Optimization of Grid Energy Balance Using Vehicle-to-Grid Network System
Abstract
:1. Introduction
2. Methodology
3. Energy Reservoir
4. Battery Capacity
5. Simulation Methodology
- (a)
- Null daily energy balance. This means that the power generation is equal to the energy consumption over the course of the day. There is no surplus energy available for use on an average daily basis.
- (b)
- Positive daily energy balance. This situation arises when the power generation exceeds the energy consumption. The surplus energy can be used to recharge the battery block partially or completely.
- (c)
- Negative daily energy balance. When the power generation is insufficient to meet the energy demands, there is a permanent energy deficit based on the average daily use.
6. Energy Balance Modeling
7. Battery Block Capacity
8. Availability of Capacity Exchange
9. Simulation Model
9.1. Simulation 1: High Ratio of Electric Vehicle Fleet
9.2. Simulation 2: Low Ratio of Electric Vehicle Fleet
9.3. Simulation 3: Medium Ratio of Electric Vehicle Fleet
9.4. Simulation 4: Medium–High Ratio of Electric Vehicle Fleet
9.5. Additional Simulations
10. Statistical Analysis
11. State of the Art
12. Economic Overview
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CS | Charging Station |
DG | Distributed Generation |
EV | Electric Vehicle |
HDI | Human Development Index |
OMS | Operation Management System |
SG | Smart Grid |
SOH | State Of Health |
V2G | Vehicle to Grid |
VAC | Alternate Current Voltage |
VRE | Variable Renewable Energy Sources |
References
- Kamper, A.; Eßer, A. Strategies for decentralised balancing power. In Biologically-Inspired Optimisation Methods; Springer: Berlin/Heidelberg, Germany, 2009; pp. 261–289. [Google Scholar]
- Hirth, L.; Ziegenhagen, I. Balancing power and variable renewables: Three links. Renew. Sustain. Energy Rev. 2015, 50, 1035–1051. [Google Scholar] [CrossRef]
- Stadler, I. Power grid balancing of energy systems with high renewable energy penetration by demand response. Util. Policy 2008, 16, 90–98. [Google Scholar] [CrossRef]
- Soini, V. Wind power intermittency and the balancing power market: Evidence from Denmark. Energy Econ. 2021, 100, 105381. [Google Scholar] [CrossRef]
- Zsiborács, H.; Pintér, G.; Vincze, A.; Birkner, Z.; Baranyai, N.H. Grid balancing challenges illustrated by two European examples: Interactions of electric grids, photovoltaic power generation, energy storage and power generation forecasting. Energy Rep. 2021, 7, 3805–3818. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, M.; Wierman, A.; Low, S.H.; Andrew, L.L. Geographical load balancing with renewables. ACM SIGMETRICS Perform. Eval. Rev. 2011, 39, 62–66. [Google Scholar] [CrossRef]
- Panos, E.; Kannan, R. The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland. Energy 2016, 112, 1120–1138. [Google Scholar] [CrossRef]
- Mueller, S.; Tuth, R.; Fischer, D.; Wille-Haussmann, B.; Wittwer, C. Balancing Fluctuating Renewable Energy Generation Using Cogeneration and Heat Pump Systems. Energy Technol. 2014, 2, 83–89. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.I.; Maulud, K.N.A.; Tawil, N.M.; Abdullah, N.A.G. The Impact of Anthropogenic Heat on Formation of Urban Heat Island and Energy Consumption Balance. Urban Stud. Res. 2011, 2011, 497524. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.I.; Ramly, A.; Maulud, K.N.A.; Mohd-Nor, M.F.I. Reducing urban heat island effects: A systematic review to achieve energy consumption balance. Int. J. Phys. Sci. 2010, 5, 626–636. [Google Scholar]
- Gils, H.C. Balancing of intermittent renewable power generation by demand response and thermal energy storage. Available online: https://elib.uni-stuttgart.de/handle/11682/6905 (accessed on 23 November 2022).
- Ikegami, T.; Iwafune, Y.; Ogimoto, K. Optimum operation scheduling model of domestic electric appliances for balancing power supply and demand. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; IEEE: New York, NY, USA, 2015; pp. 1–8. [Google Scholar]
- Mudakkar, S.R.; Zaman, K.; Shakir, H.; Arif, M.; Naseem, I.; Naz, L. Determinants of energy consumption function in SAARC countries: Balancing the odds. Renew. Sustain. Energy Rev. 2013, 28, 566–574. [Google Scholar] [CrossRef]
- Olk, C.; Sauer, D.U.; Merten, M. Bidding strategy for a battery storage in the German secondary balancing power market. J. Energy Storage 2019, 21, 787–800. [Google Scholar] [CrossRef]
- Yu, R.; Zhong, W.; Xie, S.; Yuen, C.; Gjessing, S.; Zhang, Y. Balancing power demand through EV mobility in Vehicle-to-Grid mobile energy networks. IEEE Trans. Ind. Informatics 2015, 12, 79–90. [Google Scholar] [CrossRef]
- Ikegami, T.; Ogimoto, K.; Yano, H.; Kudo, K.; Iguchi, H. Balancing power supply-demand by controlled charging of numerous electric vehicles. In Proceedings of the 2012 IEEE International Electric Vehicle Conference (IEVC), Greenville, SC, USA, 4–8 March 2012; IEEE: New York, NY, USA, 2012; pp. 1–8. [Google Scholar]
- Huang, C.-J.; Liu, A.-F.; Hu, K.-W.; Chen, L.-C.; Huang, Y.-K. A load-balancing power scheduling system for virtual power plant considering emission reduction and charging demand of moving electric vehicles. Meas. Control 2019, 52, 687–701. [Google Scholar] [CrossRef]
- Druitt, J.; Früh, W.-G. Simulation of demand management and grid balancing with electric vehicles. J. Power Sources 2012, 216, 104–116. [Google Scholar] [CrossRef]
- Kahlen, M.; Ketter, W.; van, J.D. BALANCING WITH ELECTRIC VEHICLES: A PROFITABLE BUSINESS MODEL. In Proceedings of the European Conference on Information Systems (ECIS) 2014, Tel Aviv, Israel, 9–11 June 2014; ISBN 978-0-9915567-0-0. Available online: http://aisel.aisnet.org/ecis2014/proceedings/track22/11 (accessed on 11 December 2022).
- Kahlen, M.T.; Ketter, W.; van Dalen, J. Electric Vehicle Virtual Power Plant Dilemma: Grid Balancing versus Customer Mobility. Prod. Oper. Manag. 2018, 27, 2054–2070. [Google Scholar] [CrossRef]
- Habib, S.; Kamran, M.; Rashid, U. Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks—A review. J. Power Sources 2015, 277, 205–214. [Google Scholar] [CrossRef]
- Rizvi, S.A.A.; Xin, A.; Masood, A.; Iqbal, S.; Jan, M.U.; Rehman, H. Electric vehicles and their impacts on integration into power grid: A review. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Nunes, P.; Brito, M. Displacing natural gas with electric vehicles for grid stabilization. Energy 2017, 141, 87–96. [Google Scholar] [CrossRef]
- Tuffner, F.K.; Kintner-Meyer, M.C. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power (No. PNNL-20501); Pacific Northwest National Lab.(PNNL): Richland, WA, USA, 2011. [Google Scholar]
- Galus, M.D.; Vayá, M.G.; Krause, T.; Andersson, G. The role of electric vehicles in smart grids. In Advances in Energy Systems: The Large-Scale Renewable Energy Integration Challenge; Wiley: Hoboken, NJ, USA, 2019; pp. 245–264. [Google Scholar] [CrossRef]
- Rigas, E.S.; Ramchurn, S.D.; Bassiliades, N. Managing Electric Vehicles in the Smart Grid Using Artificial Intelligence: A Survey. IEEE Trans. Intell. Transp. Syst. 2014, 16, 1619–1635. [Google Scholar] [CrossRef]
- Morais, H.; Sousa, T.; Vale, Z.; Faria, P. Evaluation of the electric vehicle impact in the power demand curve in a smart grid environment. Energy Convers. Manag. 2014, 82, 268–282. [Google Scholar] [CrossRef]
- Gruosso, G.; Ruiz, F.O. Electric Vehicle Fleets as Balancing Instrument in Micro-Grids. Energies 2021, 14, 7616. [Google Scholar] [CrossRef]
- Gallardo Martínez, A. Análisis de Riesgos y Beneficios en la Utilización de la Tecnología V2G en Generación Distribuida. Trabajo Fin de Grado en Ingeniería de las Tecnologías Industriales. Escuela Técnica Superior de Ingeniería Industrial; Universidad Politécnica de Cartagena: Cartagena, Spain, 2020. [Google Scholar]
- Yilmaz, M.; Krein, P.T. Review of benefits and challenges of vehicle-to-grid technology. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; IEEE: New York, NY, USA, 2012; pp. 3082–3089. [Google Scholar]
- Gschwendtner, C.; Sinsel, S.R.; Stephan, A. Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges. Renew. Sustain. Energy Rev. 2021, 145, 110977. [Google Scholar] [CrossRef]
- Hutton, M.; Hutton, T. Legal and regulatory impediments to vehicle-to-grid aggregation. Wm. Mary Envtl. L. Pol’y Rev. 2011, 36, 337. [Google Scholar]
- Ustun, T.S.; Ozansoy, C.R.; Zayegh, A. Implementing Vehicle-to-Grid (V2G) Technology with IEC 61850-7-420. IEEE Trans. Smart Grid 2013, 4, 1180–1187. [Google Scholar] [CrossRef]
- Chen, B.; Hardy, K.S.; Harper, J.D.; Bohn, T.P.; Dobrzynski, D.S. Towards standardized vehicle grid integration: Current status, challenges, and next steps. In Proceedings of the 2015 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 14–17 June 2015; IEEE: New York, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Elf, J.; Svensson, L. Standardization in Sustainability Transitions: A study on Stakeholder Attitudes and Power Relations during the Standardization Process in the Vehicle-to-Grid Ecosystem. 2019. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1372720&dswid=8540 (accessed on 10 January 2024).
- Wang, D.; Coignard, J.; Zeng, T.; Zhang, C.; Saxena, S. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services. J. Power Sources 2016, 332, 193–203. [Google Scholar] [CrossRef]
- Hill, D.M.; Agarwal, A.S.; Ayello, F. Fleet operator risks for using fleets for V2G regulation. Energy Policy 2012, 41, 221–231. [Google Scholar] [CrossRef]
- Sortomme, E.; El-Sharkawi, M.A. Optimal Combined Bidding of Vehicle-to-Grid Ancillary Services. IEEE Trans. Smart Grid 2011, 3, 70–79. [Google Scholar] [CrossRef]
- Hashemi-Dezaki, H.; Hamzeh, M.; Askarian-Abyaneh, H.; Haeri-Khiavi, H. Risk management of smart grids based on managed charging of PHEVs and vehicle-to-grid strategy using Monte Carlo simulation. Energy Convers. Manag. 2015, 100, 262–276. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, Z.; Ben Abdallah, A. V2GNet: Robust Blockchain-Based Energy Trading Method and Implementation in Vehicle-to-Grid Network. IEEE Access 2022, 10, 131442–131455. [Google Scholar] [CrossRef]
- Al-Awami, A.T.; Sortomme, E. Coordinating Vehicle-to-Grid Services with Energy Trading. IEEE Trans. Smart Grid 2011, 3, 453–462. [Google Scholar] [CrossRef]
- Novak, A.; Ivanov, A. Network Security Vulnerabilities in Smart Vehicle-to-Grid Systems Identifying Threats and Proposing Robust Countermeasures. J. Artif. Intell. Mach. Learn. Manag. 2023, 7, 48–80. [Google Scholar]
- Noel, L.; Zarazua de Rubens, G.; Kester, J.; Sovacool, B.K.; Noel, L.; Zarazua de Rubens, G.; Sovacool, B.K. The technical challenges to V2G. In Vehicle-to-Grid; Springer: Berlin/Heidelberg, Germany, 2019; pp. 65–89. [Google Scholar]
- Sufyan, M.; Rahim, N.; Muhammad, M.; Tan, C.; Raihan, S.; Bakar, A. Charge coordination and battery lifecycle analysis of electric vehicles with V2G implementation. Electr. Power Syst. Res. 2020, 184, 106307. [Google Scholar] [CrossRef]
- Adnan, N.; Md Nordin, S.; Althawadi, O.M. Barriers towards widespread adoption of V2G technology in smart grid environment: From laboratories to commercialization. In Sustainable Interdependent Networks; Springer: Berlin/Heidelberg, Germany, 2018; pp. 121–134. [Google Scholar]
- Ghosh, D.P.; Thomas, R.J.; Wicker, S.B. A privacy-aware design for the vehicle-to-grid framework. In Proceedings of the 2013 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; IEEE: New York, NY, USA, 2013; pp. 2283–2291. [Google Scholar]
- Han, W.; Xiao, Y. Privacy preservation for V2G networks in smart grid: A survey. Comput. Commun. 2016, 91, 17–28. [Google Scholar] [CrossRef]
- Nouri, A.; Lachheb, A.; El Amraoui, L. Optimizing efficiency of Vehicle-to-Grid system with intelligent management and ANN-PSO algorithm for battery electric vehicles. Electr. Power Syst. Res. 2024, 226, 109936. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Lettner, G.; Schwabeneder, D.; Ajanovic, A.; Auer, H. Impact of Different Charging Strategies for Electric Vehicles in an Austrian Office Site. Energies 2020, 13, 5858. [Google Scholar] [CrossRef]
- Li, S.; Gu, C.; Zeng, X.; Zhao, P.; Pei, X.; Cheng, S. Vehicle-to-grid management for multi-time scale grid power balancing. Energy 2021, 234, 121201. [Google Scholar] [CrossRef]
- Boglou, V.; Karavas, C.-S.; Karlis, A.; Arvanitis, K.G.; Palaiologou, I. An Optimal Distributed RES Sizing Strategy in Hybrid Low Voltage Networks Focused on EVs’ Integration. IEEE Access 2023, 11, 16250–16270. [Google Scholar] [CrossRef]
- Yumashev, A.; Ślusarczyk, B.; Kondrashev, S.; Mikhaylov, A. Global Indicators of Sustainable Development: Evaluation of the Influence of the Human Development Index on Consumption and Quality of Energy. Energies 2020, 13, 2768. [Google Scholar] [CrossRef]
- Jain, M.; Nagpal, A. Relationship Between Environmental Sustainability and Human Development Index: A Case of Selected South Asian Nations. Vision J. Bus. Perspect. 2019, 23, 125–133. [Google Scholar] [CrossRef]
- Korsakienė, R.; Breivytė, I.; Wamboye, E. Sustainable development and human development index. J. Secur. Sustain. Issues 2011, 1, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Neumayer, E. The human development index and sustainability—A constructive proposal. Ecol. Econ. 2001, 39, 101–114. [Google Scholar] [CrossRef]
- Papadaskalopoulos, D.; Strbac, G.; Mancarella, P.; Aunedi, M.; Stanojevic, V. Decentralized Participation of Flexible Demand in Electricity Markets—Part II: Application with Electric Vehicles and Heat Pump Systems. IEEE Trans. Power Syst. 2013, 28, 3667–3674. [Google Scholar] [CrossRef]
- Chakir, A.; Abid, M.; Tabaa, M.; Hachimi, H. Demand-side management strategy in a smart home using electric vehicle and hybrid renewable energy system. Energy Rep. 2022, 8, 383–393. [Google Scholar] [CrossRef]
- Mali, B.; Shrestha, A.; Chapagain, A.; Bishwokarma, R.; Kumar, P.; Gonzalez-Longatt, F. Challenges in the penetration of electric vehicles in developing countries with a focus on Nepal. Renew. Energy Focus 2021, 40, 1–12. [Google Scholar] [CrossRef]
- Goel, S.; Sharma, R.; Rathore, A.K. A review on barrier and challenges of electric vehicle in India and vehicle to grid optimisation. Transp. Eng. 2021, 4, 100057. [Google Scholar] [CrossRef]
- Dik, A.; Omer, S.; Boukhanouf, R. Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration. Energies 2022, 15, 803. [Google Scholar] [CrossRef]
- Meszaros, F.; Shatanawi, M.; Ogunkunbi, G.A. Challenges of the Electric Vehicle Markets in Emerging Economies. Period. Polytech. Transp. Eng. 2020, 49, 93–101. [Google Scholar] [CrossRef]
- Available online: https://www.researchgate.net/profile/P_Pardalos/publication/224598439/figure/download/fig1/AS:669029337423885@1536520432890/Efficiency-curve-of-a-power-plant-over-the-continuum-of-operation-and-with-respect-to-the.png (accessed on 27 December 2022).
- Scarabaggio, P.; Carli, R.; Dotoli, M. Noncooperative Equilibrium-Seeking in Distributed Energy Systems under AC Power Flow Nonlinear Constraints. IEEE Trans. Control. Netw. Syst. 2022, 9, 1731–1742. [Google Scholar] [CrossRef]
- Yao, M.; Molzahn, D.K.; Mathieu, J.L. An Optimal Power-Flow Approach to Improve Power System Voltage Stability Using Demand Response. IEEE Trans. Control. Netw. Syst. 2019, 6, 1015–1025. [Google Scholar] [CrossRef]
- Human Development Index. Available online: https://en.wikipedia.org/wiki/Human_Development_Index (accessed on 15 March 2023).
- Human Development Reports. United Nations Development Programme. Available online: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI (accessed on 20 September 2023).
- Human Development Index. World Trends in Freedom of Expression and Media Development. UNESCO. Available online: https://www.unesco.org/en/world-media-trends/human-development-index-hdi (accessed on 20 September 2023).
- Max Roser (2014)—“Human Development Index (HDI)”. Published online at OurWorldInData.org. Available online: https://ourworldindata.org/human-development-index (accessed on 20 September 2023).
- Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069. [Google Scholar] [CrossRef]
- dos Reis, G.; Strange, C.; Yadav, M.; Li, S. Lithium-ion battery data and where to find it. Energy AI 2021, 5, 100081. [Google Scholar] [CrossRef]
- Bibak, B.; Tekiner-Moğulkoç, H. A comprehensive analysis of Vehicle to Grid (V2G) systems and scholarly literature on the application of such systems. Renew. Energy Focus 2020, 36, 1–20. [Google Scholar] [CrossRef]
- Shariff, S.M.; Iqbal, D.; Alam, M.S.; Ahmad, F. A State of the Art Review of Electric Vehicle to Grid (V2G) technology. IOP Conf. Series Mater. Sci. Eng. 2019, 561, 012103. [Google Scholar] [CrossRef]
- Mendes, P.R.; Isorna, L.V.; Bordons, C.; Normey-Rico, J.E. Energy management of an experimental microgrid coupled to a V2G system. J. Power Sources 2016, 327, 702–713. [Google Scholar] [CrossRef]
- Turton, H.; Moura, F. Vehicle-to-grid systems for sustainable development: An integrated energy analysis. Technol. Forecast. Soc. Chang. 2008, 75, 1091–1108. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, C.; Shi, R.; Chang, Z.; Zhou, S.; Li, Y. Robust Energy Scheduling in Vehicle-to-Grid Networks. IEEE Netw. 2017, 31, 30–37. [Google Scholar] [CrossRef]
- Musio, M.; Lombardi, P.; Damiano, A. Vehicles to grid (V2G) concept applied to a Virtual Power Plant structure. In Proceedings of the 2010 XIX International Conference on Electrical Machines (ICEM), Rome, Italy, 6–8 September 2010; IEEE: New York, NY, USA, 2010; pp. 1–6. [Google Scholar]
- Xiao, H.; Yuan, H.; Chen, W.; Li, H. A survey of influence of electrics vehicle charging on power grid. In Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014; IEEE: New York, NY, USA, 2014; pp. 121–126. [Google Scholar]
- Tan, K.M.; Ramachandaramurthy, V.K.; Yong, J.Y. Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renew. Sustain. Energy Rev. 2016, 53, 720–732. [Google Scholar] [CrossRef]
- Mwasilu, F.; Justo, J.J.; Kim, E.-K.; Do, T.D.; Jung, J.-W. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 2014, 34, 501–516. [Google Scholar] [CrossRef]
- Chtioui, H.; Boukettaya, G. Vehicle-to-Grid Management Strategy for Smart Grid Power Regulation. In Proceedings of the 2020 6th IEEE International Energy Conference (ENERGYCon), Tunis, Tunisia, 28 September–1 October 2020; IEEE: New York, NY, USA, 2020; pp. 988–993. [Google Scholar]
- Pillai, J.R.; Bak-Jensen, B. Integration of Vehicle-to-Grid in the Western Danish Power System. IEEE Trans. Sustain. Energy 2010, 2, 12–19. [Google Scholar] [CrossRef]
- Huda, M.; Koji, T.; Aziz, M. Techno Economic Analysis of Vehicle to Grid (V2G) Integration as Distributed Energy Resources in Indonesia Power System. Energies 2020, 13, 1162. [Google Scholar] [CrossRef]
- Hodge, B.M.S.; Huang, S.; Shukla, A.; Pekny, J.F.; Reklaitis, G.V. The effects of vehicle-to-grid systems on wind power integration in California. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2010; Volume 28, pp. 1039–1044. [Google Scholar]
- Bellar, M.D.; Wu, T.; Tchamdjou, A.; Mahdavi, J.; Ehsani, M. A review of soft-switched DC-AC converters. IEEE Trans. Ind. Appl. 1998, 34, 847–860. [Google Scholar] [CrossRef]
- Ertan, H.B.; Doğru, E.; Yilmaz, A. Comparison of efficiency of two dc-to-ac converters for grid connected solar applications. In Proceedings of the 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 24–26 May 2012; IEEE: New York, NY, USA, 2012; pp. 879–886. [Google Scholar]
- Mohammed SA, Q.; Jung, J.W. A State-of-the-Art Review on Soft-Switching Techniques for DC–DC, DC–AC, AC–DC, and AC–AC Power Converters. IEEE Trans. Ind. Inform. 2021, 17, 6569–6582. [Google Scholar] [CrossRef]
- Katagiri, K.; Nakagawa, S.; Kado, Y.; Wada, K. Analysis on load-factor dependence of triple active bridge converter’s transmission efficiency for autonomous power networks. In Proceedings of the TENCON 2017–2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; IEEE: New York, NY, USA, 2017; pp. 2177–2181. [Google Scholar]
- Cho, Y.-W.; Kwon, J.-M.; Kwon, B.-H. Single Power-Conversion AC–DC Converter with High Power Factor and High Efficiency. IEEE Trans. Power Electron. 2013, 29, 4797–4806. [Google Scholar] [CrossRef]
- Mallik, A.; Khaligh, A. Maximum Efficiency Tracking of an Integrated Two-Staged AC–DC Converter Using Variable DC-Link Voltage. IEEE Trans. Ind. Electron. 2018, 65, 8408–8421. [Google Scholar] [CrossRef]
- Lu, D.D.-C.; Iu, H.H.-C.; Pjevalica, V. A Single-Stage AC/DC Converter with High Power Factor, Regulated Bus Voltage, and Output Voltage. IEEE Trans. Power Electron. 2008, 23, 218–228. [Google Scholar] [CrossRef]
- Georgakas, K.; Safacas, A. Power factor correction and efficiency investigation of AC-DC converters using forced commutation techniques. In Proceedings of the IEEE International Symposium on Industrial Electronics, Dubrovnik, Croatia, 20–23 June 2005; IEEE: New York, NY, USA, 2005; Volume 2, pp. 583–588. [Google Scholar]
- Affanni, A.; Bellini, A.; Franceschini, G.; Guglielmi, P.; Tassoni, C. Battery Choice and Management for New-Generation Electric Vehicles. IEEE Trans. Ind. Electron. 2005, 52, 1343–1349. [Google Scholar] [CrossRef]
- Useable Battery Capacity of Full Electric Vehicles. Electric Vehicle Database. Useable Battery Capacity of Full Electric Vehicles Cheatsheet-EV Database. Available online: https://ev-database.org/cheatsheet/useable-battery-capacity-electric-car (accessed on 7 December 2022).
- Scarabaggio, P.; Carli, R.; Cavone, G.; Dotoli, M. Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective. Energies 2020, 13, 4586. [Google Scholar] [CrossRef]
- Yan, G.; Liu, D.; Li, J.; Mu, G. A cost accounting method of the Li-ion battery energy storage system for frequency regulation considering the effect of life degradation. Prot. Control Mod. Power Syst. 2018, 3, 4. [Google Scholar] [CrossRef]
- Predicted Average Battery Capacities in EVs Worldwide 2017–2025. Statista Research Department. 2 March 2021 Our Research and Content Philosophy|Statista. Available online: https://www.googleadservices.com/pagead/aclk?sa=L&ai=DChcSEwjh76XXr6-EAxW2PwYAHUMLADsYABAAGgJ3cw&ae=2&gclid=CjwKCAiAibeuBhAAEiwAiXBoJAIQXLO2G5rx8E-uqtkRYUE5xWKBGsoYo1Mck3C3DSL4_cjvmQnDYxoCSEUQAvD_BwE&ohost=www.google.com&cid=CAESVeD2_vYxRJd3eR9VV_hoet79eIkwe2ljJbuo5GPebx78IPcuZ3-BG8AeusRK3qxkn2xK7r4voMGVu9wI_68p7NN-gHICm6kNQCQYufWbiJT_wNs39YE&sig=AOD64_3c5QzKNgsgu3LuH03WRjhoAinM5A&q&adurl&ved=2ahUKEwjUxZ_Xr6-EAxXoaqQEHfQwBBEQ0Qx6BAgPEAE (accessed on 7 December 2022).
- Zummo, P. America’s Electricity Generating Capacity. 2022 Update. Policy Research and Analysis. Powering Strong Communities; American Power Public Association: Arlington, VA, USA, 2022. [Google Scholar]
- Bruna Alves. US electricity Generation—Statistics & Facts. Energy & Environment, Energy. Statista, 18 November 2022. [Google Scholar]
- Bruna Alves. Electricity Generation in the UK–Statistics & Facts. Energy & Environment, Energy. Statista, 24 February 2022. [Google Scholar]
- Electricity Power Annual 2021. U.S. Energy Information Administration (EIA), Statistical and Analytical Agency, Department of Energy (DOE). Available online: www.eia.gov (accessed on 2 February 2024).
- Pathak, A. Operation and Maintenance of Power Plants, SCRIBD, Operation and Maintenance of Power Plant|PDF|Boiler|Hertz. Available online: https://www.scribd.com/ (accessed on 2 February 2024).
- The Importance of Maintenance in Power Distribution Systems, Process Barron, Southern Field, Environmental Elements, 3 January 2019. Available online: https://southernfield.com/ (accessed on 3 February 2024).
- de Guzman, W. Power Outages Seen Not due to Lack of Capacity but Maintenance Issues. ABS-CBS News, 14 June 2021. [Google Scholar]
- Available online: https://ourworldindata.org/grapher/electricity-generation?tab=table&time=earliest (accessed on 4 February 2024).
- Available online: https://ev-database.org/ (accessed on 5 February 2024).
- Electric Vehicle Model Statistics. European Alternative Fuels Observatory. European Commission. Available online: https://alternative-fuels-observatory.ec.europa.eu/policymakers-and-public-authorities/electric-vehicle-model-statistics (accessed on 1 February 2024).
Electric Vehicle Segment | Battery Capacity (*) (kWh) |
---|---|
Utility | 28 |
Mid-range | 40 |
SUV | 62 |
High range | 78 |
Sports | 92 |
EV Model | Battery Capacity (kWh) | Battery Block |
---|---|---|
Fiat 500e | 24.0 | A |
Honda Clarity | 25.5 | |
Hyundai Ionic | 28.0 | |
Ford Focus | 33.5 | |
Wolkswagen e-Golf | 35.8 | B |
Nissan Leaf II | 40.0 | |
BMW i3 | 42.0 | |
Tesla Model 3 SR | 50.0 | |
Chevrolet Bolt | 60.0 | C |
Testa Model 3 MR | 62.0 | |
Hyundai Kona | 64.0 | |
Kia Niro | 64.0 | |
Tesla Model 3 LR | 78.0 | D |
Tesla Model SD 75 | 75.0 | |
Tesla Model XD 75 | 75.0 | |
Jaguar i-Pace | 90.0 | E |
Audi e-tron | 95.0 | |
Tesla Model SD 100 | 100.0 | |
Tesla Model XD 100 | 100.0 |
Electric Vehicle Segment | Battery Capacity (kWh) |
---|---|
A | 28 |
B | 42 |
C | 62.5 |
D | 76 |
E | 96 |
A | B | C | D | E |
---|---|---|---|---|
23 | 46 | 18 | 10 | 3 |
Type of Work → Daily Habits ↓ | Type of Process at the Battery | Industry | Commerce | Private Company | Official Institution |
---|---|---|---|---|---|
Stay at home | Charge | 19:00–5:30 | 19:30–6:00 | 19:00–6:00 | 19:00–6:00 |
Discharge | 6:00–15:00 15:30–19:00 | 6:00–9:30 10:00–19:00 | 8:00–17:00 17:30–19:00 | 9:00–17:00 17:30–19:00 | |
Daily tasks out of home | Charge | 19:00–5:30 | 19:30–6:00 | 19:00–6:00 | 20:00–6:00 |
Discharge | 6:00–15:00 18:00–19:00 | 6:00–7:30 8:00–19:00 | 6:00–7:30 8:00–16:00 | 6:00–8:30 9:00–17:00 | |
Going out at night | Charge | 19:00–20:00 0:00–5:30 | 19:00–22:00 2:00–6:00 | 19:00–21:00 1:00–6:00 | 19:00–21:00 2:00–6:00 |
Discharge | 6:00–15:00 15:30–19:00 | 6:00–9:30 10:00–19:00 | 8:00–17:00 17:30–19:00 | 6:00–8:30 9:00–17:00 |
Type of Work | Industry | Commerce | Private Company | Official Institution |
---|---|---|---|---|
Percentage (%) | 35 | 24 | 29 | 12 |
Vehicle Fleet Ratio | High | Medium–High | Medium | Low | |
---|---|---|---|---|---|
Energy gap (MWh) | Max | 472.1 | 246.8 | 155.2 | 125.1 |
Min | 284.2 | 211.6 | 117.7 | 87.2 | |
Standard deviation (%) | Max | 7.1 | 6.1 | 3.8 | 3.1 |
Min | 6.2 | 5.2 | 2.9 | 2.2 |
Vehicle Fleet Ratio | High | Medium–High | Medium | Low | |
---|---|---|---|---|---|
Battery energy supply (MWh) | Max | 635.7 | 284.2 | 155.2 | 132.5 |
Min | 473.3 | 250.6 | 117.7 | 93.4 | |
Standard deviation (%) | Max | 15.8 | 7.1 | 3.8 | 3.3 |
Min | 11.8 | 6.2 | 2.9 | 2.3 |
Vehicle Fleet Ratio | High | Medium-High | Medium | Low | |
---|---|---|---|---|---|
Energy gap (MWh) | Max | 66.1 | 79.9 | 135.2 | 169.6 |
Min | 13.4 | 16.6 | 31.8 | 43.4 | |
Average (MWh) | 378.1 | 345.3 | 260.0 | 231.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armenta-Déu, C.; Demas, L. Optimization of Grid Energy Balance Using Vehicle-to-Grid Network System. Energies 2024, 17, 1008. https://doi.org/10.3390/en17051008
Armenta-Déu C, Demas L. Optimization of Grid Energy Balance Using Vehicle-to-Grid Network System. Energies. 2024; 17(5):1008. https://doi.org/10.3390/en17051008
Chicago/Turabian StyleArmenta-Déu, Carlos, and Laura Demas. 2024. "Optimization of Grid Energy Balance Using Vehicle-to-Grid Network System" Energies 17, no. 5: 1008. https://doi.org/10.3390/en17051008
APA StyleArmenta-Déu, C., & Demas, L. (2024). Optimization of Grid Energy Balance Using Vehicle-to-Grid Network System. Energies, 17(5), 1008. https://doi.org/10.3390/en17051008