132. [Google Scholar]
- Kaparakis, C.; Mehrkanoon, S. WF-UNet: Weather Data Fusion using 3D-UNet for Precipitation Nowcasting. Procedia Comput. Sci. 2023, 222, 223–232. [Google Scholar] [CrossRef]
- Shen, C. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Klein, B.; Wolf, L.; Afek, Y. A dynamic convolutional layer for short range weather prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4840–4848. [Google Scholar]
- Vandal, T.; Kodra, E.; Ganguly, S.; Michaelis, A.; Nemani, R.; Ganguly, A.R. Deepsd: Generating high resolution climate change projections through single image super-resolution. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 1663–1672. [Google Scholar]
- Gentine, P.; Pritchard, M.; Rasp, S.; Reinaudi, G.; Yacalis, G. Could machine learning break the convection parameterization deadlock? Geophys. Res. Lett. 2018, 45, 5742–5751. [Google Scholar] [CrossRef]
- Racah, E.; Beckham, C.; Maharaj, T.; Ebrahimi Kahou, S.; Prabhat, M.; Pal, C. Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. Adv. Neural Inf. Process. Syst. 2017, 30, 3405–3416. [Google Scholar]
- Albert, A.; Strano, E.; Kaur, J.; González, M. Modeling urbanization patterns with generative adversarial networks. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2095–2098. [Google Scholar]
- Pathak, J.; Subramanian, S.; Harrington, P.; Raja, S.; Chattopadhyay, A.; Mardani, M.; Kurth, T.; Hall, D.; Li, Z.; Azizzadenesheli, K.; et al. Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. arXiv 2022, arXiv:2202.11214. [Google Scholar]
- Kurth, T.; Subramanian, S.; Harrington, P.; Pathak, J.; Mardani, M.; Hall, D.; Miele, A.; Kashinath, K.; Anandkumar, A. Fourcastnet: Accelerating global high-resolution weather forecasting using adaptive fourier neural operators. In Proceedings of the PASC ’23: Platform for Advanced Scientific Computing Conference, Davos, Switzerland, 26–28 June 2023; pp. 1–11. [Google Scholar]
- Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Accurate medium-range global weather forecasting with 3D neural networks. Nature 2023, 619, 533–538. [Google Scholar] [CrossRef]
- Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger, P.; Fortunato, M.; Alet, F.; Ravuri, S.; Ewalds, T.; Eaton-Rosen, Z.; Hu, W.; et al. Learning skillful medium-range global weather forecasting. Science 2023, 382, 1416–1421. [Google Scholar] [CrossRef]
- Chen, K.; Han, T.; Gong, J.; Bai, L.; Ling, F.; Luo, J.J.; Chen, X.; Ma, L.; Zhang, T.; Su, R.; et al. FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond 10 Days Lead. arXiv 2023, arXiv:2304.02948. [Google Scholar]
- Chen, L.; Zhong, X.; Zhang, F.; Cheng, Y.; Xu, Y.; Qi, Y.; Li, H. FuXi: A cascade machine learning forecasting system for 15-day global weather forecast. arXiv 2023, arXiv:2306.12873. [Google Scholar] [CrossRef]
- Paraschiv, L.S.; Paraschiv, S. Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Rep. 2023, 9, 535–544. [Google Scholar] [CrossRef]
- Moonen, P.; Defraeye, T.; Dorer, V.; Blocken, B.; Carmeliet, J. Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Front. Archit. Res. 2012, 1, 197–228. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, J. Challenges and countermeasures for the development of China’s wind power industry under the low-carbon energy transition. China Energy 2021, 43, 8. [Google Scholar]
- Zhu, Q.; Li, J.; Qiao, J.; Shi, M.; Wang, C. Application and prospect of artificial intelligence technology in renewable energy forecasting. Proc. CSEE 2023, 43, 3027–3047. [Google Scholar] [CrossRef]
- Zeng, M.; Xu, Y. Essentials of an integrated energy system: Integration of source, grid, load and storage + multi-energy complementation. China Energy News, 12 April 2021. [Google Scholar]
- Majedul Islam, M. Threats to Humanity from Climate Change. In Climate Change: The Social and Scientific Construct; Springer: Cham, Switzerland, 2022; pp. 21–36. [Google Scholar]
- McBean, G. Climate Change and Extreme Weather: A Basis for Action. Nat. Hazards 2004, 31, 177–190. [Google Scholar] [CrossRef]
- James, D.G.; David, J.F.; Upmanu, L.; Vijay, M. How unprecedented was the February 2021 Texas cold snap? Environ. Res. Lett. 2021, 16, 064056. [Google Scholar]
- Smead, R.G. Ercot—the eyes of texas (and the world) are upon you: What can be done to avoid a february 2021 repeat. Clim. Energy 2021, 37, 14–18. [Google Scholar] [CrossRef]
- Everhart, K.; Gergely, M. Severe Power Cuts in Texas Highlight Energy Security Risks Related to Extreme Weather Events; Technical Report; International Energy Agency: Paris, France, 2021.
- Wei, H.; Wang, W.S.; Kao, X.X. A novel approach to ultra-short-term wind power prediction based on feature engineering and informer. Energy Rep. 2023, 9, 1236–1250. [Google Scholar] [CrossRef]
- Yu, R.; Gao, J.; Yu, M.; Lu, W.; Xu, T.; Zhao, M.; Zhang, J.; Zhang, R.; Zhang, Z. LSTM-EFG for wind power forecasting based on sequential correlation features. Future Gener. Comput. Syst. 2019, 93, 33–42. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, C.; Jiang, M.; Yuan, Y. Prediction interval of wind power using parameter optimized Beta distribution based LSTM model. Appl. Soft Comput. 2019, 82, 105550. [Google Scholar] [CrossRef]
Methods | Training Data | Forecasting Variables | Parameters | Training Settings | Forecasting Speed |
---|---|---|---|---|---|
FourCastNet | ERA5 data | 20 | - | 67.4 min with 3072 A100 GPUs | 7 s to compute a 100 member, 24 h forecast |
Pangu-Weather | ERA5 data | 69 | 0.256 B | 16 days with 192 V100 GPUs | 1.4 s to achieve global forecast |
GraphCast | ERA5 data | 227 | - | 3 weeks with 32 TPUv4 | 60 s to compute 10 days forecast |
Fengwu | ERA5 data | 189 | - | 17 days with 32 A100 GPUs | 30 s to compute 10 days forecast |
Fuxi | ERA5 data | 70 | 4.5 B | 30 h with 8 A100 GPU Clusters | - |
Forms of Power Generation | Associated Micro-Meteorological Elements | Influence |
---|---|---|
Wind Power | wind speed and direction, temperature, humidity, etc. | (1) cause the flow of wind to generate vortices and turbulence; (2) cause vibration and stress concentration on wind turbine blades and thus reduce the lifespan and performance of the turbines; (3) affect the transmission and conversion efficiency of wind energy. |
ine Photovoltaic | solar radiation, temperature, wind speed and wind direction, humidity and precipitation, etc. | (1) basic energy source; (2) affect the efficiency and performance of photovoltaic cells; (3) affect the stability and safety of photovoltaic components, leading to potential damage; (4) negatively effect on the performance and lifespan of photovoltaic components. |
ine Hydropower | rainfall, temperature, humidity, wind speed, solar radiation, etc. | (1) determine the inflow volume and available water resources; (2) lead to decreased efficiency and power generation capacity of hydroelectric units; (3) affect the power generation efficiency and equipment lifespan; (4) affect the fluctuation of the water surface in reservoirs; (5) affect factors such as evaporation rates from the water surface and water temperature. |
ine Thermal Power | temperature, humidity, wind speed, pressure, etc. | (1) help predict the changing trend of atmospheric temperature, thereby implementing a reasonable heating plan and thermal power adjustment; (2) reduce the combustion efficiency and environmental emission quality of thermal power plants; (3) affect the combustion stability of the boiler and the direction of flue gas emissions; (4) affect the stability of combustion air volume, fuel supply, and flue gas emissions. |
ine Energy Storage | solar radiation, air temperature, humidity, wind speed, wind direction, etc. | (1) help adjust the charging and discharging strategies of energy storage systems; (2) help adjust the charging and discharging strategies of energy storage systems; (3) take appropriate measures to control the temperature, protect the batteries, and improve the efficiency and reliability of energy storage systems. |
ine Heating | temperature, humidity, wind speed, pressure, etc. | (1) regulate the output of heat power according to external temperature changes, meeting the heating demands in different seasons and weather conditions; (2) adjust the control devices for indoor humidity to provide a comfortable heating environment indoors; (3) increase heat dissipation from building walls and windows, increasing the load on heating systems and energy consumption; (4) affect the delivery and distribution of hot water or steam in heating systems. |
Variable | Unit | Heights (m) |
---|---|---|
Temperature | °C | 2/30/50/70/90/110/130/150 |
Relative humidity | % | 2/30/50/70/90/110/130/150 |
Pressure | kPa | surface/30/50/70/90/110/130/150 |
Wind direction | ° | 10/30/50/70/90/110/130/150 |
Wind speed | m/s | 10/30/50/70/90/110/130/150 |
Precipitation | m | - |
Data | Time Frame | Temporal Resolution | Spatial Resolution |
---|---|---|---|
Micro-meteorology reanalysis dataset | 2022.3–2023.2 | 15 min | 0.01° × 0.01° |
ERA5 | 2022.3–2023.2 | 1 h | 0.25° × 0.25° |
Wind power | 2022.3–2023.2 | 15 min | a wind farm |
Method | MAE (MW) | RMSE (MW) | ||||
---|---|---|---|---|---|---|
Dataset 1 | Dataset 2 | Dataset 1 | Dataset 2 | Dataset 1 | Dataset 2 | |
LSTM | 38.0658 | 40.4811 | 53.2572 | 54.5717 | 86.6857% | 86.3570% |
GRU | 38.4487 | 40.1762 | 54.0846 | 54.8024 | 86.4789% | 86.2994% |
LightGBM | 41.1604 | 42.0596 | 54.0357 | 54.6014 | 86.4911% | 86.3497% |
XGBoost | 41.0750 | 44.0245 | 54.4686 | 56.7056 | 86.3829% | 85.8237% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, M.; Yi, R.; Liu, Y.; Wen, Q.H.; Meng, X. Growing Importance of Micro-Meteorology in the New Power System: Review, Analysis and Case Study. Energies 2024, 17, 1365. https://doi.org/10.3390/en17061365
Zhang H, Zhang M, Yi R, Liu Y, Wen QH, Meng X. Growing Importance of Micro-Meteorology in the New Power System: Review, Analysis and Case Study. Energies. 2024; 17(6):1365. https://doi.org/10.3390/en17061365
Chicago/Turabian StyleZhang, Huijun, Mingjie Zhang, Ran Yi, Yaxin Liu, Qiuzi Han Wen, and Xin Meng. 2024. "Growing Importance of Micro-Meteorology in the New Power System: Review, Analysis and Case Study" Energies 17, no. 6: 1365. https://doi.org/10.3390/en17061365
APA StyleZhang, H., Zhang, M., Yi, R., Liu, Y., Wen, Q. H., & Meng, X. (2024). Growing Importance of Micro-Meteorology in the New Power System: Review, Analysis and Case Study. Energies, 17(6), 1365. https://doi.org/10.3390/en17061365