Production of Sustainable Adsorbents for CO2 Capture Applications from Food Biowastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Hydrothermal Treatment Followed by Activation with CO2
2.3. In Situ Ionic Activation
2.4. Characterization
2.5. Equilibrium of Adsorption
3. Results and Discussion
3.1. Precursor Characterization
3.2. Hydrothermal Treatment followed by Activation with CO2
3.3. In Situ Ionic Activation
3.4. Comparison of Selected Carbons
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNFCCC. Report of the Conference of the Parties on Its Twenty-First Session, Held in Paris from 30 November to 13 December 2015. Addendum. Part Two: Action Taken by the Conference of the Parties at Its Twenty-First Session; FCCC/CP/2015/10/Add.1. In Proceedings of the UN Climate Change Conference (COP21), Paris, France, 30 November–13 December 2015; 2016. Available online: https://unfccc.int/documents/9097 (accessed on 20 February 2024).
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V.P., Zhai, H.-O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 3–24. [Google Scholar] [CrossRef]
- UNFCCC. Technical Dialogue of the First Global Stocktake. Synthesis Report by the Co-Facilitators on the Technical Dialogue; FCCC/SB/2023/9; 2023; Available online: https://unfccc.int/documents/631600 (accessed on 20 February 2024).
- IISD. Summary of the 2023 Dubai Climate Change Conference: 30 November—13 December 2023. Earth Negot. Bull. 2023, 12, 842. Available online: https://bit.ly/enb_cop28 (accessed on 20 February 2024).
- IPCC. IPCC Special Report on Carbon Dioxide Capture and Storage; Metz, B., Davidson, O., de Conick, H.C., Loos, M., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; p. 442. [Google Scholar]
- IEA. World Energy Outlook 2023; International Energy Agency (IEA): Paris, France, 2023; Available online: https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf (accessed on 20 February 2024).
- Global CCS Institute. The Global Status of CCS: 2023; Global CCS Institute: Melbourne, Australia, 2023; Available online: https://www.globalccsinstitute.com/wp-content/uploads/2024/01/Global-Status-of-CCS-Report-1.pdf (accessed on 20 February 2024).
- Budinis, S.; Krevor, S.; Dowell, N.M.; Brandon, N.; Hawkes, A. An assessment of CCS costs, barriers and potential. Energy Strateg. Rev. 2018, 22, 61–81. [Google Scholar] [CrossRef]
- Nocito, F.; Dibenedetto, A. Atmospheric CO2 mitigation technologies: Carbon capture utilization and storage. Curr. Opin. Green Sustain. Chem. 2020, 21, 34–43. [Google Scholar] [CrossRef]
- Bottoms, R.R. Process for Separating Acidic Gases. United States Patent 18,958, 2 December 1930. [Google Scholar]
- DuPart, M.S.; Bacon, T.R.; Edwards, D.J. Understanding corrosion in alkanolamine gas treating plants: Part 1. Hydrocarb. Process. 1993, 72, 75–80. [Google Scholar]
- Gouedard, C.; Picq, D.; Launay, F.; Carrette, P.L. Amine degradation in CO2 capture. I. A review. Int. J. Greenh. Gas Control 2012, 10, 244–270. [Google Scholar] [CrossRef]
- Goto, K.; Yogo, K.; Higashii, T. A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture. Appl. Energy 2013, 111, 710–720. [Google Scholar] [CrossRef]
- Luis, P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination 2016, 380, 93–99. [Google Scholar] [CrossRef]
- Rosa, L.; Reimer, J.A.; Went, M.S.; D’Odorico, P. Hydrological limits to carbon capture and storage. Nat. Sustain. 2020, 3, 658–666. [Google Scholar] [CrossRef]
- Plaza, M.G.; Rubiera, F. Development of carbon-based vacuum, temperature and concentration swing adsorption post-combustion CO2 capture processes. Chem. Eng. J. 2019, 375, 122002. [Google Scholar] [CrossRef]
- Preston, C. The carbon capture project at Air Products’ Port Arthur hydrogen production facility. In Proceedings of the 14th Greenhouse Gas Control Technologies Conference (GHGT-14), Melbourne, Australia, 21–26 October 2018. [Google Scholar] [CrossRef]
- Modak, A.; Jana, S. Advancement in porous adsorbents for post-combustion CO2 capture. Microporous Mesoporous Mater. 2019, 276, 107–132. [Google Scholar] [CrossRef]
- Ding, M.; Flaig, R.W.; Jiang, H.-L.; Yaghi, O.M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828. [Google Scholar] [CrossRef] [PubMed]
- Ochedi, F.O.; Liu, Y.; Adewuyi, Y.G. State-of-the-art review on capture of CO2 using adsorbents prepared from waste materials. Process Saf. Environ. Prot. 2020, 139, 1–25. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Dziejarski, B.; Serafin, J.; Andersson, K.; Krzyzynska, R. CO2 capture materials: A review of current trends and future challenges. Mater. Today Sustain. 2023, 24, 100483. [Google Scholar] [CrossRef]
- Yu, S.; He, J.; Zhang, Z.; Sun, Z.; Xie, M.; Xu, Y.; Bie, X.; Li, Q.; Zhang, Y.; Sevilla, M.; et al. Towards negative emissions: Hydrothermal carbonization of biomass for sustainable carbon materials. Adv. Mater. 2024, 2307412. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Jia, Z.; Zhao, L.; Zhang, T.; Xing, W.; Komarneni, S.; Subhan, F.; Yan, Z. New strategy to prepare ultramicroporous carbon by ionic activation for superior CO2 capture. Chem. Eng. J. 2018, 337, 290–299. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, J.; Fan, W.; Zhong, Y.; Zhang, Y.; Deng, Q.; Zeng, Z.; Deng, S. Ultramicroporous carbons with extremely narrow pore size distribution via in-situ ionic activation for efficient gas-mixture separation. Chem. Eng. J. 2019, 375, 121931. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, D.; Lui, G.; Li, G.; Jiang, G.; Cano, Z.P.; Deng, Y.-P.; Du, X.; Yin, S.; Chen, Y.; et al. In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture. Carbon 2019, 143, 531–541. [Google Scholar] [CrossRef]
- Cao, S.; Zhao, H.; Hu, D.; Wang, J.-A.; Li, M.; Zhou, Z.; Shen, Q.; Sun, N.; Wei, W. Preparation of potassium intercalated carbons by in-situ activation and speciation for CO2 capture from flue gas. J. CO2 Util. 2020, 35, 59–66. [Google Scholar] [CrossRef]
- Du, S.; Wu, Y.; Wang, X.; Xia, Q.; Xiao, J.; Zhou, X.; Li, Z. Facile synthesis of ultramicroporous carbon adsorbents with ultra-high CH4 uptake by in situ ionic activation. AIChE J. 2020, 66, e16231. [Google Scholar] [CrossRef]
- Sánchez-Zapata, E.; Fuentes-Zaragoza, E.; Fernández-López, J.; Sendra, E.; Sayas, E.; Navarro, C.; Pérez-Álvarez, J.A. Preparation of dietary fiber powder from tiger nut (Cyperus esculentus) milk (“Horchata”) byproducts and its physicochemical properties. J. Agric. Food Chem. 2009, 57, 7719–7725. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, A.; Boronat, T.; Fages, E.; Girones, S.; Sanchez-Zapata, E.; Perez-Alvarez, J.A.; Sanchez-Nacher, L.; Garcia-Sanoguera, D. Wet-laid technique with Cyperus esculentus: Development, manufacturing and characterization of a new composite. Mater. Des. 2015, 86, 887–893. [Google Scholar] [CrossRef]
- Sanusi, K.A.; Santuraki, A.H.; Abdus Salam, N.; Akpan, S.E. Application of tigernuts (Cyperus esculentus) as biosorbent for Cr6+ in aqueous solution. Int. J. Environ. Sci. Nat. Resour. 2019, 17, 109–113. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.; Olivier, J.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Dubinin, M.M. Properties of Active Carbons; Walker, P.L.J., Ed.; Chemistry and physics of carbon; Marcel Dekker Inc.: New York, NY, USA, 1966; pp. 51–120. [Google Scholar]
- Stoeckli, F.; Ballerini, L. Evolution of microporosity during activation of carbon. Fuel 1991, 70, 557–559. [Google Scholar] [CrossRef]
- Himeno, S.; Komatsu, T.; Fujita, S. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 2005, 50, 369–376. [Google Scholar] [CrossRef]
- Do, D.D. Adsorption Analysis: Equilibria and Kinetics; Imperial College Press: Singapore, 1998. [Google Scholar]
- Myers, A.L.; Prausnitz, J.M. Thermodynamics of mixed-gas adsorption. AIChE J. 1965, 11, 121–127. [Google Scholar] [CrossRef]
- Goel, C.; Mohan, S.; Dinesha, P. CO2 capture by adsorption on biomass-derived activated char: A review. Sci. Total Environ. 2021, 798, 149296. [Google Scholar] [CrossRef]
- Plaza, M.G.; González, A.S.; Pevida, C.; Pis, J.J.; Rubiera, F. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl. Energy 2012, 99, 272–279. [Google Scholar] [CrossRef]
- Plaza, M.G.; Pevida, C.; Arias, B.; Fermoso, J.; Casal, M.D.; Martín, C.F.; Rubiera, F.; Pis, J.J. Development of low-cost biomass-based adsorbents for postcombustion CO2 capture. Fuel 2009, 88, 2442–2447. [Google Scholar] [CrossRef]
- Plaza, M.G.; Pevida, C.; Martín, C.F.; Fermoso, J.; Pis, J.J.; Rubiera, F. Developing almond shell-derived activated carbons as CO2 adsorbents. Sep. Purif. Technol. 2010, 71, 102–106. [Google Scholar] [CrossRef]
- Sánchez-Zapata, E.; Fernández-López, J.; Pérez-Alvarez, J.A. Tiger nut (Cyperus esculentus) commercialization: Health aspects, composition, properties, and food applications. Compr. Rev. Food Sci. Food Saf. 2012, 11, 366–377. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Poojary, M.M.; Barba, F.J.; Lorenzo, J.M.; Mañes, J.; Moltó, J.C. Tiger nut and its by-products valorization: From extraction of oil and valuable compounds to development of new healthy products. Innov. Food Sci. Emerg. Technol. 2018, 45, 306–312. [Google Scholar] [CrossRef]
- Jing, S.; Yan, X.; Ouyang, W.; Xiang, H.; Ren, Z. Study on properties of Cyperus esculentus starch grown in Xinjiang, China. Starch 2012, 64, 581–589. [Google Scholar] [CrossRef]
- Costa Neto, J.; Silva, R.d.; Amaral, P.; Leão, M.R.; Gomes, T.; Sant Ana, G. Extraction, chemical modification by octenyl succinic and characterization of Cyperus esculentus starch. Polimeros 2018, 28, 319–322. [Google Scholar] [CrossRef]
- Möller, M.; Nilges, P.; Harnisch, F.; Schröder, U. Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation. ChemSusChem 2011, 4, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Kaliyan, N.; Morey, R. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, H.-J.; Ramaswamy, S. Reaction kinetics of the hydrothermal treatment of lignin. Appl. Biochem. Biotechnol. 2008, 147, 119–131. [Google Scholar] [CrossRef]
- Reza, M.T.; Lynam, J.G.; Vasquez, V.R.; Coronella, C.J. Pelletization of biochar from hydrothermally carbonized wood. Environ. Prog. Sustain. Energy 2012, 31, 225–234. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 2009, 15, 4195–4203. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.G.; González, A.S.; Pevida, C.; Rubiera, F. Green coffee based CO2 adsorbent with high performance in postcombustion conditions. Fuel 2015, 140, 633–648. [Google Scholar] [CrossRef]
- González, A.S.; Plaza, M.G.; Pis, J.J.; Rubiera, F.; Pevida, C. Post-combustion CO2 capture adsorbents from spent coffee grounds. Energy Procedia 2013, 37, 134–141. [Google Scholar] [CrossRef]
- Zhang, C.; Song, W.; Ma, Q.; Xie, L.; Zhang, X. Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification. Energy Fuels 2016, 30, 4181–4190. [Google Scholar] [CrossRef]
- Plaza, M.G.; González, A.S.; Pis, J.J.; Rubiera, F.; Pevida, C. Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture. Appl. Energy 2014, 114, 551–562. [Google Scholar] [CrossRef]
- González, A.S.; Plaza, M.G.; Rubiera, F.; Pevida, C. Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chem. Eng. J. 2013, 230, 456–465. [Google Scholar] [CrossRef]
- Plaza, M.G.; Rubiera, F.; Pevida, C. Evaluating the feasibility of a TSA process based on steam stripping in combination with structured carbon adsorbents to capture CO2 from a coal power plant. Energy Fuels 2017, 31, 9760–9775. [Google Scholar] [CrossRef]
- Chue, K.T.; Kim, J.N.; Yoo, Y.J.; Cho, S.H.; Yang, R.T. Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 1995, 34, 591–598. [Google Scholar] [CrossRef]
- Falco, C.; Marco-Lozar, J.P.; Salinas-Torres, D.; Morallón, E.; Cazorla-Amorós, D.; Titirici, M.M.; Lozano-Castelló, D. Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon 2013, 62, 346–355. [Google Scholar] [CrossRef]
- Plaza, M.G.; Pevida, C.; Arenillas, A.; Rubiera, F.; Pis, J.J. CO2 capture by adsorption with nitrogen enriched carbons. Fuel 2007, 86, 2204–2212. [Google Scholar] [CrossRef]
- Presser, V.; McDonough, J.; Yeon, S.-H.; Gogotsi, Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 2011, 4, 3059–3066. [Google Scholar] [CrossRef]
Proximate Analysis | Ultimate Analysis (%, daf) | Reference | ||||||
---|---|---|---|---|---|---|---|---|
Moisture (%) | Ash (%, db) | Volatile Matter (%, db) | C | H | N | O * | ||
HSW | 78.1 | 1.7 | 84.9 | 54.6 | 7.8 | 1.2 | 36.4 | This work |
SCG | NA | 1.3 | 82.9 | 56.4 | 7.0 | 2.6 | 34.0 | [40] |
OS | 1.77 | 0.8 | 85.4 | 51.6 | 6.0 | 0.2 | 42.2 | [41] |
AS | 0.81 | 1.3 | 82.3 | 51.4 | 6.1 | 0.3 | 42.2 | [42] |
Sample | VDR,CO2 (cm3 g−1) | L (nm) |
---|---|---|
HSWHC-150-3-800-60 | 0.240 | 0.58 |
HSWHC-170-3-800-60 | 0.273 | 0.55 |
HSWHC-190-3-800-60 | 0.290 | 0.57 |
HSWHC-190-3-800-90 | 0.294 | 0.56 |
HSWHC-190-3-800-120 | 0.243 | 0.55 |
HSWIA-160-8-600 | 0.157 | 0.57 |
HSWIA-190-8-600 | 0.193 | 0.54 |
HSWIA-160-8-800 | 0.295 | 0.54 |
HSWIA-190-8-800 | 0.209 | 0.61 |
HSWGIA-160-8-600 | 0.260 | 0.57 |
HSWGIA-190-8-600 | 0.233 | 0.63 |
Norit R 2030 CO2 | 0.204 | 0.58 |
Sample | CO2 Adsorption Capacity (mmol g−1) | Reference | |||
---|---|---|---|---|---|
25 °C | 50 °C | ||||
15 kPa | 100 kPa | 15 kPa | 100 kPa | ||
HSWHC-150-3-800-60 | 0.89 | 2.34 | 0.56 | 1.71 | This work |
HSWHC-170-3-800-60 | 1.09 | 2.48 | 0.63 | 1.79 | This work |
HSWHC-190-3-800-60 | 1.11 | 2.69 | 0.59 | 1.76 | This work |
HSWHC-190-3-800-90 | 1.21 | 3.17 | 0.64 | 2.01 | This work |
HSWHC-190-3-800-120 | 1.00 | 2.25 | 0.44 | 1.26 | This work |
HSWIA-160-8-600 | 0.84 | 1.73 | 0.58 | 1.40 | This work |
HSWIA-190-8-600 | 0.83 | 1.79 | 0.43 | 1.24 | This work |
HSWIA-160-8-800 | 1.27 | 2.70 | 0.78 | 2.07 | This work |
HSWIA-190-8-800 | 0.85 | 1.84 | 0.53 | 1.41 | This work |
HSWGIA-160-8-600 | 0.96 | 2.18 | 0.63 | 1.66 | This work |
HSWGIA-190-8-600 | 0.62 | 1.79 | 0.35 | 1.09 | This work |
BPL | 0.70 | 2.05 | 0.43 | 1.32 | [58] |
Norit R 2030 CO2 | 0.84 | 2.64 | 0.47 | 1.73 | This work |
PPC | 1.23 | 2.74 | 0.76 | 1.96 | [52] |
NCLK3 | 1.15 | 3.10 | 0.63 | 2.05 | [53] |
AC | 0.75 | 1.85 | 0.09 | 0.66 | [54] |
AC-KOH | 1.20 | 3.75 | 0.71 | 2.11 | [54] |
O-3-650-110 | 0.84 | 2.11 | 0.50 | 1.44 | [55] |
A-3-650-83 | 1.13 | 2.25 | 0.60 | 1.53 | [55] |
AS | 1.08 | 2.66 | 0.67 | 1.78 | [56] |
OS | 1.02 | 3.20 | 0.58 | 2.00 | [56] |
CGUC-0.5-6 | 1.65 | 3.39 | 0.96 | 2.45 | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubiera, F.; Córdoba, C.; Pena, T.; Plaza, M.G. Production of Sustainable Adsorbents for CO2 Capture Applications from Food Biowastes. Energies 2024, 17, 1205. https://doi.org/10.3390/en17051205
Rubiera F, Córdoba C, Pena T, Plaza MG. Production of Sustainable Adsorbents for CO2 Capture Applications from Food Biowastes. Energies. 2024; 17(5):1205. https://doi.org/10.3390/en17051205
Chicago/Turabian StyleRubiera, Fernando, Carlos Córdoba, Tamara Pena, and Marta G. Plaza. 2024. "Production of Sustainable Adsorbents for CO2 Capture Applications from Food Biowastes" Energies 17, no. 5: 1205. https://doi.org/10.3390/en17051205
APA StyleRubiera, F., Córdoba, C., Pena, T., & Plaza, M. G. (2024). Production of Sustainable Adsorbents for CO2 Capture Applications from Food Biowastes. Energies, 17(5), 1205. https://doi.org/10.3390/en17051205