Coal Mine Drainage as a Source of Drinking and Industrial Water—The Upper Silesian Coal Basin, Poland
Abstract
:1. Introduction
2. Upper Silesian Coal Basin (USCB) Geology
3. Upper Silesian Coal Basin (USCB) Hydrogeology
4. Mine Dewatering Model in the USCB
5. Characteristics of the CMDP Pumping Stations
6. Methods
7. Water Quality
8. Discussion about Possibilities of Mine-Water Usage
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gutry-Korycka, M.; Sadurski, A.; Kundzewicz, Z.; Pociask-Karteczka, J.; Skrzypczyk, L. Water Resources and Their Use. Nauka 2014, 1, 77–98. (In Polish) [Google Scholar]
- Water Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Water_statistics#Water_as_a_resource (accessed on 23 January 2024).
- Statistics Poland. Environment 2023; Statistics Poland: Warsaw, Poland, 2023. (In Polish) [Google Scholar]
- Banks, D.; Younger, P.L.; Dumpleton, S. The Historical Use of Mine-Drainage and Pyrite-Oxidation Waters in Central and Eastern England, United Kingdom. Hydrogeol. J. 1996, 4, 55–68. [Google Scholar] [CrossRef]
- Wolkersdorfer, C. Water Management at Abandoned Flooded Underground Mines: Fundamentals, Tracer Tests, Modelling, Water Treatment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; ISBN 9783540773313. [Google Scholar]
- Schultze, M. Maximising Use of Waters Produced by Mining. In Proceedings of the International Mine Water Association Symposium, Bunbury, Australia, 30 September—4 October 2012; pp. 11–19. [Google Scholar]
- Machnicka, A. Drinking Water in PGG S.A. Branch of HCM „Piast-Ziemowit” Ruch Ziemowit. Bezpieczeństwo Pracy Ochrona Środowiska Górnictwie 2021, 5, 14–19. (In Polish) [Google Scholar]
- Kłos, M.; Gumińska, J. The Use of Saline Mine Water for Production of Potable and Process Water. Instal 2016, 11, 49–5052. (In Polish) [Google Scholar]
- Sawiniak, W.; Kłos, M. Utilisation of Mine Waters for Municipal Purposes. Wiadomości Górnicze 2003, 54, 223–225. (In Polish) [Google Scholar]
- d’Obyrn, K.; Postawa, A.; Cień, D. Flooded Ore Mine as a Potential Source of Water for Industrial Purposes. Instal 2023, 1, 47–52. (In Polish) [Google Scholar]
- Karakatsanis, E.; Cogho, V. Drinking Water from Mine Water Using the HiPRO Process-Optimum Coal Mine Water Reclamation Plant. In Proceedings of the International-Mine-Water-Association Symposium on Mine Water and Innovative Thinking, Sydney, NS, Canada, 5–9 September 2010. [Google Scholar]
- van Zyl, H.; Maree, J.; van Niekerk, A.; van Tonder, G.; Naidoo, C. Collection, Treatment and Re-Use of Mine Water in the Olifants River Catchment. J. S. Afr. Inst. Min. Metall. 2001, 101, 41–46. [Google Scholar]
- Hutton, B.; Kahan, I.; Naidu, T.; Gunther, P. Operating and Maintenance Experience at the Emalahleni Water Reclamation Plant. In Proceedings of the International Mine Water Conference, Pretoria, South Africa, 19–23 October 2009; pp. 415–430. [Google Scholar]
- Bajtos, P. Actual and Potential Utilisation of Mine Waters in the Spissko-Gemerske Rudohorie Mts., Slovakia. In Proceedings of the 10th International-Mine-Water-Association Congress, Karlsbad, Czech Republic, 2–5 June 2008; pp. 87–89. [Google Scholar]
- Marques, A.; Garcia-Ordiales, E.; Loredo, J. Potential for Mine Water Reuse in an Abandoned Coal Mine in Northern Spain. In Proceedings of the International-Mine-Water-Association Symposium on Mine Water and Innovative Thinking, Sydney, NS, Canada, 5–9 September 2010; pp. 309–312. [Google Scholar]
- Hidalgo, C.; Rey, J.; Martinez, J.; Benavente, J. Evolution of Mine Water Uses in the Abandoned Sulphide Mines of the Province of Jaen, Spain. In Proceedings of the International-Mine-Water-Association Symposium on Mine Water and Innovative Thinking, Sydney, NS, Canada, 5–9 September 2010; pp. 301–304. [Google Scholar]
- Jardón, S.; Ordóñez, A.; Álvarez, R.; Cienfuegos, P.; Loredo, J. Mine Water for Energy and Water Supply in the Central Coal Basin of Asturias (Spain). Mine Water Environ. 2013, 32, 139–151. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, K.; Hou, W. Mine Dewatering Water Reuse in Large Scale Thermal Power Plant. In Proceedings of the 2016 International Conference on Mechatronics Engineering and Information Technology, Melbourne, Australia, 30 November–3 December 2016; Atlantis Press: Paris, France, 2016. [Google Scholar]
- Hoffman, A.; Jankowski, J.; Rozwadowski, J.; Sokólski, W.; Szukalski, J. Anticorrosion Protection of Water and Wastewater Installations in Big Industrial Plants Using Cathodic Protection Technology. Ochrona przed Korozją 2008, 8, 296–300. (In Polish) [Google Scholar]
- Barszcz, T.; d’Obyrn, K.; Korbiel, T. Experimental Underground Pumped-Storage Hydropower (UPSH). Rynek Energii 2022, 1, 55–61. (In Polish) [Google Scholar]
- Menéndez, J.; Schmidt, F.; Konietzky, H.; Fernández-Oro, J.M.; Galdo, M.; Loredo, J.; Díaz-Aguado, M.B. Stability Analysis of the Underground Infrastructure for Pumped Storage Hydropower Plants in Closed Coal Mines. Tunn. Undergr. Space Technol. 2019, 94, 103117. [Google Scholar] [CrossRef]
- Menéndez, J.; Fernández-Oro, J.M.; Galdo, M.; Loredo, J. Efficiency Analysis of Underground Pumped Storage Hydropower Plants. J. Energy Storage 2020, 28, 101234. [Google Scholar] [CrossRef]
- Ali, S.; Stewart, R.A.; Sahin, O. Drivers and Barriers to the Deployment of Pumped Hydro Energy Storage Applications: Systematic Literature Review. Clean. Eng. Technol. 2021, 5, 100281. [Google Scholar] [CrossRef]
- Kitsikoudis, V.; Archambeau, P.; Dewals, B.; Pujades, E.; Orban, P.; Dassargues, A.; Pirotton, M.; Erpicum, S. Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics. Energies 2020, 13, 3512. [Google Scholar] [CrossRef]
- Brücker, C.; Preuße, A. The Future of Underground Spatial Planning and the Resulting Potential Risks from the Point of View of Mining Subsidence Engineering. Int. J. Min. Sci. Technol. 2020, 30, 93–98. [Google Scholar] [CrossRef]
- Menéndez, J.; Loredo, J.; Galdo, M.; Fernández-Oro, J.M. Energy Storage in Underground Coal Mines in NW Spain: Assessment of an Underground Lower Water Reservoir and Preliminary Energy Balance. Renew. Energy 2019, 134, 1381–1391. [Google Scholar] [CrossRef]
- Montero, R.; Niemanm, A.; Wortberg, T. Underground Pumped-Storage Hydroelectricity Using Existing Coal Mining Infrastructure. In Proceedings of the 36th IAHR World Congress, Hague, The Netherlands, 28 June–3 July 2015; pp. 3592–3599. [Google Scholar]
- Kubski, P. Use of Underground Mine Water Energy for Heating. Zeszyty Problemowe Postępów Nauk Rolniczych 2002, 486, 101–106. (In Polish) [Google Scholar]
- Watzlaf, G.R.; Ackman, T.E. Underground Mine Water for Heating and Cooling Using Geothermal Heat Pump Systems. Mine Water Environ. 2006, 25, 1–14. [Google Scholar] [CrossRef]
- Digges La Touche, G.; Preene, M. The Potential Use of Ground Energy in the Mining Industry—Exploration to Closure. In Proceedings of the IMWA Congress 2011, Aachen, Germany, 4–11 September 2011. [Google Scholar]
- Drwięga, A.; Gliklich-Kostrzewa, B. Energetical Use of Water from the Process of Mines Dewatering. Bezpieczeństwo Pracy Ochrona Środowiska Górnictwie 2019, 4, 3–13. (In Polish) [Google Scholar]
- Strozik, G. Balance and Methods of the Utilization of Salt Waters from Active and Decommissioned Hard Coal Mines Including Their Use in Underground Mining Technologies. Zeszyty Naukowe Instytutu Surowcami Mineralnymi Energią Polskiej Akademii Nauk 2017, 98, 199–210. (In Polish) [Google Scholar]
- Rogoż, M. Mining Hydrogeology with Basics of General Hydrogeology; Central Mining Institute: Katowice, Poland, 2004; ISBN 8387610631. (In Polish) [Google Scholar]
- Magdziorz, A.; Seweryński, J. The Use of Membrane Techniques in Treatment and Desalination of Coal Mine Waters. Przegląd Górniczy 1999, 55, 18–23. (In Polish) [Google Scholar]
- Razowska-Jaworek, L.; Pluta, I.; Chmura, A. Mine Waters and Their Usage in the Upper Silesia in Poland. Examples from Selected Regions. In Proceedings of the 10th International-Mine-Water-Association Congress, Karlsbad, Czech Republic, 2–5 June 2008; pp. 113–116. [Google Scholar]
- Statistics Poland Reporting—Mine Dewatering. Available online: https://www.pgi.gov.pl/psh/materialy-informacyjne-psh/sprawozdawczosc-gus-odwodnienia-gornicze-1.html (accessed on 23 January 2024). (In Polish)
- Kotas, A. Structural Evolution of the Upper Silesian Coal Basin (Poland). In Proceedings of the 10th International Congress of Carboniferous Stratigraphy and Geology, Madrid, Spain, 12–17 September 1983; Volume 3, pp. 459–469. [Google Scholar]
- Bukowy, S. Geotectonic Position of the Upper Silesian Coal Basin. In Tectonics of the Upper Silesian Coal Basin; Trzepierczyński, J., Ed.; University of Silesia: Katowice, Poland, 1985. (In Polish) [Google Scholar]
- Buła, Z.; Żaba, J.; Habryn, R. Tectonic Subdivision of Poland: Southern Poland (Upper Silesian Block and Małopolska Block). Przegląd Geol. 2008, 56, 912–920. (In Polish) [Google Scholar]
- Wilk, Z.; Kulma, R. Hydrogeology of Polish Mineral Deposits and Mining Water Issues; Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH: Cracow, Poland, 2004; ISBN 8389388065. (In Polish) [Google Scholar]
- Jureczka, J.; Dopita, M.; Gałka, M.; Krieger, W.; Kwarciński, J.; Martinec, P. Geological Atlas of Coal Deposits of the Polish and Czech Parts of the Upper Silesian Coal Basin; Polish Geological Institute—National Research Institute: Warsaw, Poland, 2005. (In Polish) [Google Scholar]
- Kotas, K. (Ed.) Coal-Bed Methane Potential of the Upper Silesian Coal Basin, Poland. Prace Państwowego Instytutu Geologicznego 1994, 142, 5–81. (In Polish) [Google Scholar]
- Porzycki, J. Mudstone Series of the Lower Westphalian in the Upper Silesian Coal Basin. In Carboniferous of the Upper Silesian Coal Basin; Wydawnictwa Geologiczne: Warsaw, Poland, 1972. (In Polish) [Google Scholar]
- Buła, Z.; Kotarba, M.; Smolarski, L. Assessment of the Size of the Basic Lithological Types Forming the Upper Carboniferous Formations of the Upper Silesian Coal Basin. In Development of Models and Balance of Gas Generation and Accumulation in the Coal-Bearing Series of the Upper Silesian Coal Basin; PPGSMiE PAS Center: Cracow, Poland, 1995. (In Polish) [Google Scholar]
- Kotas, A. Major Features of the Geological Structure of the USCB At the Background of the Tectonic Position and Structure of the Deep Bed of Productive Formations. In Problems of Geodynamics and Rock Bursts; Committee of Mining of the Polish Academy of Sciences: Cracow, Poland, 1972; pp. 5–55. (In Polish) [Google Scholar]
- Rozkowski, A.; Chmura, A.; Gajowiec, B.; Wagner, J. Impact of Mining on the Groundwater Chemistry in the Upper Silesian Coal Basin (Poland). Mine Water Environ. 1993, 12, 95–105. [Google Scholar] [CrossRef]
- Różkowski, A. Hydrogeological Characteristic of the Upper Silesian Coal Basin. Przegląd Geol. 1964, 12, 75–79. (In Polish) [Google Scholar]
- Chmura, A. Hydrogeological Characteristics of the Utility Aquifers. Quaternary Aquifers. In Utility Groundwater of the Upper Silesian Coal Basin and Its Borders; The Polish Geological Institute—National Research Institute: Warsaw, Poland, 1997; pp. 51–53. (In Polish) [Google Scholar]
- Tokarz, M.; Mucha, W. Use of Geothermal Energy from Mines Water in Spółka Restrukturyzacji Kopalń S.A. Centralny Zakład Odwadniania Kopalń. Technika Poszukiwań Geologicznych Geotermia Zrównoważony Rozwój 2013, 1, 103–113. (In Polish) [Google Scholar]
- Konsek, S.; Czapnik, A. Target Dewatering Model Liquidated Coal Mines in the Upper Silesian Coal Basin. Systemy Wspomagania Inżynierii Produkcji 2020, 9, 99–110. (In Polish) [Google Scholar]
- Postawa, J.; Szczepański, A.; Tomys, A. Dewatering of Closed Mines with Deep-Well Pump Units. Górnictwo Geoinżynieria 2004, 28, 189–204. (In Polish) [Google Scholar]
- Frolik, A.; Muniak, A. Program of Water Drainage System Simplification for Hard Coal Mines under Liquidation Which Are Supervised by the Regional Board of Mining in Katowice. Bezpieczeństwo Pracy Ochrona Środowiska Górnictwie 2006, 3, 32–37. (In Polish) [Google Scholar]
- Rogoż, M.; Frolik, A. The Concept of Dewatering Abandoned Mines in the Northern Part of the Upper Silesian Coal Basin. In Proceedings of the Konferencja SITG w Katowicach. Doświadczenia z likwidacji zakładów górniczych, Mysłowice, Poland, 4–6 April 2001. (In Polish). [Google Scholar]
- Regulation on the Quality of Water Intended for Human Consumption. Available online: https://leap.unep.org/en/countries/pl/national-legislation/regulation-quality-water-intended-human-consumption (accessed on 19 February 2024).
- Marchacz, W.; Rogoż, M. Performing Underground Drilling in Water Hazard Conditions. Wiadomości Górnicze 1967, 2, 37–42. (In Polish) [Google Scholar]
- Pluta, I.; Szczepańska, J. Waters of Upper Silesian Coal Basin Mines in the Light of New Regulations: Terminology, Reserves, Utilization. Przegląd Górniczy 2004, 60, 25–32. [Google Scholar]
- Pluta, I.; Mertas, J.; Dziendziel, F.; Węglorz, M. Hydrogeochemical Zoning and Origin of Waters in the Region of the Kazimierz-Juliusz and the Ziemowit Mining Areas. Biuletyn Państwowego Instytutu Geologicznego 2009, 436, 367–371. (In Polish) [Google Scholar]
- Karpiński, M.; Batko, R.; Kmiecik, E.; Tomaszewska, B.; Zdechlik, R. The Temporal Variability of the Water Inflow to the Underground Sobieski Coal Mine. Technika Poszukiwań Geologicznych Geotermia, Zrównoważony Rozwój 2017, 56, 49–60. (In Polish) [Google Scholar]
- Czapnik, A.; Janson, E.; Jasińska, A. Selected Problems with Monitoring in Abandoned Hard Coal Mines in the Upper Silesian Coal Basin. Biuletyn Państwowego Instytutu Geologicznego 2009, 436, 55–60. (In Polish) [Google Scholar]
- Lach, R. Water and Wastewater Management of Mines in the Aspect of Environmental Protection. In Proceedings of the Ekologiczne Aspekty Podziemnej Eksploatacji Złoż Kopalin Użytecznych Conference, Szczyrk, Poland, 23–25 November 1993. (In Polish). [Google Scholar]
- d’Obyrn, K.; Rajchel, L. Balneological Values of the Wieliczka Salt Mine. Acta Balneol. 2014, 4, 220–223. (In Polish) [Google Scholar]
- Rajchel, L. Balneological Resources of the Carpathian Province. Acta Balneol. 2016, 4, 275–278. (In Polish) [Google Scholar]
Parameters | Values | ||||||
---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Median | Standard Deviation | MPL 1 | ||
- | pH | 7.00 | 7.5 | 7.19 | 7.15 | 0.15 | 6.5–9.5 |
mg/L | TDS | 1001.55 | 1758.88 | 1473.82 | 1489.27 | 214.54 | - |
Turbidity | 6.0 | 24.0 | 15.07 | 16.5 | 5.94 | - | |
GH | 549.0 | 1046.0 | 773.9 | 788.0 | 152.62 | 60–500 | |
Cl− | 95.0 | 400.0 | 173.4 | 154.0 | 80.05 | 250 | |
SO42− | 130.0 | 473.0 | 359.2 | 380.0 | 94.78 | 250 | |
HCO3− | 472.0 | 560.0 | 517.7 | 516.5 | 24.19 | - | |
Fe2+ | 0.0016 | 9.93 | 4.9 | 4.76 | 3.85 | 0.2 | |
Mn2+ | 0.12 | 1.51 | 1.114 | 1.23 | 0.36 | 0.05 | |
Na+ | 16.00 | 181.00 | 121.23 | 123.5 | 44.95 | 200 | |
K+ | 2.44 | 26.8 | 12.89 | 12.35 | 5.88 | - | |
Ca2+ | 145.0 | 248.0 | 193.6 | 198.0 | 32.39 | - | |
Mg2+ | 32.7 | 104.0 | 70.63 | 71.4 | 18.74 | 7–125 | |
Cr3+ | <0.003 | 0.006 | 0.0039 | 0.003 | 0.0011 | 0.05 | |
Zn2+ | <0.02 | 0.157 | 0.0559 | 0.0345 | 0.0525 | - | |
Cu2+ | <0.004 | 0.012 | 0.0069 | 0.005 | 0.003 | 2 | |
Cd2+ | <0.0002 | <0.0002 | - | - | - | 0.005 | |
Ni2+ | <0.004 | 0.018 | 0.0086 | 0.009 | 0.0044 | 0.02 | |
Pb2+ | <0.01 | 0.014 | 0.0096 | 0.01 | 0.0028 | 0.01 |
Parameters | Values | ||||||
---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Median | Standard Deviation | MPL | ||
- | pH | 6.9 | 8.7 | 7.59 | 7.5 | 0.47 | 6.5–9.5 |
mg/L | TDS | 860.0 | 1300.0 | 1059.53 | 1052.74 | 105.19 | - |
Turbidity | 9.6 | 31.0 | 17.29 | 15.0 | 6.57 | - | |
GH | 426.0 | 849.0 | 594.91 | 583.0 | 120.75 | 60–500 | |
Cl− | 110.0 | 190.0 | 152.73 | 150.0 | 19.62 | 250 | |
SO42− | 250.0 | 350.0 | 317.36 | 320.0 | 30.67 | 250 | |
HCO3− | 217.0 | 264.0 | 238.55 | 239.0 | 14.42 | - | |
Fe2+ | 0.01 | 12.9 | 5.05 | 4.75 | 4.3 | 0.2 | |
Mn2+ | 0.0186 | 1.62 | 1.2 | 1.29 | 0.43 | 0.05 | |
Na+ | 39.7 | 108.0 | 73.7 | 73 | 17.85 | 200 | |
K+ | 5.13 | 15.0 | 9.67 | 9.35 | 2.32 | - | |
Ca2+ | 99.4 | 206.0 | 140.85 | 132 | 28.79 | - | |
Mg2+ | 42.7 | 133.0 | 64.38 | 56.1 | 24.1 | 7–125 | |
Cr3+ | <0.003 | <0.003 | - | - | - | 0.05 | |
Zn2+ | <0.02 | 0.084 | 0.0237 | 0.01 | 0.0256 | - | |
Cu2+ | <0.003 | 0.021 | 0.007 | 0.005 | 0.0059 | 2 | |
Cd2+ | <0.0002 | <0.0002 | - | - | - | 0.005 | |
Ni2+ | <0.004 | 0.12 | 0.0172 | 0.007 | 0.0326 | 0.02 | |
Pb2+ | <0.001 | 0.025 | 0.0105 | 0.01 | 0.0005 | 0.01 |
Parameters | Values | ||||||
---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Median | Standard Deviation | MPL | ||
- | pH | 7.2 | 8.1 | 7.72 | 7.7 | 0.28 | 6.5–9.5 |
mg/L | TDS | 877.44 | 3095.15 | 1618.09 | 1407.53 | 768.73 | - |
Turbidity | 5.2 | 39.0 | 18.37 | 15.0 | 10.44 | - | |
GH | 206.0 | 433.0 | 321.43 | 312.0 | 72.04 | 60–500 | |
Cl− | 120.0 | 982.0 | 408.43 | 335.0 | 292.18 | 250 | |
SO42− | 125.0 | 372.0 | 246.14 | 220.0 | 88.7 | 250 | |
HCO3− | 300.0 | 739.0 | 475.86 | 440.0 | 149.05 | - | |
Fe2+ | 0.06 | 5.97 | 1.86 | 1.38 | 1.99 | 0.2 | |
Mn2+ | 0.06 | 1.08 | 0.47 | 0.41 | 0.36 | 0.05 | |
Na+ | 96.5 | 900 | 365.93 | 202.0 | 273.64 | 200 | |
K+ | 10.4 | 27.9 | 18.49 | 17.0 | 5.32 | - | |
Ca2+ | 18.3 | 94.3 | 61.5 | 63.0 | 22.86 | - | |
Mg2+ | 24.8 | 55.4 | 38.39 | 39.6 | 10.09 | 7–125 | |
Cr3+ | <0.002 | <0.002 | - | - | - | 0.05 | |
Zn2+ | 0.00003 | 0.091 | 0.039 | 0.035 | 0.031 | - | |
Cu2+ | <0.003 | 0.02 | 0.009 | 0.005 | 0.006 | 2 | |
Cd2+ | <0.001 | <0.001 | - | - | - | 0.005 | |
Ni2+ | <0.01 | 0.011 | 0.01 | 0.01 | 0.00035 | 0.02 | |
Pb2+ | <0.001 | <0.001 | - | - | - | 0.01 |
Group | Water Type | Mineralization [g/L] | Cl− + SO42− Concentration [g/L] |
---|---|---|---|
I | Potable | <1.0 | <0.6 |
II | Industrial | 1.0–3.0 | 0.6–1.8 |
III | Brackish | 3.0–70.0 | 1.8–42.0 |
IV | Brine | >70.0 | >42.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cień, D.; d’Obyrn, K.; Starczewska, M.; Sowiżdżał, A.; Motyka, J.; Sracek, O. Coal Mine Drainage as a Source of Drinking and Industrial Water—The Upper Silesian Coal Basin, Poland. Energies 2024, 17, 1175. https://doi.org/10.3390/en17051175
Cień D, d’Obyrn K, Starczewska M, Sowiżdżał A, Motyka J, Sracek O. Coal Mine Drainage as a Source of Drinking and Industrial Water—The Upper Silesian Coal Basin, Poland. Energies. 2024; 17(5):1175. https://doi.org/10.3390/en17051175
Chicago/Turabian StyleCień, Damian, Kajetan d’Obyrn, Magdalena Starczewska, Anna Sowiżdżał, Jacek Motyka, and Ondra Sracek. 2024. "Coal Mine Drainage as a Source of Drinking and Industrial Water—The Upper Silesian Coal Basin, Poland" Energies 17, no. 5: 1175. https://doi.org/10.3390/en17051175
APA StyleCień, D., d’Obyrn, K., Starczewska, M., Sowiżdżał, A., Motyka, J., & Sracek, O. (2024). Coal Mine Drainage as a Source of Drinking and Industrial Water—The Upper Silesian Coal Basin, Poland. Energies, 17(5), 1175. https://doi.org/10.3390/en17051175