# Achievements and Prospects of Molecular Dynamics Simulations in Thermofluid Sciences

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Physical Modelling of Heat Transfer Phenomena in MD Simulations

#### 2.1. Fundamentals of MD Approach

#### 2.2. Heat Flux and Thermal Conductivity

#### 2.3. Interface Behaviours in MD Simulations

#### 2.3.1. Hydrodynamic and Thermal Wall Slip

_{2}and water-Si interfaces, with a stronger dependence in the case of the water-SiO interface.

#### 2.3.2. Wetting on Solid-Liquid Interfaces

#### 2.4. Phase Change Phenomena in MD Simulations

#### 2.4.1. Bubble Nucleation and Boiling

#### 2.4.2. Evaporation

#### 2.4.3. Effects of Surface Roughness

#### 2.4.4. Condensation

## 3. Fluid Flow and Heat Transfer in Nanochannels by MD Simulations

#### 3.1. Adiabatic Flow in Nanochannels

#### 3.2. Convective Heat Transfer in Nanochannels

#### 3.3. Two Phase Flow in Nanochannels

## 4. Challenges and Scope for Future Studies

- Bridging the gap between molecular-level insights and macroscopic behavior through the integration of MD simulations with other computational techniques;
- The design of nanoscale heat exchangers, lab-on-a-chip devices, and the development of advanced thermal materials;
- Meeting the demand for increased computational resources to simulate larger and more complex systems;
- Improving intermolecular potentials for specific substances and conditions, especially in the area of life sciences, will enhance the accuracy of simulations.
- Developing suitable potentials to model the interactions between fluids and walls with complex molecular structure (e.g., polymer materials).

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Abgrall, P.; Nguyen, N.T. Nanofluidic devices and their applications. Anal. Chem.
**2008**, 80, 2326–2341. [Google Scholar] [CrossRef] [PubMed] - Duan, C.; Wang, W.; Xie, Q. Fabrication of nanofluidic devices. Biomicrofluidics
**2013**, 7, 26501. [Google Scholar] [CrossRef] [PubMed] - Gad-el Hak, M. MEMS: Introduction and Fundamentals; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Goh, P.; Ismail, A.; Ng, B. Carbon nanotubes for desalination: Performance evaluation and current hurdles. Desalination
**2013**, 308, 2–14. [Google Scholar] [CrossRef] - Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano
**2009**, 3, 307–316. [Google Scholar] [CrossRef] [PubMed] - Wang, Z.; Lee, I.; Jeon, T.J.; Kim, S.M. Micro-/nanofluidic device for tunable generation of a concentration gradient: Application to Caenorhabditis elegans chemotaxis. Anal. Bioanal. Chem.
**2014**, 406, 2679–2686. [Google Scholar] [CrossRef] [PubMed] - Dror, R.O.; Dirks, R.M.; Grossman, J.; Xu, H.; Shaw, D.E. Biomolecular simulation: A computational microscope for molecular biology. Annu. Rev. Biophys.
**2012**, 41, 429–452. [Google Scholar] [CrossRef] - Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Leach, A.R. Molecular Modelling: Principles and Applications; Pearson Education: London, UK, 2001. [Google Scholar]
- Rapaport, D.C. The Art of Molecular Dynamics Simulation; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.
**1984**, 81, 511–519. [Google Scholar] [CrossRef] - Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys.
**1981**, 52, 7182–7190. [Google Scholar] [CrossRef] - Hockney, R.W.; Eastwood, J.W. Computer Simulation Using Particles; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Alder, B.J.; Wainwright, T.E. Phase transition for a hard sphere system. J. Chem. Phys.
**1957**, 27, 1208–1209. [Google Scholar] [CrossRef] - Gibson, J.; Goland, A.N.; Milgram, M.; Vineyard, G. Dynamics of radiation damage. Phys. Rev.
**1960**, 120, 1229. [Google Scholar] [CrossRef] - Rahman, A. Correlations in the motion of atoms in liquid argon. Phys. Rev.
**1964**, 136, A405. [Google Scholar] [CrossRef] - Steinfeld, J.I.; Francisco, J.S.; Hase, W.L. Chemical Kinetics and Dynamics; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Andersen, M.; Panosetti, C.; Reuter, R. A Practical Guide to Surface Kinetic Monte Carlo Simulations. Front. Chem.
**2019**, 7, 202. [Google Scholar] [CrossRef] - Bagayoko, D. Understanding density functional theory (DFT) and completing it in practice. AIP Adv.
**2014**, 4, 127104. [Google Scholar] [CrossRef] - Casida, M.E.; Huix-Rotllant, M. Many-Body Perturbation Theory (MBPT) and Time-Dependent Density-Functional Theory (TD-DFT): MBPT Insights About What Is Missing In, and Corrections To, the TD-DFT Adiabatic Approximation. In Density-Functional Methods for Excited States; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–60. [Google Scholar] [CrossRef]
- Allen, M.P. Introduction to molecular dynamics simulation. Comput. Soft Matter Synth. Polym. Proteins
**2004**, 23, 1–28. [Google Scholar] - Haile, J.M. Molecular Dynamics Simulation: Elementary Methods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1992. [Google Scholar]
- Maruyama, S. Molecular dynamics method for microscale heat transfer. In Advances in Numerical Heat Transfer, Volume 2; CRC Press: Boca Raton, FL, USA, 2018; pp. 189–226. [Google Scholar]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms To Applications; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Kalweit, M.; Drikakis, D. Coupling strategies for hybrid molecular—Continuum simulation methods. Proc. Inst. Mech. Eng. Part J. Mech. Eng. Sci.
**2008**, 222, 797–806. [Google Scholar] [CrossRef] - Semiromi, D.T.; Azimian, A. Molecular dynamics simulation of annular flow boiling with the modified Lennard-Jones potential function. Heat Mass Transf.
**2012**, 48, 141–152. [Google Scholar] [CrossRef] - Dong, T.; Yang, Z.; Wu, H. Molecular simulations of R141b boiling flow in micro/nano channel: Interfacial phenomena. Energy Convers. Manag.
**2006**, 47, 2178–2191. [Google Scholar] [CrossRef] - Long, L.N.; Micci, M.M.; Wong, B.C. Molecular dynamics simulations of droplet evaporation. Comput. Phys. Commun.
**1996**, 96, 167–172. [Google Scholar] [CrossRef] - Lukes, J.R.; Li, D.; Liang, X.G.; Tien, C.L. Molecular dynamics study of solid thin-film thermal conductivity. J. Heat Transf.
**2000**, 122, 536–543. [Google Scholar] [CrossRef] - Matsumoto, M.; Wakabayashi, H.; Makino, T. Thermal resistance of crystal interface: Molecular dynamics simulation. Heat-Transf. Asian Res. Spons. Soc. Chem. Eng. Jpn. Heat Transf. Div. ASME
**2005**, 34, 135–146. [Google Scholar] [CrossRef] - Maroo, S.C.; Chung, J. A novel fluid–wall heat transfer model for molecular dynamics simulations. J. Nanoparticle Res.
**2010**, 12, 1913–1924. [Google Scholar] [CrossRef] - Ji, C.; Yan, Y. A molecular dynamics simulation of liquid–vapour–solid system near triple-phase contact line of flow boiling in a microchannel. Appl. Therm. Eng.
**2008**, 28, 195–202. [Google Scholar] [CrossRef] - Consolini, L.; Aggarwal, S.K.; Murad, S. A molecular dynamics simulation of droplet evaporation. Int. J. Heat Mass Transf.
**2003**, 46, 3179–3188. [Google Scholar] [CrossRef] - Røsjorde, A.; Fossmo, D.; Bedeaux, D.; Kjelstrup, S.; Hafskjold, B. Nonequilibrium molecular dynamics simulations of steady-state heat and mass transport in condensation: I. Local equilibrium. J. Colloid Interface Sci.
**2000**, 232, 178–185. [Google Scholar] [CrossRef] - Røsjorde, A.; Kjelstrup, S.; Bedeaux, D.; Hafskjold, B. Nonequilibrium molecular dynamics simulations of steady-state heat and mass transport in condensation. II. Transfer coefficients. J. Colloid Interface Sci.
**2001**, 240, 355–364. [Google Scholar] [CrossRef] - Maroo, S.C.; Chung, J. Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics. J. Colloid Interface Sci.
**2008**, 328, 134–146. [Google Scholar] [CrossRef] - Nagayama, G.; Tsuruta, T.; Cheng, P. Molecular dynamics simulation on bubble formation in a nanochannel. Int. J. Heat Mass Transf.
**2006**, 49, 4437–4443. [Google Scholar] [CrossRef] - Fu, T.; Mao, Y.; Tang, Y.; Zhang, Y.; Yuan, W. Effect of nanostructure on rapid boiling of water on a hot copper plate: A molecular dynamics study. Heat Mass Transf.
**2016**, 52, 1469–1478. [Google Scholar] [CrossRef] - Xue, L.; Keblinski, P.; Phillpot, S.; Choi, S.S.; Eastman, J. Two regimes of thermal resistance at a liquid–solid interface. J. Chem. Phys.
**2003**, 118, 337–339. [Google Scholar] [CrossRef] - Wang, Y.H.; Wang, S.Y.; Lu, G.; Wang, X.D. Explosive boiling of nano-liquid argon films on high temperature platinum walls: Effects of surface wettability and film thickness. Int. J. Therm. Sci.
**2018**, 132, 610–617. [Google Scholar] [CrossRef] - Barrat, J.L.; Bocquet, L. Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss.
**1999**, 112, 119–128. [Google Scholar] [CrossRef] - Markvoort, A.J.; Hilbers, P.; Nedea, S. Molecular dynamics study of the influence of wall-gas interactions on heat flow in nanochannels. Phys. Rev. E
**2005**, 71, 066702. [Google Scholar] [CrossRef] [PubMed] - Yang, S.C. Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel. Microfluid. Nanofluid.
**2006**, 2, 501–511. [Google Scholar] [CrossRef] - Inaoka, H.; Ito, N. Numerical simulation of pool boiling of a Lennard-Jones liquid. Phys. A Stat. Mech. Its Appl.
**2013**, 392, 3863–3868. [Google Scholar] [CrossRef] - Wu. A molecular dynamics simulation of bubble nucleation in homogeneous liquid under heating with constant mean negative pressure. Microscale Thermophys. Eng.
**2003**, 7, 137–151. [Google Scholar] [CrossRef] - Kinjo, T.; Matsumoto, M. Cavitation processes and negative pressure. Fluid Phase Equilibria
**1998**, 144, 343–350. [Google Scholar] [CrossRef] - Yamamoto, T.; Matsumoto, M. Initial stage of nucleate boiling: Molecular dynamics investigation. J. Therm. Sci. Technol.
**2012**, 7, 334–349. [Google Scholar] [CrossRef] - Hens, A.; Agarwal, R.; Biswas, G. Nanoscale study of boiling and evaporation in a liquid Ar film on a Pt heater using molecular dynamics simulation. Int. J. Heat Mass Transf.
**2014**, 71, 303–312. [Google Scholar] [CrossRef] - Sumardiono, S.; Fischer, J. Molecular simulations of droplet evaporation processes: Adiabatic pressure jump evaporation. Int. J. Heat Mass Transf.
**2006**, 49, 1148–1161. [Google Scholar] [CrossRef] - Niu, D.; Tang, G. The effect of surface wettability on water vapor condensation in nanoscale. Sci. Rep.
**2016**, 6, 19192. [Google Scholar] [CrossRef] - Sheng, Q.; Sun, J.; Wang, Q.; Wang, W.; Wang, H.S. On the onset of surface condensation: Formation and transition mechanisms of condensation mode. Sci. Rep.
**2016**, 6, 30764. [Google Scholar] [CrossRef] [PubMed] - Gu, K.; Watkins, C.B.; Koplik, J. Molecular dynamics simulation of the equilibrium liquid–vapor interphase with solidification. Fluid Phase Equilibria
**2010**, 297, 77–89. [Google Scholar] [CrossRef] - Fujinaga, T.; Shibuta, Y. Molecular dynamics simulation of athermal heterogeneous nucleation of solidification. Comput. Mater. Sci.
**2019**, 164, 74–81. [Google Scholar] [CrossRef] - Cui, S.; Cummings, P.; Cochran, H. Molecular simulation of the transition from liquidlike to solidlike behavior in complex fluids confined to nanoscale gaps. J. Chem. Phys.
**2001**, 114, 7189–7195. [Google Scholar] [CrossRef] - Geiser, J. Coupled Navier–Stokes molecular dynamics simulation: Theory and applications based on iterative operator-splitting methods. Comput. Fluids
**2013**, 77, 97–111. [Google Scholar] [CrossRef] - Asproulis, N.; Drikakis, D. An artificial neural network-based multiscale method for hybrid atomistic-continuum simulations. Microfluid. Nanofluid.
**2013**, 15, 559–574. [Google Scholar] [CrossRef] - Werder, T.; Walther, J.H.; Koumoutsakos, P. Hybrid atomistic–continuum method for the simulation of dense fluid flows. J. Comput. Phys.
**2005**, 205, 373–390. [Google Scholar] [CrossRef] - Stephenson, D.; Lockerby, D.A.; Borg, M.K.; Reese, J.M. Multiscale simulation of nanofluidic networks of arbitrary complexity. Microfluid. Nanofluid.
**2015**, 18, 841–858. [Google Scholar] [CrossRef] - Borg, M.K.; Lockerby, D.A.; Reese, J.M. A hybrid molecular–continuum method for unsteady compressible multiscale flows. J. Fluid Mech.
**2015**, 768, 388–414. [Google Scholar] [CrossRef] - Holland, D.M.; Lockerby, D.A.; Borg, M.K.; Nicholls, W.D.; Reese, J.M. Molecular dynamics pre-simulations for nanoscale computational fluid dynamics. Microfluid. Nanofluid.
**2015**, 18, 461–474. [Google Scholar] [CrossRef] - Bertola, V.; Cafaro, E. On the speed of heat. Phys. Lett. Sect. Gen. At. Solid State Phys.
**2007**, 372, 1–4. [Google Scholar] [CrossRef] - Lu, W.Q.; Fan, Q.M. Study for the particle’s scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method. Eng. Anal. Bound. Elem.
**2008**, 32, 282–289. [Google Scholar] [CrossRef] - Tuckerman, M.E. Statistical Mechanics: Theory and Molecular Simulation; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Müller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys.
**1997**, 106, 6082–6085. [Google Scholar] [CrossRef] - Schneider, T.; Stoll, E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B
**1978**, 17, 1302. [Google Scholar] [CrossRef] - Schelling, P.; Phillpot, S.; Keblinski, P. Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation. Appl. Phys. Lett.
**2002**, 80, 2484–2486. [Google Scholar] [CrossRef] - Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
**1995**, 117, 1–19. [Google Scholar] [CrossRef] - Yezdimer, E.M.; Chialvo, A.A.; Cummings, P.T. Examination of chain length effects on the solubility of alkanes in near-critical and supercritical aqueous solutions. J. Phys. Chem. B
**2001**, 105, 841–847. [Google Scholar] [CrossRef] - Delhommelle, J.; Millié, P. Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol. Phys.
**2001**, 99, 619–625. [Google Scholar] [CrossRef] - Wang, C.; Chen, J.; Shiomi, J.; Maruyama, S. A study on the thermal resistance over solid–liquid–vapor interfaces in a finite-space by a molecular dynamics method. Int. J. Therm. Sci.
**2007**, 46, 1203–1210. [Google Scholar] [CrossRef] - Ohara, T. Contribution of intermolecular energy transfer to heat conduction in a simple liquid. J. Chem. Phys.
**1999**, 111, 9667–9672. [Google Scholar] [CrossRef] - Chen, Y.; Zou, Y.; Sun, D.; Wang, Y.; Yu, B. Molecular dynamics simulation of bubble nucleation on nanostructure surface. Int. J. Heat Mass Transf.
**2018**, 118, 1143–1151. [Google Scholar] [CrossRef] - Reza Seyf, H.; Zhang, Y. Molecular dynamics simulation of normal and explosive boiling on nanostructured surface. J. Heat Transf.
**2013**, 135, 121503. [Google Scholar] [CrossRef] - Sun, C.; Lu, W.Q.; Liu, J.; Bai, B. Molecular dynamics simulation of nanofluid’s effective thermal conductivity in high-shear-rate Couette flow. Int. J. Heat Mass Transf.
**2011**, 54, 2560–2567. [Google Scholar] [CrossRef] - Toghraie, D.; Mokhtari, M.; Afrand, M. Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannels. Phys. E -Low-Dimens. Syst. Nanostruct.
**2016**, 84, 152–161. [Google Scholar] [CrossRef] - Jónsson, E.Ö.; Rasti, S.; Galynska, M.; Meyer, J.; Jónsson, H. Transferable Potential Function for Flexible H2O Molecules Based on the Single-Center Multipole Expansion. J. Chem. Theory Comput.
**2022**, 18, 7528–7543. [Google Scholar] [CrossRef] - Sofos, F.; Karakasidis, T.; Liakopoulos, A. Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls. Int. J. Heat Mass Transf.
**2009**, 52, 735–743. [Google Scholar] [CrossRef] - Hu, H.; Sun, Y. Effect of nanopatterns on Kapitza resistance at a water-gold interface during boiling: A molecular dynamics study. J. Appl. Phys.
**2012**, 112. [Google Scholar] [CrossRef] - Ghorbanian, J.; Beskok, A. Scale effects in nano-channel liquid flows. Microfluid. Nanofluid.
**2016**, 20, 1–11. [Google Scholar] [CrossRef] - Al-Matar, A.K.; Rockstraw, D.A. A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. J. Comput. Chem.
**2004**, 25, 660–668. [Google Scholar] [CrossRef] - Thomas, J.A.; McGaughey, A.J.; Kuter-Arnebeck, O. Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. Int. J. Therm. Sci.
**2010**, 49, 281–289. [Google Scholar] [CrossRef] - Thomas, J.A.; McGaughey, A.J. Reassessing fast water transport through carbon nanotubes. Nano Lett.
**2008**, 8, 2788–2793. [Google Scholar] [CrossRef] - Alosious, S.; Kannam, S.K.; Sathian, S.P.; Todd, B. Nanoconfinement effects on the kapitza resistance at water–cnt interfaces. Langmuir
**2021**, 37, 2355–2361. [Google Scholar] [CrossRef] - Hafskjold, B.; Ikeshoji, T.; Ratkje, S.K. On the molecular mechanism of thermal diffusion in liquids. Mol. Phys.
**1993**, 80, 1389–1412. [Google Scholar] [CrossRef] - Ikeshoji, T.; Hafskjold, B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol. Phys.
**1994**, 81, 251–261. [Google Scholar] [CrossRef] - Irving, J.; Kirkwood, J.G. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys.
**1950**, 18, 817–829. [Google Scholar] [CrossRef] - Tokumasu, T.; Ohara, T.; Kamijo, K. Effect of molecular elongation on the thermal conductivity of diatomic liquids. J. Chem. Phys.
**2003**, 118, 3677–3685. [Google Scholar] [CrossRef] - Kim, B.H.; Beskok, A.; Cagin, T. Thermal interactions in nanoscale fluid flow: Molecular dynamics simulations with solid–liquid interfaces. Microfluid. Nanofluid.
**2008**, 5, 551–559. [Google Scholar] [CrossRef] - Barrat, J.L.; Chiaruttini, F. Kapitza resistance at the liquid–solid interface. Mol. Phys.
**2003**, 101, 1605–1610. [Google Scholar] [CrossRef] - Sarode, A.; Ahmed, Z.; Basarkar, P.; Bhargav, A.; Banerjee, D. Role of carbon nanotube on the interfacial thermal resistance: A molecular dynamics approach. In Proceedings of the 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2017; pp. 352–356. [Google Scholar]
- Lautenschlaeger, M.P.; Hasse, H. Thermal, caloric and transport properties of the Lennard–Jones truncated and shifted fluid in the adsorbed layers at dispersive solid walls. Mol. Phys.
**2020**, 118, e1669838. [Google Scholar] [CrossRef] - de Gennes, P.G. On fluid/wall slippage. Langmuir
**2002**, 18, 3413–3414. [Google Scholar] [CrossRef] - Bonaccurso, E.; Kappl, M.; Butt, H.J. Hydrodynamic force measurements: Boundary slip of water on hydrophilic surfaces and electrokinetic effects. Phys. Rev. Lett.
**2002**, 88, 076103. [Google Scholar] [CrossRef] [PubMed] - Bonaccurso, E.; Butt, H.J.; Craig, V.S. Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system. Phys. Rev. Lett.
**2003**, 90, 144501. [Google Scholar] [CrossRef] [PubMed] - Zhu, Y.; Granick, S. Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett.
**2002**, 88, 106102. [Google Scholar] [CrossRef] [PubMed] - Craig, V.S.; Neto, C.; Williams, D.R. Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett.
**2001**, 87, 054504. [Google Scholar] [CrossRef] [PubMed] - Thompson, P.A.; Troian, S.M. A general boundary condition for liquid flow at solid surfaces. Nature
**1997**, 389, 360–362. [Google Scholar] [CrossRef] - Sendner, C.; Horinek, D.; Bocquet, L.; Netz, R.R. Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion. Langmuir
**2009**, 25, 10768–10781. [Google Scholar] [CrossRef] - Vinogradova, O.I.; Belyaev, A.V. Wetting, roughness and flow boundary conditions. J. Phys. Condens. Matter
**2011**, 23, 184104. [Google Scholar] [CrossRef] - Cieplak, M.; Koplik, J.; Banavar, J.R. Boundary conditions at a fluid-solid interface. Phys. Rev. Lett.
**2001**, 86, 803. [Google Scholar] [CrossRef] - Ohara, T.; Torii, D. Molecular dynamics study of thermal phenomena in an ultrathin liquid film sheared between solid surfaces: The influence of the crystal plane on energy and momentum transfer at solid-liquid interfaces. J. Chem. Phys.
**2005**, 122, 214717. [Google Scholar] [CrossRef] - Torii, D.; Ohara, T.; Ishida, K. Molecular-scale mechanism of thermal resistance at the solid-liquid interfaces: Influence of interaction parameters between solid and liquid molecules. J. Heat Transf.
**2010**, 132, 1–9. [Google Scholar] [CrossRef] - Dinh, Q.V.; Vo, T.Q.; Kim, B. Viscous heating and temperature profiles of liquid water flows in copper nanochannel. J. Mech. Sci. Technol.
**2019**, 33, 3257–3263. [Google Scholar] [CrossRef] - Koplik, J.; Banavar, J.R.; Willemsen, J.F. Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A Fluid Dyn.
**1989**, 1, 781–794. [Google Scholar] [CrossRef] - Bitsanis, I.; Somers, S.A.; Davis, H.T.; Tirrell, M. Microscopic dynamics of flow in molecularly narrow pores. J. Chem. Phys.
**1990**, 93, 3427–3431. [Google Scholar] [CrossRef] - Thompson, P.A.; Robbins, M.O. Simulations of contact-line motion: Slip and the dynamic contact angle. Phys. Rev. Lett.
**1989**, 63, 766. [Google Scholar] [CrossRef] [PubMed] - Thompson, P.A.; Robbins, M.O. Shear flow near solids: Epitaxial order and flow boundary conditions. Phys. Rev. A
**1990**, 41, 6830. [Google Scholar] [CrossRef] [PubMed] - Thompson, P.A.; Grest, G.S.; Robbins, M.O. Phase transitions and universal dynamics in confined films. Phys. Rev. Lett.
**1992**, 68, 3448. [Google Scholar] [CrossRef] [PubMed] - Somers, S.A.; Davis, H.T. Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces. J. Chem. Phys.
**1992**, 96, 5389–5407. [Google Scholar] [CrossRef] - Gupta, S.; Cochran, H.; Cummings, P. Shear behavior of squalane and tetracosane under extreme confinement. I. Model, simulation method, and interfacial slip. J. Chem. Phys.
**1997**, 107, 10316–10326. [Google Scholar] [CrossRef] - Gupta, S.; Cochran, H.; Cummings, P. Shear behavior of squalane and tetracosane under extreme confinement. II. Confined film structure. J. Chem. Phys.
**1997**, 107, 10327–10334. [Google Scholar] [CrossRef] - Gupta, S.; Cochran, H.; Cummings, P. Shear behavior of squalane and tetracosane under extreme confinement. III. Effect of confinement on viscosity. J. Chem. Phys.
**1997**, 107, 10335–10343. [Google Scholar] [CrossRef] - Jabbarzadeh, A.; Atkinson, J.; Tanner, R. Rheological properties of thin liquid films by molecular dynamics simulations. J. Non-Newton. Fluid Mech.
**1997**, 69, 169–193. [Google Scholar] [CrossRef] - Jabbarzadeh, A.; Atkinson, J.; Tanner, R. Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls. Phys. Rev. E
**2000**, 61, 690. [Google Scholar] [CrossRef] - Khare, R.; De Pablo, J.; Yethiraj, A. Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar couette flows. J. Chem. Phys.
**1997**, 107, 2589–2596. [Google Scholar] [CrossRef] - Heinbuch, U.; Fischer, J. Liquid flow in pores: Slip, no-slip, or multilayer sticking. Phys. Rev. A
**1989**, 40, 1144. [Google Scholar] [CrossRef] - Todd, B.; Evans, D.J. The heat flux vector for highly inhomogeneous nonequilibrium fluids in very narrow pores. J. Chem. Phys.
**1995**, 103, 9804–9809. [Google Scholar] [CrossRef] - Ziarani, A.; Mohamad, A. A molecular dynamics study of perturbed Poiseuille flow in a nanochannel. Microfluid. Nanofluid.
**2006**, 2, 12–20. [Google Scholar] [CrossRef] - Gao, J.; Luedtke, W.; Landman, U. Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribol. Lett.
**2000**, 9, 3–13. [Google Scholar] [CrossRef] - Churaev, N.; Sobolev, V.; Somov, A. Slippage of liquids over lyophobic solid surfaces. J. Colloid Interface Sci.
**1984**, 97, 574–581. [Google Scholar] [CrossRef] - Zhu, Y.; Granick, S. Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Lett.
**2001**, 87, 096105. [Google Scholar] [CrossRef] - Robbins, M.O.; Müser, M.H. Computer Simulations of Friction, Lubrication, and Wear. In Modern Tribology Handbook, Two Volume Set; CRC Press: Boca Raton, FL, USA, 2000; pp. 747–796. [Google Scholar]
- Barrat, J.L.; Bocquet, L. Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett.
**1999**, 82, 4671. [Google Scholar] [CrossRef] - Heslot, F.; Fraysse, N.; Cazabat, A. Molecular layering in the spreading of wetting liquid drops. Nature
**1989**, 338, 640–642. [Google Scholar] [CrossRef] - Cheng, L.; Fenter, P.; Nagy, K.; Schlegel, M.; Sturchio, N. Molecular-scale density oscillations in water adjacent to a mica surface. Phys. Rev. Lett.
**2001**, 87, 156103. [Google Scholar] [CrossRef] [PubMed] - Heier, M.; Diewald, F.; Horsch, M.T.; Langenbach, K.; Müller, R.; Hasse, H. Molecular dynamics study of adsorption of the Lennard-Jones truncated and shifted fluid on planar walls. J. Chem. Eng. Data
**2018**, 64, 386–394. [Google Scholar] [CrossRef] - Heier, M.; Stephan, S.; Diewald, F.; Müller, R.; Langenbach, K.; Hasse, H. Molecular dynamics study of wetting and adsorption of binary mixtures of the Lennard-Jones truncated and shifted fluid on a planar wall. Langmuir
**2021**, 37, 7405–7419. [Google Scholar] [CrossRef] [PubMed] - Akkus, Y.; Nguyen, C.T.; Celebi, A.T.; Beskok, A. A first look at the performance of nano-grooved heat pipes. Int. J. Heat Mass Transf.
**2019**, 132, 280–287. [Google Scholar] [CrossRef] - Nguyen, C.T.; Barisik, M.; Kim, B. Wetting of chemically heterogeneous striped surfaces: Molecular dynamics simulations. AIP Adv.
**2018**, 8, 65003. [Google Scholar] [CrossRef] - Noh, Y.; Vo, T.; Kim, B. Subatomic-Level Solid/Fluid Boundary of Lennard-Jones Atoms: A Molecular Dynamics Study of Metal-Inert Fluid Interface. Appl. Sci.
**2019**, 9, 2439. [Google Scholar] [CrossRef] - Hubbard, A.T. The Handbook of Surface Imaging and Visualization; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Cahill, D.G.; Braun, P.V.; Chen, G.; Clarke, D.R.; Fan, S.; Goodson, K.E.; Keblinski, P.; King, W.P.; Mahan, G.D.; Majumdar, A.; et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev.
**2014**, 1, 11305. [Google Scholar] [CrossRef] - Razavi, S.; Koplik, J.; Kretzschmar, I. Molecular dynamics simulations: Insight into molecular phenomena at interfaces. Langmuir
**2014**, 30, 11272–11283. [Google Scholar] [CrossRef] - Bjornehohn, E.; Hansen, M.; Hodgson, A.; Liu, L.; Limmer, D.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H.; Tocci, G.; et al. Water at Interfaces. Chem. Rev.
**2016**, 116, 7698–7726. [Google Scholar] [CrossRef] - Magda, J.; Tirrell, M.; Davis, H. Molecular dynamics of narrow, liquid-filled pores. J. Chem. Phys.
**1985**, 83, 1888–1901. [Google Scholar] [CrossRef] - Pozhar, L.A. Structure and dynamics of nanofluids: Theory and simulations to calculate viscosity. Phys. Rev. E
**2000**, 61, 1432. [Google Scholar] [CrossRef] [PubMed] - Bock, H.; Gubbins, K.E.; Schoen, M. Anisotropic self-diffusion in nanofluidic structures. J. Phys. Chem. C
**2007**, 111, 15493–15504. [Google Scholar] [CrossRef] - Horn, R.G.; Israelachvili, J.N. Direct measurement of structural forces between two surfaces in a nonpolar liquid. J. Chem. Phys.
**1981**, 75, 1400–1411. [Google Scholar] [CrossRef] - Schmitt, S.; Vo, T.; Lautenschlaeger, M.P.; Stephan, S.; Hasse, H. Molecular dynamics simulation study of heat transfer across solid–fluid interfaces in a simple model system. Mol. Phys.
**2022**, 120, e2057364. [Google Scholar] [CrossRef] - Akkus, Y.; Beskok, A. Molecular diffusion replaces capillary pumping in phase-change-driven nanopumps. Microfluid. Nanofluid.
**2019**, 23, 14. [Google Scholar] [CrossRef] - Hasan, M.R.; Vo, T.Q.; Kim, B. Manipulating thermal resistance at the solid–fluid interface through monolayer deposition. RSC Adv.
**2019**, 9, 4948–4956. [Google Scholar] [CrossRef] - Maruyama, S.; Kimura, T. A study on thermal resistance over a solid-liquid interface by the molecular dynamics method. Therm. Sci. Eng
**1999**, 7, 63–68. [Google Scholar] - Kim, B.H.; Beskok, A.; Cagin, T. Molecular dynamics simulations of thermal resistance at the liquid-solid interface. J. Chem. Phys.
**2008**, 129, 174701. [Google Scholar] [CrossRef] [PubMed] - Barisik, M.; Beskok, A. Temperature dependence of thermal resistance at the water/silicon interface. Int. J. Therm. Sci.
**2014**, 77, 47–54. [Google Scholar] [CrossRef] - Song, G.; Min, C. Temperature dependence of thermal resistance at a solid/liquid interface. Mol. Phys.
**2013**, 111, 903–908. [Google Scholar] [CrossRef] - Pham, A.T.; Barisik, M.; Kim, B. Interfacial thermal resistance between the graphene-coated copper and liquid water. Int. J. Heat Mass Transf.
**2016**, 97, 422–431. [Google Scholar] [CrossRef] - Murad, S.; Puri, I.K. Molecular simulation of thermal transport across hydrophilic interfaces. Chem. Phys. Lett.
**2008**, 467, 110–113. [Google Scholar] [CrossRef] - Jabbari, F.; Rajabpour, A.; Saedodin, S.; Wongwises, S. Effect of water/carbon interaction strength on interfacial thermal resistance and the surrounding molecular nanolayer of CNT and graphene flake. J. Mol. Liq.
**2019**, 282, 197–204. [Google Scholar] [CrossRef] - Alosious, S.; Kannam, S.K.; Sathian, S.P.; Todd, B. Kapitza resistance at water–graphene interfaces. J. Chem. Phys.
**2020**, 152, 224703. [Google Scholar] [CrossRef] - Alexeev, D.; Chen, J.; Walther, J.H.; Giapis, K.P.; Angelikopoulos, P.; Koumoutsakos, P. Kapitza resistance between few-layer graphene and water: Liquid layering effects. Nano Lett.
**2015**, 15, 5744–5749. [Google Scholar] [CrossRef] - Liang, Z.; Sasikumar, K.; Keblinski, P. Thermal transport across a substrate–thin-film interface: Effects of film thickness and surface roughness. Phys. Rev. Lett.
**2014**, 113, 65901. [Google Scholar] [CrossRef] - Vera, J.; Bayazitoglu, Y. Temperature and heat flux dependence of thermal resistance of water/metal nanoparticle interfaces at sub-boiling temperatures. Int. J. Heat Mass Transf.
**2015**, 86, 433–442. [Google Scholar] [CrossRef] - Pham, A.T.; Barisik, M.; Kim, B. Molecular dynamics simulations of Kapitza length for argon-silicon and water-silicon interfaces. Int. J. Precis. Eng. Manuf.
**2014**, 15, 323–329. [Google Scholar] [CrossRef] - Ong, Z.Y. Thickness-dependent Kapitza resistance in multilayered graphene and other two-dimensional crystals. Phys. Rev. B
**2017**, 95, 155309. [Google Scholar] [CrossRef] - Ghatage, D.; Tomar, G.; Shukla, R.K. Thermostat-induced spurious interfacial resistance in non-equilibrium molecular dynamics simulations of solid–liquid and solid–solid systems. J. Chem. Phys.
**2020**, 153, 164110. [Google Scholar] [CrossRef] [PubMed] - Pham, A.; Barisik, M.; Kim, B. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces. J. Chem. Phys.
**2013**, 139, 244702. [Google Scholar] [CrossRef] [PubMed] - Amani, A.; Karimian, S.; Seyednia, M. A molecular dynamics simulation on the effect of different parameters on thermal resistance of graphene-argon interface. Mol. Simul.
**2017**, 43, 276–283. [Google Scholar] [CrossRef] - Vo, T.Q.; Kim, B. Interface thermal resistance between liquid water and various metallic surfaces. Int. J. Precis. Eng. Manuf.
**2015**, 16, 1341–1346. [Google Scholar] [CrossRef] - France-Lanord, A.; Soukiassian, P.; Glattli, C.; Wimmer, E. Ab initio parameterization of a charge optimized many-body forcefield for Si–SiO
_{2}: Validation and thermal transport in nanostructures. J. Chem. Phys.**2016**, 144, 104705. [Google Scholar] [CrossRef] [PubMed] - Ge, S.; Chen, M. Vibrational coupling and Kapitza resistance at a solid–liquid interface. Int. J. Thermophys.
**2013**, 34, 64–77. [Google Scholar] [CrossRef] - Murad, S.; Puri, I.K. Thermal transport across nanoscale solid-fluid interfaces. Appl. Phys. Lett.
**2008**, 92, 133105. [Google Scholar] [CrossRef] - Biolè, D.; Bertola, V. A goniometric mask to measure contact angles from digital images of liquid drops. Colloids Surfaces Physicochem. Eng. Asp.
**2015**, 467, 149–156. [Google Scholar] [CrossRef] - Biolè, D.; Wang, M.; Bertola, V. Assessment of direct image processing methods to measure the apparent contact angle of liquid drops. Exp. Therm. Fluid Sci.
**2016**, 76, 296–305. [Google Scholar] [CrossRef] - Wang, J.; Betelu, S.; Law, B. Line tension approaching a first-order wetting transition: Experimental results from contact angle measurements. Phys. Rev. E
**2001**, 63, 031601. [Google Scholar] [CrossRef] - Brinkmann, M.; Kierfeld, J.; Lipowsky, R. A general stability criterion for droplets on structured substrates. J. Phys. Math. Gen.
**2004**, 37, 11547. [Google Scholar] [CrossRef] - Barisik, M.; Beskok, A. Wetting characterisation of silicon (1, 0, 0) surface. Mol. Simul.
**2013**, 39, 700–709. [Google Scholar] [CrossRef] - Shi, Z.; Barisik, M.; Beskok, A. Molecular dynamics modeling of thermal resistance at argon-graphite and argon-silver interfaces. Int. J. Therm. Sci.
**2012**, 59, 29–37. [Google Scholar] [CrossRef] - Pompe, T.; Herminghaus, S. Three-phase contact line energetics from nanoscale liquid surface topographies. Phys. Rev. Lett.
**2000**, 85, 1930. [Google Scholar] [CrossRef] [PubMed] - Goicochea, J.V.; Hu, M.; Michel, B.; Poulikakos, D. Surface Functionalization Mechanisms of Enhancing Heat Transfer at Solid-Liquid Interfaces. J. Heat Transf.
**2011**, 133, ARTN-082401. [Google Scholar] [CrossRef] - Acharya, H.; Mozdzierz, N.; Keblinski, P.; Garde, S. How Chemistry, Nanoscale Roughness, and the Direction of Heat Flow Affect Thermal Conductance of Solid-Water Interfaces. Ind. Eng. Chem. Res.
**2012**, 51, 1767–1773. [Google Scholar] [CrossRef] - Lundgren, M.; Allan, N.L.; Cosgrove, T. Modeling of wetting: A study of nanowetting at rough and heterogeneous surfaces. Langmuir
**2007**, 23, 1187–1194. [Google Scholar] [CrossRef] - Halverson, J.D.; Maldarelli, C.; Couzis, A.; Koplik, J. Atomistic simulations of the wetting behavior of nanodroplets of water on homogeneous and phase separated self-assembled monolayers. Soft Matter
**2010**, 6, 1297–1307. [Google Scholar] [CrossRef] - Israelachvili, J.N.; Gee, M.L. Contact angles on chemically heterogeneous surfaces. Langmuir
**1989**, 5, 288–289. [Google Scholar] [CrossRef] - Wang, J.; Bratko, D.; Luzar, A. Probing surface tension additivity on chemically heterogeneous surfaces by a molecular approach. Proc. Natl. Acad. Sci. USA
**2011**, 108, 6374–6379. [Google Scholar] [CrossRef] [PubMed] - Blander, M.; Katz, J.L. Bubble nucleation in liquids. AIChE J.
**1975**, 21, 833–848. [Google Scholar] [CrossRef] - Kelton, K.; Greer, A.L. Nucleation in Condensed Matter: Applications in Materials And Biology; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Zeng, X.; Oxtoby, D.W. Gas–liquid nucleation in Lennard-Jones fluids. J. Chem. Phys.
**1991**, 94, 4472–4478. [Google Scholar] [CrossRef] - Shen, V.K.; Debenedetti, P.G. Density-functional study of homogeneous bubble nucleation in the stretched Lennard-Jones fluid. J. Chem. Phys.
**2001**, 114, 4149–4159. [Google Scholar] [CrossRef] - Wilhelmsen, Ø.; Bedeaux, D.; Kjelstrup, S.; Reguera, D. Thermodynamic stability of nanosized multicomponent bubbles/droplets: The square gradient theory and the capillary approach. J. Chem. Phys.
**2014**, 140, 24704. [Google Scholar] [CrossRef] [PubMed] - Delale, C.F.; Hruby, J.; Marsik, F. Homogeneous bubble nucleation in liquids: The classical theory revisited. J. Chem. Phys.
**2003**, 118, 792–806. [Google Scholar] [CrossRef] - Shen, V.K.; Debenedetti, P.G. A kinetic theory of homogeneous bubble nucleation. J. Chem. Phys.
**2003**, 118, 768–783. [Google Scholar] [CrossRef] - Zhukhovitskii, D. Molecular dynamics study of cluster evolution in supersaturated vapor. J. Chem. Phys.
**1995**, 103, 9401–9407. [Google Scholar] [CrossRef] - Yasuoka, K.; Matsumoto, M. Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid. J. Chem. Phys.
**1998**, 109, 8451–8462. [Google Scholar] [CrossRef] - Yasuoka, K.; Matsumoto, M. Molecular dynamics of homogeneous nucleation in the vapor phase. II. Water. J. Chem. Phys.
**1998**, 109, 8463–8470. [Google Scholar] [CrossRef] - Maruyama, S.; Kimura, T.; Yamaguchi, Y. A molecular dynamics simulation of a bubble nucleation on solid surface. In Proceedings of the National Heat Transfer Symposium of Japan; Heat Transfer Society of Japan: Tokyo, Japan, 1997; Volume 34, pp. 675–676. [Google Scholar]
- Kimura, T.; Maruyama, S. Molecular dynamics simulation of heterogeneous nucleation of a liquid droplet on a solid surface. Microscale Thermophys. Eng.
**2002**, 6, 3–13. [Google Scholar] [CrossRef] - Nagayama, G.; Cheng, P. Effects of interface wettability on microscale flow by molecular dynamics simulation. Int. J. Heat Mass Transf.
**2004**, 47, 501–513. [Google Scholar] [CrossRef] - She, X.; Shedd, T.A.; Lindeman, B.; Yin, Y.; Zhang, X. Bubble formation on solid surface with a cavity based on molecular dynamics simulation. Int. J. Heat Mass Transf.
**2016**, 95, 278–287. [Google Scholar] [CrossRef] - Davis, E.J.; Ray, A.K. Submicron droplet evaporation in the continuum and non-continuum regimes. J. Aerosol Sci.
**1978**, 9, 411–422. [Google Scholar] [CrossRef] - Little, J.K. Simulation of Droplet Evaporation in Supercritical Environments Using Parallel Molecular Dynamics; The Pennsylvania State University: State College, PA, USA, 1996. [Google Scholar]
- Kuo, K.K. Principles of Combustion; Wiley: State College, PA, USA, 2005. [Google Scholar]
- Walther, J.H.; Koumoutsakos, P. Molecular dynamics simulation of nanodroplet evaporation. J. Heat Transf.
**2001**, 123, 741–748. [Google Scholar] [CrossRef] - Gong, Y.; Xiao, G.; Ma, X.; Luo, K.H.; Shuai, S.; Xu, H. Phase transitions of multi-component fuel droplets under sub-and supercritical conditions. Fuel
**2021**, 287, 119516. [Google Scholar] [CrossRef] - Ju, D.; Huang, L.; Zhang, K.; Ye, M.; Huang, Z.; Yi, G. Comparison of evaporation rate constants of a single fuel droplet entering subcritical and supercritical environments. J. Mol. Liq.
**2022**, 347, 118346. [Google Scholar] [CrossRef] - Wu, Y.; Pan, C. Molecular dynamics simulation of thin film evaporation of Lennard-Jones liquid. Nanoscale Microscale Thermophys. Eng.
**2006**, 10, 157–170. [Google Scholar] [CrossRef] - Yi, P.; Poulikakos, D.; Walther, J.; Yadigaroglu, G. Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. Int. J. Heat Mass Transf.
**2002**, 45, 2087–2100. [Google Scholar] [CrossRef] - Dou, Y.; Zhigilei, L.V.; Winograd, N.; Garrison, B.J. Explosive boiling of water films adjacent to heated surfaces: A microscopic description. J. Phys. Chem. A
**2001**, 105, 2748–2755. [Google Scholar] [CrossRef] - Li, C.; Wang, Z.; Wang, P.I.; Peles, Y.; Koratkar, N.; Peterson, G. Nanostructured copper interfaces for enhanced boiling. Small
**2008**, 4, 1084–1088. [Google Scholar] [CrossRef] [PubMed] - Chen, R.; Lu, M.C.; Srinivasan, V.; Wang, Z.; Cho, H.H.; Majumdar, A. Nanowires for enhanced boiling heat transfer. Nano Lett.
**2009**, 9, 548–553. [Google Scholar] [CrossRef] - Betz, A.R.; Xu, J.; Qiu, H.; Attinger, D. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl. Phys. Lett.
**2010**, 97, 141909. [Google Scholar] [CrossRef] - Yao, Z.; Lu, Y.W.; Kandlikar, S. Effects of nanowire height on pool boiling performance of water on silicon chips. Int. J. Therm. Sci.
**2011**, 50, 2084–2090. [Google Scholar] [CrossRef] - Weibel, J.A.; Kim, S.; Fisher, T.S.; Garimella, S.V. Carbon nanotube coatings for enhanced capillary-fed boiling from porous microstructures. Nanoscale Microscale Thermophys. Eng.
**2012**, 16, 1–17. [Google Scholar] [CrossRef] - Kim, D.E.; Yu, D.I.; Jerng, D.W.; Kim, M.H.; Ahn, H.S. Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp. Therm. Fluid Sci.
**2015**, 66, 173–196. [Google Scholar] [CrossRef] - Nagayama, G.; Tsuruta, T. A general expression for the condensation coefficient based on transition state theory and molecular dynamics simulation. J. Chem. Phys.
**2003**, 118, 1392–1399. [Google Scholar] [CrossRef] - Kesälä, E.; Kuronen, A.; Nordlund, K. Molecular dynamics simulation of pressure dependence of cluster growth in inert gas condensation. Phys. Rev. B
**2007**, 75, 174121. [Google Scholar] [CrossRef] - Ranathunga, D.T.; Shamir, A.; Dai, X.; Nielsen, S.O. Molecular dynamics simulations of water condensation on surfaces with tunable wettability. Langmuir
**2020**, 36, 7383–7391. [Google Scholar] [CrossRef] [PubMed] - Wang, T.; Liu, X.; He, M.; Zhang, Y. Molecular dynamics simulation of thermophysical properties and condensation process of R1233zd (E). Int. J. Refrig.
**2020**, 112, 341–347. [Google Scholar] [CrossRef] - Hinds, B.J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L.G. Aligned multiwalled carbon nanotube membranes. Science
**2004**, 303, 62–65. [Google Scholar] [CrossRef] [PubMed] - Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.M.; Horsfield, B. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin). Int. J. Coal Geol.
**2012**, 103, 3–11. [Google Scholar] [CrossRef] - Park, S.; Kim, Y.S.; Kim, W.B.; Jon, S. Carbon nanosyringe array as a platform for intracellular delivery. Nano Lett.
**2009**, 9, 1325–1329. [Google Scholar] [CrossRef] - Travis, K.P.; Todd, B.; Evans, D.J. Departure from Navier-Stokes hydrodynamics in confined liquids. Phys. Rev. E
**1997**, 55, 4288. [Google Scholar] [CrossRef] - Travis, K.P.; Gubbins, K.E. Poiseuille flow of Lennard-Jones fluids in narrow slit pores. J. Chem. Phys.
**2000**, 112, 1984–1994. [Google Scholar] [CrossRef] - Koplik, J.; Banavar, J.R. Continuum deductions from molecular hydrodynamics. Annu. Rev. Fluid Mech.
**1995**, 27, 257–292. [Google Scholar] [CrossRef] - Zhang, C.; Chen, Y.; Yang, L.; Shi, M. Self-diffusion for Lennard-Jones fluid confined in a nanoscale space. Int. J. Heat Mass Transf.
**2011**, 54, 4770–4773. [Google Scholar] [CrossRef] - Sokhan, V.P.; Nicholson, D.; Quirke, N. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes. J. Chem. Phys.
**2002**, 117, 8531–8539. [Google Scholar] [CrossRef] - Stokes, G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Philos. Soc.
**1850**, 3, 1880–1905. [Google Scholar] - Cao, B.Y.; Sun, J.; Chen, M.; Guo, Z.Y. Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: A review. Int. J. Mol. Sci.
**2009**, 10, 4638–4706. [Google Scholar] [CrossRef] [PubMed] - Wu, H.; Cheng, P. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios. Int. J. Heat Mass Transf.
**2003**, 46, 2519–2525. [Google Scholar] [CrossRef] - Soong, C.; Yen, T.; Tzeng, P. Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions. Phys. Rev. E
**2007**, 76, 036303. [Google Scholar] [CrossRef] - Gandomi, Y.A.; Edmundson, M.; Busby, F.; Mench, M.M. Water management in polymer electrolyte fuel cells through asymmetric thermal and mass transport engineering of the micro-porous layers. J. Electrochem. Soc.
**2016**, 163, F933. [Google Scholar] [CrossRef] - Ge, S.; Gu, Y.; Chen, M. A molecular dynamics simulation on the convective heat transfer in nanochannels. Mol. Phys.
**2015**, 113, 703–710. [Google Scholar] [CrossRef] - Shkarah, A.J.; Sulaiman, M.Y.B.; Ayob, M.R.B.H.; Togun, H. A 3D numerical study of heat transfer in a single-phase micro-channel heat sink using graphene, aluminum and silicon as substrates. Int. Commun. Heat Mass Transf.
**2013**, 48, 108–115. [Google Scholar] [CrossRef] - Thekkethala, J.F.; Sathian, S.P. The effect of graphene layers on interfacial thermal resistance in composite nanochannels with flow. Microfluid. Nanofluid.
**2015**, 18, 637–648. [Google Scholar] [CrossRef] - Ghasemi, H.; Ward, C. Mechanism of sessile water droplet evaporation: Kapitza resistance at the solid–liquid interface. J. Phys. Chem. C
**2011**, 115, 21311–21319. [Google Scholar] [CrossRef] - Marable, D.C.; Shin, S.; Nobakht, A.Y. Investigation into the microscopic mechanisms influencing convective heat transfer of water flow in graphene nanochannels. Int. J. Heat Mass Transf.
**2017**, 109, 28–39. [Google Scholar] [CrossRef] - Motlagh, M.B.; Kalteh, M. Molecular dynamics simulation of nanofluid convective heat transfer in a nanochannel: Effect of nanoparticles shape, aggregation and wall roughness. J. Mol. Liq.
**2020**, 318, 114028. [Google Scholar] [CrossRef] - Motlagh, M.B.; Kalteh, M. Simulating the convective heat transfer of nanofluid Poiseuille flow in a nanochannel by molecular dynamics method. Int. Commun. Heat Mass Transf.
**2020**, 111, 104478. [Google Scholar] [CrossRef] - Chakraborty, P.; Ma, T.; Cao, L.; Wang, Y. Significantly enhanced convective heat transfer through surface modification in nanochannels. Int. J. Heat Mass Transf.
**2019**, 136, 702–708. [Google Scholar] [CrossRef] - Toghraie, D.; Hekmatifar, M.; Salehipour, Y.; Afrand, M. Molecular dynamics simulation of Couette and Poiseuille Water-Copper nanofluid flows in rough and smooth nanochannels with different roughness configurations. Chem. Phys.
**2019**, 527, 110505. [Google Scholar] [CrossRef] - Jiang, L.; Wong, M.; Zohar, Y. Forced convection boiling in a microchannel heat sink. J. Microelectromech. Syst.
**2001**, 10, 80–87. [Google Scholar] [CrossRef] - Qu, W.; Mudawar, I. Flow boiling heat transfer in two-phase micro-channel heat sinks—II. Annular two-phase flow model. Int. J. Heat Mass Transf.
**2003**, 46, 2773–2784. [Google Scholar] [CrossRef] - Maruyama, S. Molecular dynamics method for microscale heat transfer. Adv. Numer. Heat Transf.
**2000**, 2, 189–226. [Google Scholar] - Qu, W.; Mudawar, I. Flow boiling heat transfer in two-phase micro-channel heat sinks—I. Experimental investigation and assessment of correlation methods. Int. J. Heat Mass Transf.
**2003**, 46, 2755–2771. [Google Scholar] [CrossRef] - Zarringhalam, M.; Ahmadi-Danesh-Ashtiani, H.; Toghraie, D.; Fazaeli, R. The effects of suspending Copper nanoparticles into Argon base fluid inside a microchannel under boiling flow condition by using of molecular dynamic simulation. J. Mol. Liq.
**2019**, 293, 111474. [Google Scholar] [CrossRef]

**Figure 2.**Typical density (

**a**) and temperature profile (

**b**) of a fluid near a solid wall. The discontinuity of temperature profile defines the interface thermal resistance, quantified by the Kapitza length, ${L}_{K}$.

**Figure 3.**The Kapitza resistance as a function of temperature, for different magnitudes of the surface energy (the solid lines are fitted with the function form ${R}_{K}={R}_{0}{T}^{-\alpha}$ ). Data replotted from [145].

**Figure 4.**Schematic of interfacial forces acting on the three-phase (solid-liquid-gas) contact line formed by a liquid drop deposited on a solid surface, including the line tension, ${T}_{L}$.

**Figure 5.**Cosine of the contact angle for droplets of different size as a function of the inverse of the droplet base radius, $1/{r}_{B}$, for different wettabilities of the surface. Dotted lines correspond to linear best fits. Contact angle data replotted from [166].

**Figure 7.**Streaming velocity profiles in channels with dimensionless width $W/\sigma =5.1$ (

**a**) and $W/\sigma =10.2$ (

**b**), where $\sigma $ is the length constant of the WCA inter-atomic potential. Quadratic least-squares fits are overlaid on the data. Reprinted from [211] with permission.

**Figure 8.**Velocity profiles in the z-direction of the pressure driven flow with different interface wettability. The parameter $\alpha $ indicates the strength of hydrophilic interaction, and $\beta $ that of hydrophobic interaction. (

**a**) $\alpha $ = 1; $\beta $ = 1. (

**b**) $\alpha $ = 0.5; $\beta $ = 1. (

**c**) $\alpha $ = 0.14; $\beta $ = 1. (

**d**) $\alpha $ = 0.14; $\beta $ = 0.5. (

**e**) $\alpha $ = 0.14; $\beta $ = 0.3. (

**f**) $\alpha $ = 0.14; $\beta $ = 0.1. Reprinted from [187] with permission.

**Figure 9.**Thermal (${l}_{k}$) and hydrodynamic (${l}_{s}$) slip lengths as a function of (

**a**) interaction strengths (${\epsilon}_{c-o}$), (

**b**) channel heights (H), (

**c**) velocities (${u}_{f,\mathrm{avg}}$), and (

**d**) wall temperatures (${T}_{w}$). Reprinted from [225] with permission.

**Figure 10.**Schematic illustration of the thermal pump method. The simulation domain is divided into three regions: (

**i**) the forcing region, to set the fluid velocity; (

**ii**) the temperature rescaling region, to set the inlet temperature; and (

**iii**) the data collection region. Reprinted from [225] with permission.

**Figure 11.**Local surface tension profile in the direction normal to the interface at a saturation temperature of 84 K, for different external driving forces. Reprinted from [26] with permission.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ran, Y.; Bertola, V.
Achievements and Prospects of Molecular Dynamics Simulations in Thermofluid Sciences. *Energies* **2024**, *17*, 888.
https://doi.org/10.3390/en17040888

**AMA Style**

Ran Y, Bertola V.
Achievements and Prospects of Molecular Dynamics Simulations in Thermofluid Sciences. *Energies*. 2024; 17(4):888.
https://doi.org/10.3390/en17040888

**Chicago/Turabian Style**

Ran, Yunmin, and Volfango Bertola.
2024. "Achievements and Prospects of Molecular Dynamics Simulations in Thermofluid Sciences" *Energies* 17, no. 4: 888.
https://doi.org/10.3390/en17040888