Digitalization and Energy in Attaining Sustainable Development: Impact on Energy Consumption, Energy Structure, and Energy Intensity
Abstract
:1. Introduction
2. Literature Review
2.1. Relationship between Digitalization and Energy Consumption
2.2. Relationship between Digitalization and the Structure of Energy Usage
2.3. Relationship between Digitalization and Energy Intensity
3. Materials and Methods
4. Results
5. Conclusions and Discussion
- Promoting digitalization for energy efficiency: Given the observed negative relationship between digitalization and energy consumption, policymakers should prioritize and incentivize the adoption of digital technologies across sectors. Encouraging businesses and industries to embrace digital solutions, such as smart grids and energy-efficient technologies, can contribute significantly to reducing overall energy consumption. Sweden has successfully implemented nationwide energy efficiency programs that leverage digital technologies. Through initiatives such as smart metering and advanced energy management systems, Sweden has empowered consumers to monitor and control their energy usage [42,86,87,154]. This bottom-up approach has resulted in a significant reduction in energy consumption at the household and industrial levels. Accelerating the adoption of digital technologies across diverse sectors emerges as the strategy to diminish energy consumption, aligning with SDG 7 (Affordable and Clean Energy) and SDG 13 (Climate Action).
- Supporting sustainable energy sources: The positive influence of digitalization on the structure of energy usage implies a shift toward more sustainable and efficient energy sources. The promotion of digitalization’s role in transitioning towards renewable energy sources resonates with SDG 7, advocating for an increased integration of sustainable energy technologies. Policymakers should focus on developing and promoting policies that facilitate the integration of renewable energy technologies. Incentives for research and development in green innovation and fostering a regulatory environment that supports sustainable energy projects contributed to this shift. Germany’s success in promoting renewable energy is attributed in part to its feed-in tariff system. This policy guarantees fixed payments to renewable energy producers, providing a reliable income stream and incentivizing investments in solar, wind, and biomass projects. This approach has led to a substantial increase in the share of renewables in the energy mix.
- Enhancing regulatory frameworks: Recognizing the impact of environmental regulations on energy consumption patterns, policymakers should strive for well-crafted regulatory frameworks. Stricter environmental regulations, as suggested by the negative coefficient for EnvReg, play a crucial role in shaping energy consumption. Policymakers should aim for regulations that encourage energy-efficient practices and discourage environmentally harmful activities [155].
- Investing in digital infrastructure. Bolstering digital infrastructure to support energy-efficient practices reflects commitments to SDG 9 (Industry, Innovation, and Infrastructure) and SDG 11 (Sustainable Cities and Communities), emphasizing the need for comprehensive policies and investments in digital capabilities to optimize energy consumption and promote environmental sustainability. To harness the positive impact of digitalization on energy intensity, policymakers should focus on investing in digital infrastructure and ensuring widespread access to digital technologies. This includes initiatives to improve broadband connectivity, digital literacy programs, and support for research and development in digital technologies [156]. Enhancing the digital capabilities of industries and the general population contributes to more efficient energy use.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pudryk, D.; Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Toward Achieving Sustainable Development: Interactions between Migration and Education. Forum Sci. Oeconomia 2023, 11, 113–132. [Google Scholar] [CrossRef]
- Ziabina, Y.; Dzwigol-Barosz, M. A Country’s Green Brand and the Social Responsibility of Business. Virtual Econ. 2022, 5, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Dzwigol, H. The Uncertainty Factor i4n the Market Economic System: The Microeconomic Aspect of Sustainable Development. Virtual Econ. 2021, 4, 98–117. [Google Scholar] [CrossRef] [PubMed]
- Veckalne, R.; Kapustins, M.; Tambovceva, T. Smart Cities, Green Diets: How the Lucy Veg App Supports Valencia’s Vegan Community and Contributes to SDGs. Virtual Econ. 2023, 6, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Faganel, A.; Streicher, A. Social Marketing as a Tool for a Sustainable Municipal Waste Management. Econ. Cult. 2022, 19, 87–97. [Google Scholar] [CrossRef]
- Us, Y.; Gerulaitiene, N. Bibliometric Analysis of the Global Research Landscape on Healthcare Resilience During Critical Events. Forum Sci. Oeconomia 2023, 11, 159–188. [Google Scholar] [CrossRef]
- Hussain, H.I.; Haseeb, M.; Kamarudin, F.; Dacko-Pikiewicz, Z.; Szczepańska-Woszczyna, K. The role of globalization, economic growth and natural resources on the ecological footprint in Thailand: Evidence from nonlinear causal estimations. Processes 2021, 9, 1103. [Google Scholar] [CrossRef]
- Dzwigol, H. Research Methods and Techniques in New Management Trends: Research Results. Virtual Econ. 2019, 2, 31–48. [Google Scholar] [CrossRef]
- Williams, Z. The Materiality Challenge of ESG Ratings. Econ. Cult. 2022, 19, 97–108. [Google Scholar] [CrossRef]
- Vanickova, R. Innovation corporate energy management: Efficiency of green investment. Mark. Manag. Innov. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Environmental Sustainability within Attaining Sustainable Development Goals: The Role of Digitalization and the Transport Sector. Sustainability 2023, 15, 11282. [Google Scholar] [CrossRef]
- Sotnyk, I.; Zavrazhnyi, K.; Kasianenko, V.; Roubík, H.; Sidorov, O. Investment Management of Business Digital Innovations. Mark. Manag. Innov. 2020, 1, 95–109. [Google Scholar] [CrossRef]
- Abdullaevich, N. The Importance of Investment Attractiveness and The Role of Foreign Direct Investors in The Growth of The Country’s Economy. Tex. J. Multidiscip. Stud. 2023, 25, 22–26. [Google Scholar]
- Letunovska, N.; Abazov, R.; Chen, Y. Framing a Regional Spatial Development Perspective: The Relation between Health and Regional Performance. Virtual Econ. 2022, 5, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Dzwigol, H. The Concept of the System Approach of the Enterprise Restructuring Process. Virtual Econ. 2019, 2, 46–70. [Google Scholar] [CrossRef] [PubMed]
- Manioudis, M.; Meramveliotakis, G. Broad strokes towards a grand theory in the analysis of sustainable development: A return to the classical political economy. New Political Econ. 2022, 27, 866–878. [Google Scholar] [CrossRef]
- Małkowska, A.; Urbaniec, M.; Kosała, M. The impact of digital transformation on European countries: Insights from a comparative analysis. Equilibrium. Q. J. Econ. Econ. Policy 2021, 16, 325–355. [Google Scholar] [CrossRef]
- Esses, D.; Csete, M.S.; Németh, B. Sustainability and Digital Transformation in the Visegrad Group of Central European Countries. Sustainability 2021, 13, 5833. [Google Scholar] [CrossRef]
- Almaazmi, J.; Alshurideh, M.; Al Kurdi, B.; Salloum, S.A. The effect of digital transformation on product innovation: A critical review. In International Conference on Advanced Intelligent Systems and Informatics; Springer International Publishing: Cham, Switzerland, 2020; pp. 731–741. [Google Scholar]
- Panait, N.G.; Rădoi, M.A. Accelerating the Digitization Process in the Public Sector. Glob. Econ. Obs. 2022, 10, 112–118. [Google Scholar]
- Trzaska, R.; Sulich, A.; Organa, M.; Niemczyk, J.; Jasiński, B. Digitalization Business Strategies in Energy Sector: Solving Problems with Uncertainty under Industry 4.0 Conditions. Energies 2021, 14, 7997. [Google Scholar] [CrossRef]
- Lang, V.; Lang, V. Digitalization and digital transformation. In Digital Fluency: Understanding the Basics of Artificial Intelligence, Blockchain Technology, Quantum Computing, and Their Applications for Digital Transformation; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–50. [Google Scholar]
- Althabatah, A.; Yaqot, M.; Menezes, B.; Kerbache, L. Transformative Procurement Trends: Integrating Industry 4.0 Technologies for Enhanced Procurement Processes. Logistics 2023, 7, 63. [Google Scholar] [CrossRef]
- Borowski, P.F. Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector. Energies 2021, 14, 1885. [Google Scholar] [CrossRef]
- Li, Y.; Dai, J.; Cui, L. The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model. Int. J. Prod. Econ. 2020, 229, 107777. [Google Scholar] [CrossRef]
- Wu, H.; Xue, Y.; Hao, Y.; Ren, S. How does internet development affect energy-saving and emission reduction? Evidence from China. Energy Econ. 2021, 103, 105577. [Google Scholar] [CrossRef]
- Nyenno, I.; Truba, V.; Tokarchuk, L. Managerial Future of the Artificial Intelligence. Virtual Econ. 2023, 6, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Kharazishvili, Y.; Kwilinski, A. Methodology for Determining the Limit Values of National Security Indicators Using Artificial Intelligence Methods. Virtual Econ. 2022, 5, 7–26. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska-Woszczyna, K.; Gatnar, S. Key Competences of Research and Development Project Managers in High Technology Sector. Forum Sci. Oeconomia 2022, 10, 107–130. [Google Scholar] [CrossRef]
- Sedlmeir, J.; Buhl, H.U.; Fridgen, G.; Keller, R. The energy consumption of blockchain technology: Beyond myth. Bus. Inf. Syst. Eng. 2020, 62, 599–608. [Google Scholar] [CrossRef]
- Pirola, F.; Boucher, X.; Wiesner, S.; Pezzotta, G. Digital technologies in product-service systems: A literature review and a research agenda. Comput. Ind. 2020, 123, 103301. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Ponce, P.; Thomas, G.; Yu, Z.; Al-Ahmadi, M.S.; Tanveer, M. Digital Technologies, Circular Economy Practices and Environmental Policies in the Era of COVID-19. Sustainability 2021, 13, 12790. [Google Scholar] [CrossRef]
- Lyu, W.; Liu, J. Artificial Intelligence and emerging digital technologies in the energy sector. Appl. Energy 2021, 303, 117615. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. The Coupling and Coordination Degree of Digital Business and Digital Governance in the Context of Sustainable Development. Information 2023, 14, 651. [Google Scholar] [CrossRef]
- Chen, X.; Despeisse, M.; Johansson, B. Environmental Sustainability of Digitalization in Manufacturing: A Review. Sustainability 2020, 12, 10298. [Google Scholar] [CrossRef]
- Ha, L.T. Socioeconomic and resource efficiency impacts of digital public services. Environ. Sci. Pollut. Res. 2022, 29, 83839–83859. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Lee, C.C.; Song, Z. Digitalization and environment: How does ICT affect enterprise environmental performance? Environ. Sci. Pollut. Res. 2021, 28, 54826–54841. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, I.; Ullah, S. Does digital financial inclusion matter for economic growth and environmental sustainability in OBRI economies? An empirical analysis. Resour. Conserv. Recycl. 2022, 185, 106489. [Google Scholar] [CrossRef]
- Hosan, S.; Karmaker, S.C.; Rahman, M.M.; Chapman, A.J.; Saha, B.B. Dynamic links among the demographic dividend, digitalization, energy intensity and sustainable economic growth: Empirical evidence from emerging economies. J. Clean. Prod. 2022, 330, 129858. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Y.; Guo, Y.; Chai, J.; Yang, C.; Wu, H. Digitalization and electricity consumption: Does internet development contribute to the reduction in electricity intensity in China? Energy Policy 2022, 164, 112912. [Google Scholar] [CrossRef]
- Kazancoglu, Y.; Ozbiltekin, M.; Ozkan Ozen, Y.D.; Sagnak, M. A proposed sustainable and digital collection and classification center model to manage e-waste in emerging economies. J. Enterp. Inf. Manag. 2021, 34, 267–291. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Othman, M.H.D.; Hwang, G.H.; Gikas, P. Unlocking digital technologies for waste recycling in Industry 4.0 era: A transformation toward a digitalization-based circular economy in Indonesia. J. Clean. Prod. 2022, 357, 131911. [Google Scholar] [CrossRef]
- Chen, Y.; Lyulyov, O.; Pimonenko, T.; Kwilinski, A. Green development of the country: Role of macroeconomic stability. Energy Environ. 2023, 0958305X231151679. [Google Scholar] [CrossRef]
- Selvakumar, R.D.; Wu, J.; Afgan, I.; Ding, Y.; Alkaabi, A.K. Melting performance enhancement in a thermal energy storage unit using active vortex generation by electric field. J. Energy Storage 2023, 67, 107593. [Google Scholar] [CrossRef]
- Chavan, S.; Rudrapati, R.; Manickam, S. A comprehensive review on current advances of thermal energy storage and its applications. Alex. Eng. J. 2022, 61, 5455–5463. [Google Scholar] [CrossRef]
- Skocdopole, P.; Skypalova, R.; Fitala, P. Sustainable Strategic Management: Foreign Capital Participation in the Post-COVID-19 Era. Forum Sci. Oeconomia 2023, 11, 189–207. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. The Effects of Urbanization on Green Growth within Sustainable Development Goals. Land 2023, 12, 511. [Google Scholar] [CrossRef]
- Baltgailis, J.; Simakhova, A. The Technological Innovations of Fintech Companies to Ensure the Stability of the Financial System in Pandemic Times. Mark. Manag. Innov. 2022, 2, 55–65. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Liang, X.; O’Callaghan, E.; Goh, H.; Othman, M.H.D.; Avtar, R.; Kusworo, T.D. Transformation of Solid Waste Management in China: Moving toward Sustainability through Digitalization-Based Circular Economy. Sustainability 2022, 14, 2374. [Google Scholar] [CrossRef]
- Nañez Alonso, S.L.; Reier Forradellas, R.F.; Pi Morell, O.; Jorge-Vazquez, J. Digitalization, Circular Economy and Environmental Sustainability: The Application of Artificial Intelligence in the Efficient Self-Management of Waste. Sustainability 2021, 13, 2092. [Google Scholar] [CrossRef]
- Fatimah, Y.A.; Govindan, K.; Murniningsih, R.; Setiawan, A. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod. 2020, 269, 122263. [Google Scholar] [CrossRef]
- Letunovska, N.; Offei, F.A.; Junior, P.A.; Lyulyov, O.; Pimonenko, T.; Kwilinski, A. Green Supply Chain Management: The Effect of Procurement Sustainability on Reverse Logistics. Logistics 2023, 7, 47. [Google Scholar] [CrossRef]
- Khan, Z.; Hossain, M.R.; Badeeb, R.A.; Zhang, C. Aggregate and disaggregate impact of natural resources on economic performance: Role of green growth and human capital. Resour. Policy 2023, 80, 103103. [Google Scholar] [CrossRef]
- Sadiq, W.; Abdullah, I.; Aslam, K.; Zulfiqar, S. Engagement Marketing: The Innovative Perspective to Enhance the Viewer’s Loyalty in Social Media and Blogging E-Commerce Websites. Mark. Manag. Innov. 2020, 1, 149–166. [Google Scholar] [CrossRef]
- Khare, V.K.; Raghuwanshi, S.; Vashisht, A.; Verma, P.; Chauhan, R. The importance of green management and its implication in creating sustainability performance on the small-scale industries in India. J. Law Sustain. Dev. 2023, 11, e699. [Google Scholar] [CrossRef]
- Ortina, G.; Zayats, D.; Akimova, L.; Akimov, O.; Karpa, M. Economic Efficiency of Public Administration in the Field of Digital Development. Econ. Aff. 2023, 68, 1543–1553. [Google Scholar] [CrossRef]
- Vochozka, M.; Horak, J.; Krulicky, T. Innovations in management forecast: Time development of stock prices with neural networks. Mark. Manag. Innov. 2020, 2, 324–339. [Google Scholar] [CrossRef]
- Sadigov, R. Impact of Digitalization on Entrepreneurship Development in the Context of Business Innovation Management. Mark. Manag. Innov. 2022, 1, 167–175. [Google Scholar] [CrossRef]
- Dzwigol, H. Methodological and Empirical Platform of Triangulation in Strategic Management. Acad. Strateg. Manag. J. 2020, 19, 1–8. [Google Scholar]
- Dzwigol, H. Comparing Idiographic and Nomothetic Approaches in Management Sciences Research. Virtual Econ. 2022, 5, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Dzwigol, H. The Quality Determinants of the Research Process in Management Sciences. Virtual Econ. 2023, 6, 35–55. [Google Scholar] [CrossRef]
- Hetemi, E.; Ordieres-Meré, J.; Nuur, C. An Institutional Approach to Digitalization in Sustainability-Oriented Infrastructure Projects: The Limits of the Building Information Model. Sustainability 2020, 12, 3893. [Google Scholar] [CrossRef]
- Matthess, M.; Kunkel, S. Structural change and digitalization in developing countries: Conceptually linking the two transformations. Technol. Soc. 2020, 63, 101428. [Google Scholar] [CrossRef]
- Ma, R.; Lin, B. Digital infrastructure construction drives green economic transformation: Evidence from Chinese cities. Humanit. Soc. Sci. Commun. 2023, 10, 460. [Google Scholar] [CrossRef]
- Sepashvili, E. Supporting digitalization: Key goal for national competitiveness in digital global economy. Econ. Aziend. Online 2020, 11, 191–198. [Google Scholar]
- Hustad, E.; Olsen, D.H. Creating a sustainable digital infrastructure: The role of service-oriented architecture. Procedia Comput. Sci. 2021, 181, 597–604. [Google Scholar] [CrossRef]
- Onyango, G.; Ondiek, J.O. Digitalization and integration of sustainable development goals (SGDs) in public organizations in Kenya. Public Organ. Rev. 2021, 21, 511–526. [Google Scholar] [CrossRef]
- Myovella, G.; Karacuka, M.; Haucap, J. Digitalization and economic growth: A comparative analysis of Sub-Saharan Africa and OECD economies. Telecommun. Policy 2020, 44, 101856. [Google Scholar] [CrossRef]
- Dacko-Pikiewicz, Z. Building a family business brand in the context of the concept of stakeholder-oriented value. Forum Sci. Oeconomia 2019, 7, 37–51. [Google Scholar] [CrossRef]
- Sahoo, S.; Kumar, A.; Upadhyay, A. How do green knowledge management and green technology innovation impact corporate environmental performance? Understanding the role of green knowledge acquisition. Bus. Strategy Environ. 2023, 32, 551–569. [Google Scholar] [CrossRef]
- Dźwigoł, H.; Trzeciak, M. Pragmatic Methodology in Management Science. Forum Sci. Oeconomia 2023, 11, 67–90. [Google Scholar] [CrossRef]
- Al-Faouri, A.H. Green knowledge management and technology for organizational sustainability: The mediating role of knowledge-based leadership. Cogent Bus. Manag. 2023, 10, 2262694. [Google Scholar] [CrossRef]
- Abbas, J.; Khan, S.M. Green knowledge management and organizational green culture: An interaction for organizational green innovation and green performance. J. Knowl. Manag. 2023, 27, 1852–1870. [Google Scholar] [CrossRef]
- Meramveliotakis, G.; Manioudis, M. Default Nudge and Street Lightning Conservation: Towards a Policy Proposal for the Current Energy Crisis. J. Knowl. Econ. 2023, 1–10. [Google Scholar] [CrossRef]
- Bouquet, P.; Jackson, I.; Nick, M.; Kaboli, A. AI-based forecasting for optimized solar energy management and smart grid efficiency. Int. J. Prod. Res. 2023, 1–22. [Google Scholar] [CrossRef]
- Stecuła, K.; Wolniak, R.; Grebski, W.W. AI-Driven Urban Energy Solutions—From Individuals to Society: A Review. Energies 2023, 16, 7988. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, G. Energy Management Systems in Sustainable Smart Cities Based on the Internet of Energy: A Technical Review. Energies 2023, 16, 6903. [Google Scholar] [CrossRef]
- Fakhar, A.; Haidar, A.M.; Abdullah, M.O.; Das, N. Smart grid mechanism for green energy management: A comprehensive review. Int. J. Green Energy 2023, 20, 284–308. [Google Scholar] [CrossRef]
- Kwilinski, A. Implementation of Blockchain Technology in Accounting Sphere. Acad. Account. Financ. Stud. J. 2019, 23, 1–6. [Google Scholar]
- Dzwigol, H.; Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Renewable Energy, Knowledge Spillover and Innovation: Capacity of Environmental Regulation. Energies 2023, 16, 1117. [Google Scholar] [CrossRef]
- Melnychenko, O. Application of artificial intelligence in control systems of economic activity. Virtual Econ. 2019, 2, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Mitra, C.K. Digital technologies and clean energy. In Sustainable and Circular Management of Resources and Waste Toward a Green Deal; Elsevier: Amsterdam, The Netherlands, 2023; pp. 401–414. [Google Scholar]
- Aghimien, E.I.; Aghimien, L.M.; Petinrin, O.O.; Aghimien, D.O. High-performance computing for computational modeling in built environment-related studies–a scientometric review. J. Eng. Des. Technol. 2021, 19, 1138–1157. [Google Scholar]
- Uddin, M.; Talha, M.; Rahman, A.A.; Shah, A.; Ahmed, J.; Memon, J. Green Information Technology (IT) framework for energy efficient data centers using virtualization. Int. J. Phys. Sci. 2012, 7, 2052–2065. [Google Scholar]
- Šulyová, D.; Kubina, M. Quality of life in the concept of strategic management for Smart Cities. Forum Sci. Oeconomia 2022, 10, 9–24. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Unlocking Sustainable Value through Digital Transformation: An Examination of ESG Performance. Information 2023, 14, 444. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. The Impact of Digital Business on Energy Efficiency in EU Countries. Information 2023, 14, 480. [Google Scholar] [CrossRef]
- Karlilar, S.; Balcilar, M.; Emir, F. Environmental sustainability in the OECD: The power of digitalization, green innovation, renewable energy and financial development. Telecommun. Policy 2023, 47, 102568. [Google Scholar] [CrossRef]
- Di Silvestre, M.L.; Favuzza, S.; Sanseverino, E.R.; Zizzo, G. How Decarbonization, Digitalization and Decentralization are changing key power infrastructures. Renew. Sustain. Energy Rev. 2018, 93, 483–498. [Google Scholar] [CrossRef]
- Singh, R.; Akram, S.V.; Gehlot, A.; Buddhi, D.; Priyadarshi, N.; Twala, B. Energy System 4.0: Digitalization of the energy sector with inclination toward sustainability. Sensors 2022, 22, 6619. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, S.; Zhou, P. Role of digitalization in energy storage technological innovation: Evidence from China. Renew. Sustain. Energy Rev. 2023, 171, 113014. [Google Scholar] [CrossRef]
- Charfeddine, L.; Umlai, M. ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022. Renew. Sustain. Energy Rev. 2023, 184, 113482. [Google Scholar] [CrossRef]
- Saha, L.; Kumar, V.; Tiwari, J.; Rawat, S.; Singh, J.; Bauddh, K. Electronic waste and their leachates impact on human health and environment: Global ecological threat and management. Environ. Technol. Innov. 2021, 24, 102049. [Google Scholar]
- Fernandes, M. E-waste: A justice issue we’d rather ignore. Vis. A J. Church Theol. 2015, 16, 60–66. [Google Scholar]
- Ilankoon, I.M.S.K.; Ghorbani, Y.; Chong, M.N.; Herath, G.; Moyo, T.; Petersen, J. E-waste in the international context–A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag. 2018, 82, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Holuszko, M.; Espinosa, D.C.R. E-waste: An overview on generation, collection, legislation and recycling practices. Resour. Conserv. Recycl. 2017, 122, 32–42. [Google Scholar] [CrossRef]
- Perri, C.; Giglio, C.; Corvello, V. Smart users for smart technologies: Investigating the intention to adopt smart energy consumption behaviors. Technol. Forecast. Soc. Chang. 2020, 155, 119991. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and energy: How does internet development affect China’s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Del Rio, D.D.F. Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renew. Sustain. Energy Rev. 2020, 120, 109663. [Google Scholar] [CrossRef]
- Kaur, T.; Chana, I. Energy efficiency techniques in cloud computing: A survey and taxonomy. ACM Comput. Surv. (CSUR) 2015, 48, 1–46. [Google Scholar] [CrossRef]
- Friis, S.; Larsen, L.M.P.; Ruepp, S. Strategies for minimization of energy consumption in data Centers. In Proceedings of the 22nd Annual Conference of the International Competition Network (ICN), Barcelona, Spain, 18–20 October 2023; pp. 2–9. [Google Scholar]
- Al-Jumaili, A.H.A.; Muniyandi, R.C.; Hasan, M.K.; Paw, J.K.S.; Singh, M.J. Big Data Analytics Using Cloud Computing Based Frameworks for Power Management Systems: Status, Constraints, and Future Recommendations. Sensors 2023, 23, 2952. [Google Scholar] [CrossRef]
- Aithal, P.S. Advances and new research opportunities in quantum computing technology by integrating it with other ICCT underlying technologies. Int. J. Case Stud. Bus. IT Educ. (IJCSBE) 2023, 7, 314–358. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, G. Energy Management of Sustainable Smart Cities Using Internet-of-Energy. In Sustainable Smart Cities: Enabling Technologies, Energy Trends and Potential Applications; Springer International Publishing: Cham, Switzerland, 2023; pp. 143–173. [Google Scholar]
- Dzwigol, H. Innovation in marketing research: Quantitative and qualitative analysis. Mark. Manag. Innov. 2020, 1, 128–135. [Google Scholar] [CrossRef]
- Xu, Q.; Zhong, M.; Li, X. How does digitalization affect energy? International evidence. Energy Econ. 2022, 107, 105879. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Mu, R.; Zhan, Y.; Yu, J.; Liu, L.; Yu, Y.; Zhang, J. Digital economy, energy efficiency, and carbon emissions: Evidence from provincial panel data in China. Sci. Total Environ. 2022, 852, 158403. [Google Scholar] [CrossRef] [PubMed]
- Noussan, M.; Tagliapietra, S. The effect of digitalization in the energy consumption of passenger transport: An analysis of future scenarios for Europe. J. Clean. Prod. 2020, 258, 120926. [Google Scholar] [CrossRef]
- Xu, Q.; Zhong, M. The impact of income inequity on energy consumption: The moderating role of digitalization. J. Environ. Manag. 2023, 325, 116464. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Zhanibek, A.; Abazov, R.; Khazbulatov, A. Digital Transformation of a Country’s Image: The Case of the Astana International Finance Centre in Kazakhstan. Virtual Econ. 2022, 5, 71–94. [Google Scholar] [CrossRef]
- Trushkina, N.; Abazov, R.; Rynkevych, N.; Bakhautdinova, G. Digital Transformation of Organizational Culture under Conditions of the Information Economy. Virtual Econ. 2020, 3, 7–38. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Reducing Transport Sector CO2 Emissions Patterns: Environmental Technologies and Renewable Energy. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100217. [Google Scholar] [CrossRef]
- Miśkiewicz, R. Challenges facing management practice in the light of Industry 4.0: The example of Poland. Virtual Econ. 2019, 2, 37–47. [Google Scholar] [CrossRef]
- Dźwigol, H.; Dźwigoł-Barosz, M.; Zhyvko, Z.; Miśkiewicz, R.; Pushak, H. Evaluation of the Energy Security as a Component of National Security of the Country. J. Secur. Sustain. Issues 2019, 8, 307–317. [Google Scholar] [CrossRef]
- Nižetić, S.; Arıcı, M.; Hoang, A.T. Smart and sustainable technologies in energy transition. J. Clean. Prod. 2023, 389, 135944. [Google Scholar] [CrossRef]
- Fraga-Lamas, P.; Lopes, S.I.; Fernández-Caramés, T.M. Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition toward a Smart Circular Economy: An Industry 5.0 Use Case. Sensors 2021, 21, 5745. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Lin, X.; Luo, H.; Zhang, J.; Lian, Y. Effects of digitalization on energy efficiency: Evidence from Zhejiang Province in China. Front. Energy Res. 2022, 10, 847339. [Google Scholar] [CrossRef]
- Matthess, M.; Kunkel, S.; Dachrodt, M.F.; Beier, G. The impact of digitalization on energy intensity in manufacturing sectors—A panel data analysis for Europe. J. Clean. Prod. 2023, 397, 136598. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Luan, B.; Zou, H.; Wang, J. The energy intensity reduction effect of developing digital economy: Theory and empirical evidence from China. Energy Econ. 2023, 128, 107193. [Google Scholar] [CrossRef]
- Thanh, T.T.; Ha, L.T.; Dung, H.P.; Huong, T.T.L. Impacts of digitalization on energy security: Evidence from European countries. Environ. Dev. Sustain. 2023, 25, 11599–11644. [Google Scholar] [CrossRef]
- Benedetti, I.; Guarini, G.; Laureti, T. Digitalization in Europe: A potential driver of energy efficiency for the twin transition policy strategy. Socio-Econ. Plan. Sci. 2023, 89, 101701. [Google Scholar] [CrossRef]
- Światowiec-Szczepańska, J.; Stępień, B. Drivers of Digitalization in the Energy Sector—The Managerial Perspective from the Catching Up Economy. Energies 2022, 15, 1437. [Google Scholar] [CrossRef]
- Kwilinski, A. The Relationship between Sustainable Development and Digital Transformation: Bibliometric Analysis. Virtual Econ. 2023, 6, 56–69. [Google Scholar] [CrossRef]
- Sulich, A.; Zema, T. The Green Energy Transition in Germany: A Bibliometric Study. Forum Sci. Oeconomia 2023, 11, 175–195. [Google Scholar] [CrossRef]
- Hidayat, T.; Mahardiko, R.; Rosyad, A.M. The Analysis of Data Preparation to Validate Model Values of Information Technology. Virtual Econ. 2023, 6, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Zadorozhnyi, Z.-M.; Muravskyi, V.; Pochynok, N.; Ivasechko, U. Application of the Internet of Things and 6G Cellular Communication to Optimize Accounting and International Marketing. Virtual Econ. 2023, 6, 38–56. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhong, R.; Wang, Z.; Qu, Y.; Yang, X.; Hao, Y. How does industrial intellectualization affect energy intensity? Evidence from China. Energy J. 2024, 45, 27–48. [Google Scholar] [CrossRef]
- Chen, Y.; Kwilinski, A.; Chygryn, O.; Lyulyov, O.; Pimonenko, T. The Green Competitiveness of Enterprises: Justifying the Quality Criteria of Digital Marketing Communication Channels. Sustainability 2021, 13, 13679. [Google Scholar] [CrossRef]
- Trushkina, N. Development of the information economy under the conditions of global economic transformations: Features, factors and prospects. Virtual Econ. 2019, 2, 7–25. [Google Scholar] [CrossRef]
- Kwilinski, A. E-Commerce and Sustainable Development in the European Union: A Comprehensive Analysis of SDG2, SDG12, and SDG13. Forum Sci. Oeconomia 2023, 11, 87–107. [Google Scholar] [CrossRef]
- Berkhout, F.; Hertin, J. Dematerializing and rematerializing: Digital technologies and the environment. Futures 2004, 36, 903–920. [Google Scholar] [CrossRef]
- Rapke, I.; Christensen, T.I. Digital technologies and daily life. Sustain. Pract. Soc. Theory Clim. Chang. 2013, 95, 49. [Google Scholar]
- Dienlin, T.; Johannes, N. The impact of digital technology use on adolescent well-being. Dialogs Clin. Neurosci. 2020, 22, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Sorrell, S. Digitalization of goods: A systematic review of the determinants and magnitude of the impacts on energy consumption. Environ. Res. Lett. 2020, 15, 043001. [Google Scholar]
- Saqib, N.; Abbas, S.; Ozturk, I.; Murshed, M.; Tarczyńska-Łuniewska, M.; Alam, M.M.; Tarczyński, W. Leveraging environmental ICT for carbon neutrality: Analyzing the impact of financial development, renewable energy and human capital in top polluting economies. Gondwana Res. 2024, 126, 305–320. [Google Scholar] [CrossRef]
- Latif, R. ConTrust: A novel context-dependent trust management model in social Internet of Things. IEEE Access 2022, 10, 46526–46537. [Google Scholar] [CrossRef]
- Wilson, C.; Kerr, L.; Sprei, F.; Vrain, E.; Wilson, M. Potential climate benefits of digital consumer innovations. Annu. Rev. Environ. Resour. 2020, 45, 113–144. [Google Scholar] [CrossRef]
- Hosan, S.; Karmaker, S.C.; Rahman, M.M.; Uddin, M.A. Digitalization, Energy Intensity and Economic Growth: A Panel Study on South Asian Economies. Sciences (IEICES) 2021, 7, 19–25. [Google Scholar] [CrossRef]
- Hung, N.T. The Effects of Digitalization, Energy Intensity, and the Demographic Dividend on Viet Nam’s Economic Sustainability Goals. Asian Dev. Rev. 2023, 40, 399–425. [Google Scholar] [CrossRef]
- Lan, J.; Wen, H. Industrial digitalization and energy intensity: Evidence from China’s manufacturing sector. Energy Res. Lett. 2021, 2, 1–6. [Google Scholar] [CrossRef]
- Eurostat. The Digital Economy and Society Index (DESI). 2023. Available online: https://digital-decade-desi.digital-strategy.ec.europa.eu/datasets/desi/charts (accessed on 12 December 2023).
- Karnowski, J.; Miśkiewicz, R. Climate Challenges and Financial Institutions: An Overview of the Polish Banking Sector’s Practices. Eur. Res. Stud. J. 2021, XXIV, 120–139. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska-Woszczyna, K.; Gedvilaitė, D.; Nazarko, J.; Stasiukynas, A.; Rubina, A. Assessment of Economic Convergence among Countries in the European Union. Technol. Econ. Dev. Econ. 2022, 28, 1572–1588. [Google Scholar] [CrossRef]
- Qian, X.; Ding, H.; Ding, Z. Governmental inspection and firm environmental protection expenditure: Evidence from China. Econ. Model. 2023, 123, 106284. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Inclusive Economic Growth: Relationship between Energy and Governance Efficiency. Energies 2023, 16, 2511. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Greenfield Investment as a Catalyst of Green Economic Growth. Energies 2023, 16, 2372. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Spillover Effects of Green Finance on Attaining Sustainable Development: Spatial Durbin Model. Computation 2023, 11, 199. [Google Scholar] [CrossRef]
- Eurostat. 2023. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 12 December 2023).
- OECD. 2023. Available online: https://data.oecd.org/envpolicy/patents-on-environment-technologies.htm (accessed on 12 December 2023).
- World Data Bank. Worldwide Governance Indicators. 2023. Available online: https://data.worldbank.org (accessed on 12 December 2023).
- UNTCAD. 2023. Available online: https://unctad.org/topic/investment/world-investment-report (accessed on 12 December 2023).
- Teng, S.Y.; Touš, M.; Leong, W.D.; How, B.S.; Lam, H.L.; Máša, V. Recent advances on industrial data-driven energy savings: Digital twins and infrastructures. Renew. Sustain. Energy Rev. 2021, 135, 110208. [Google Scholar] [CrossRef]
- Rahmanov, F.; Mursalov, M.; Rosokhata, A. Consumer Behavior in Digital Era: Impact of COVID-19. Mark. Manag. Innov. 2021, 2, 243–251. [Google Scholar] [CrossRef]
- Yermachenko, V.; Bondarenko, D.; Akimova, L.; Karpa, M.; Akimov, O.; Kalashnyk, N. Theory and Practice of Public Management of Smart Infrastructure in the Conditions of the Digital Society’Development: Socioeconomic Aspects. Econ. Aff. 2023, 68, 617–633. [Google Scholar]
Variable | Source | Mean | SD | CV | Min | Max |
---|---|---|---|---|---|---|
FEC | Eurostat [150] | 35.274 | 48.028 | 1.362 | 0.525 | 218.620 |
EI | Eurostat [150] | 160.949 | 76.317 | 0.474 | 37.350 | 439.110 |
ES | Eurostat [150] | 23.277 | 11.963 | 0.514 | 6.194 | 66.002 |
DESI | Eurostat [150] | 42.516 | 10.582 | 0.249 | 19.399 | 69.598 |
EnvReg | Eurostat [150] | 0.739 | 0.355 | 0.480 | 0.170 | 1.773 |
Innov | OECD [151] | 11.507 | 3.808 | 0.331 | 1.200 | 24.159 |
GNI | World Data Bank [152] | 34,239.380 | 19,242.570 | 0.562 | 7620.000 | 89,200.000 |
GFDI | Unctad [153] | 9715.198 | 16,285.890 | 1.676 | 28.000 | 81,540.000 |
Dependent Variable | OLS Estimate | Fixed Effects | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FEC | EI | ES | FEC | EI | ES | |||||||
−0.211 *** | −0.495 *** | −0.427 *** | −0.216 *** | 0.620 | 0.842 *** | −0.211 *** | −0.477 *** | −0.424 *** | −0.305 *** | 0.626 *** | 0.805 *** | |
(−5.410) | (−8.400) | (−9.940) | (−4.520) | (6.110) | (4.870) | (−5.400) | (−7.410) | (−9.900) | (−4.810) | (5.920) | (4.650) | |
– | 0.048 ** | – | 0.079 | – | 0.029 | – | 0.040 | – | 0.096 * | – | 0.169 * | |
(1.760) | (1.370) | (0.370) | (1.450) | (1.760) | (1.710) | |||||||
– | 0.004 | – | −0.001 | – | 0.017 | – | 0.002 | – | −0.001 | – | 0.017 | |
(0.700) | (−0.090) | (0.760) | (0.280) | (−0.040) | (0.800) | |||||||
– | 0.433 *** | – | −0.349 *** | – | −0.332 ** | – | 0.412 *** | – | −0.210 * | – | −0.288 | |
(7.380) | (−4.010) | (−2.050) | (6.080) | (−1.820) | (−1.430) | |||||||
– | 0.010 ** | – | 0.004 | – | −0.008 | – | 0.007 | – | 0.006 | – | −0.009 | |
(1.990) | (0.720) | (−0.660) | (1.480) | (1.200) | (−0.780) | |||||||
constant | 3.546 *** | 0.079 *** | 6.561 *** | 9.370 *** | 0.718 | 3.339 *** | 3.545 *** | 0.251 | 6.554 *** | 8.270 *** | 0.696 *** | 3.097 |
(12.560) | (0.160) | (38.990) | (12.500) | (1.620) | (3.030) | (24.410) | (0.500) | (41.130) | (8.370) | (1.770) | (1.960) | |
Number of obs | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 | 162 |
Number of groups | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 |
0.309 | 0.456 | 0.673 | 0.714 | 0.429 | 0.457 | 0.309 | 0.458 | 0.673 | 0.722 | 0.429 | 0.468 |
Dependent Variable | FEC | EI | ES |
---|---|---|---|
0.975 *** | 0.890 *** | 0.063 * | |
(57.890) | (19.550) | (0.670) | |
−0.203 *** | −0.067 ** | 0.542 *** | |
(−2.680) | (−1.710) | (5.720) | |
EnvReg | −0.025 | 0.006 | −0.117 *** |
(−0.870) | (0.290) | (−2.980) | |
Innov | 0.040 | −0.005 | −0.024 |
(1.930) | (−0.340) | (−0.910) | |
GNI | −0.020 | −0.045 | −0.042 |
(−0.450) | (−1.220) | (−0.740) | |
GFDI | 0.013 | −0.007 | −0.032 ** |
(1.100) | (−0.870) | (−2.590) | |
constant | 0.435 * | 1.294 | 1.520 *** |
(1.530) | (2.610) *** | (3.760) | |
AR (1) test | −5.27 | −4.82 | −4.11 |
AR (1) p value | 0.000 | 0.000 | 0.000 |
AR (2) test | 1.13 | −0.04 | 0.92 |
AR (2) p value | 0.259 | 0.965 | 0.358 |
Sargan test | 0.75 | 4.24 | 1.87 |
Sargan p value | 0.689 | 0.120 | 0.393 |
Number of obs | 135 | 135 | 135 |
Dependent Variable | FEC | EI | ES |
---|---|---|---|
0.966 *** | 0.886 *** | −0.125 * | |
(56.170) | (19.380) | (−1.240) | |
−0.205 * | −0.101 ** | 0.691 *** | |
(−2.770) | (−2.420) | (6.450) | |
Control variables | yes | yes | yes |
constant | 0.259 * | 1.343 ** | 1.689 *** |
(1.120) | (2.570) | (4.470) | |
AR (1) test | −5.16 | −3.67 | −1.54 |
AR (1) p value | 0.000 | 0.000 | 0.123 |
AR (2) test | 1.06 | −0.43 | 0.50 |
AR (2) p value | 0.287 | 0.668 | 0.619 |
Sargan test | 1.54 | 1.90 | 0.49 |
Sargan p value | 0.463 | 0.386 | 0.784 |
Number of obs | 110 | 110 | 110 |
Dependent Variable | FEC | EI | ES |
---|---|---|---|
0.948 *** | 0.636 *** | 0.376 *** | |
(34.460) | (6.210) | (4.480) | |
−0.186 ** | −0.249 *** | 0.535 *** | |
(−2.440) | (−3.050) | (4.450) | |
Control variables | yes | yes | yes |
constant | 0.416 * | 2.900 *** | 1.104 *** |
(0.960) | (3.700) | (2.260) | |
AR (1) test | −5.23 | −3.77 | −5.24 |
AR (1) p value | 0.000 | 0.000 | 0.000 |
AR (2) test | 1.18 | −1.20 | 1.63 |
AR (2) p value | 0.239 | 0.230 | 0.104 |
Sargan test | 0.98 | 0.28 | 1.14 |
Sargan p value | 0.612 | 0.599 | 0.565 |
Number of obs | 135 | 135 | 135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzwigol, H.; Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Digitalization and Energy in Attaining Sustainable Development: Impact on Energy Consumption, Energy Structure, and Energy Intensity. Energies 2024, 17, 1213. https://doi.org/10.3390/en17051213
Dzwigol H, Kwilinski A, Lyulyov O, Pimonenko T. Digitalization and Energy in Attaining Sustainable Development: Impact on Energy Consumption, Energy Structure, and Energy Intensity. Energies. 2024; 17(5):1213. https://doi.org/10.3390/en17051213
Chicago/Turabian StyleDzwigol, Henryk, Aleksy Kwilinski, Oleksii Lyulyov, and Tetyana Pimonenko. 2024. "Digitalization and Energy in Attaining Sustainable Development: Impact on Energy Consumption, Energy Structure, and Energy Intensity" Energies 17, no. 5: 1213. https://doi.org/10.3390/en17051213
APA StyleDzwigol, H., Kwilinski, A., Lyulyov, O., & Pimonenko, T. (2024). Digitalization and Energy in Attaining Sustainable Development: Impact on Energy Consumption, Energy Structure, and Energy Intensity. Energies, 17(5), 1213. https://doi.org/10.3390/en17051213