Effect of Ancient Salinity on the Distribution and Composition of Tricyclic Terpane in Hydrocarbon Source Rocks in the Mahu Depression
Abstract
:1. Introduction
2. Geological Background
3. Samples and Analysis
3.1. Samples
3.2. Analytical Conditions
4. Results and Discussion
4.1. Geochemical Characteristics of Hydrocarbon Source Rocks
4.1.1. Organic Matter Abundance
4.1.2. Organic Matter Type and Thermal Evolution Degree
4.2. Tricyclic Terpane Composition of Source Rocks
4.2.1. Distribution of the Tricyclic Terpane Carbon Number
4.2.2. Distribution of Different Carbon Number Ratios of Tricyclic Terpanes
4.3. Correlations between Tricyclic Terpane Compounds and Other Biomarker Parameters
4.3.1. C29 Sterane 20S/(20S + 20R)
4.3.2. C27 Regular Sterane/C29 Regular Sterane
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anders, D.E.; Robinson, W.E. Cycloalkane constituents of the bitumens from Green River Shale. Geochim. Cosmochim. Acta 1971, 35, 661–678. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. Applications of steranes, terpanes and monoaromatics to the maturation migration and source of crude oils. Geochim. Cosmochim. Acta 1978, 42, 77–95. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. The effect of biodegradation on steranes and terpanes in crude oils. Geochim. Cosmochim. Acta 1979, 43, 111–116. [Google Scholar] [CrossRef]
- Moldowan, J.M.; Seifert, W.K.; Gallegos, E.J. Identification of an extended series of tricyclic terpanes in petroleum. Geochim. Cosmochim. Acta 1983, 47, 1531–1534. [Google Scholar] [CrossRef]
- Grande, S.M.B.; Aquino Neto, F.R.; Mello, M.R. Extended tricyclic terpanes in sediments and petroleum. Org. Geochem. 1993, 20, 1039–1047. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Leif, R.N.; Aquino Neto, F.R.; Azevedo, A.C.; Pinto, A.C.; Albrecht, P. On the presence of tricyclic terpane hydrocarbons in Permian tasmanite algae. Naturwissenschaften 1990, 77, 380–383. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Schoell, M.; Dias, R.F.; de Aquino Neto, F.R. FR Unusual carbon isotope compositions of biomarker hydrocarbons in a Permian tasmanite. Geochim. Cosmochim. Acta 1993, 57, 4205–4211. [Google Scholar] [CrossRef]
- Tao, S.Z.; Wang, C.Y.; Du, J.G.; Liu, L.; Chen, Z. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China. Mar. Pet. Geol. 2015, 67, 460–467. [Google Scholar] [CrossRef]
- Huang, H.P.; Zhang, S.C.; Gue, Y.; Su, J. Impacts of source input and secondary alteration on the extended tricyclic terpane ratio: A case study from Palaeozoic sourced oils and condensates in the Tarim Basin, NW China. Org. Geochem. 2017, 112, 158–169. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History; Cambridge University Press: Cambridge, UK, 2005; pp. 551–559. [Google Scholar]
- Farrimond, P.; Bevan, C.J.; Bishop, A.N. Tricyclic terpane maturity parameters: Response to heating by an igneous intrusion. Org. Geochem. 1999, 30, 1011–1019. [Google Scholar] [CrossRef]
- Fang, R.; Littke, R.; Zieger, L.; Baniasad, A.; Li, M.; Schwarzbauer, J. Changes of composition and content of tricyclic terpane, hopane, sterane, and aromatic biomarkers throughout the oil window: A detailed study on maturity parameters of Lower Toarcian Posidonia Shale of the Hils Syncline, NW Germany. Org. Geochem. 2019, 138, 103928. [Google Scholar] [CrossRef]
- Bao, J.P.; Zhu, C.S.; Shen, X. Study on the Formation Mechanism of Diamondoid Compounds and Kelasu Depression Kelasu-2 Structural Condensate Oil. Nat. Gas Earth Sci. 2018, 29, 1217–1230. [Google Scholar]
- Chen, Z.L.; Liu, G.D.; Wei, Y.Z.; Gao, G.; Ren, J.L.; Yang, F.; Ma, W.Y. Distribution pattern and influencing factors of tricyclic terpanes in Permian source rocks in Mahu Depression, Junggar Basin. Pet. Nat. Gas Geol. 2017, 38, 311–322. [Google Scholar]
- Xiao, H.; Li, M.J.; Yang, Z.; Zhu, Z.L. Distribution characteristics and geochemical significance of C19~C23 tricyclic terpanes in different source rocks and crude oils. Geochimica 2019, 48, 161–170. [Google Scholar]
- Guo, P.F.; He, S.; Zhu, S.K.; Chai, D.R.; Yin, S.Y. Using tricyclic terpanes to compare the oil source of biodegraded oil in the Miyang Depression. Pet. Geol. Exp. 2015, 37, 80–87. [Google Scholar]
- Cheng, X.; Hou, D.J.; Xu, C.G.; Wang, F.L. Preliminary exploration of the causes of abnormal distribution of tricyclic terpanes in severely biodegraded oil sequences in the Miaoxi Depression. J. Sediment Res. 2017, 35, 193–202. [Google Scholar]
- Wang, S.; Zhang, M. Research on the differences in the distribution and composition characteristics of tricyclic terpanes under strong biodegradation—Taking the oil sands on the northwest margin of the Junggar Basin as an example. J. Sediment Res. 2023, 41, 1192–1201. [Google Scholar]
- Azevedo, D.A.; Aquino Neto, F.R.; Simoneit, B.R.T. Extended saturated and monoaromatic tricyclic terpenoid carboxylic acids found in Tasmanian tasmanite. Org. Geochem. 1994, 20, 991–1004. [Google Scholar] [CrossRef]
- Li, S.F.; He, S.; Zhang, D.M. Geochemical characteristics of high-wax crude oil in Nanyang Depression. Xinjiang Pet. Geol. 2006, 27, 414–418. [Google Scholar]
- Wang, C.; Du, J.; Wang, W. Distribution and isomerization of terpanes in pyrolyzates of lignite at high pressures and temperatures. J. Pet. Geol. 2012, 35, 377–387. [Google Scholar] [CrossRef]
- Luo, Y.T.; Zhang, M. Distribution characteristics and main controlling factors of high-carbon tricyclic terpanes in Lishu Fault Depression crude oil in the Songliao Basin. J. Sediment Res. 2023, 41, 569–583. [Google Scholar]
- Qin, Y.; Zhang, M. Diversities in biomarker compositions of Carboniferous–Permian humic coals in the Ordos Basin, China. Aust. J. Earth Sci. 2018, 65, 727–738. [Google Scholar]
- Huang, P.; Ren, J.L.; Li, E.T. Biomarkers, carbon isotopic composition and their significance of source rocks and crude oils in Mahu Depression, Junggar Basin. Geochimica 2016, 45, 303–314. [Google Scholar]
- He, W.J.; Qian, Y.X.; Zhao, Y. Exploration implications of the entire oil and gas system in the Fengcheng Formation in the Mahu Depression. Xinjiang Pet. Geol. 2021, 42, 641–655. [Google Scholar]
- Zhi, D.M.; Cao, J.; Xiang, B.L. New insights into the hydrocarbon generation mechanism and resource assessment of the alkaline lake source rocks in the Fengcheng Formation in the Mahu Depression. Xinjiang Pet. Geol. 2016, 37, 499–506. [Google Scholar]
- Jiang, F.J.; Huang, R.D.; Hu, T.; Lü, J.; Huang, L.; Jiang, Z.; Hu, M.; Zhang, C.; Wu, G.; Wu, Y. Geological characteristics and classification evaluation of shale oil in the Fengcheng Formation in the Mahu Depression, Junggar Basin. Acta Pet. Sin. 2022, 43, 899–911. [Google Scholar]
- Wang, Z.Y.; Wei, Y.Z.; Zhao, C.Y. Discovery and geochemical characteristics of low-maturity oil in the Santanghu Basin. J. Sediment Res. 2001, 4, 598–604. [Google Scholar]
- Zhu, Y.; Mei, B. Geochemical characteristics of the Middle Jurassic coal seams in the Tarim Basin. Xinjiang Pet. Geol. 1998, 19, 27–31. [Google Scholar]
- Zhao, M.J.; Xiao, Z.Y.; Peng, Y.; Li, M. Geochemical characteristics of crude oil generated from coal-bearing mudstone and coal measures. Pet. Explor. Dev. 1998, 25, 8–10. [Google Scholar]
- Neto, F.R.A.; Trendel, J.M.; Restlé, A.; Connan, J.; Albrecht, P. Occurrence and formation of tricyclic terpanes in sediments and petroleums. Adv. Org. Geochem. 1983, 27, 659–667. [Google Scholar]
- Huang, W.Y.; Mei, W.G. Sterols as ecological indicators. Geochim. Cosmochim. Acta 1979, 43, 739–745. [Google Scholar] [CrossRef]
- Mei, W.G.; Huang, W.Y. Sterols, Stanols, Steranes, and the origin of natural gas and petroleum. Orig. Chem. Pet. 1981, 19, 33–35. [Google Scholar]
- Didky, B.M.; Simoneit BR, T.; Brassell, S.C. Organic geochemical indicators of palaoenvironmental condi- tions of sedimentation. Nature 1978, 272, 216–222. [Google Scholar] [CrossRef]
- Peters, K.E.; Moldowan, J.M.; Sundararaman, P. Effects of hydous pyrolysis on biomarker thermal maturity parameters:Monterey Phosphatic and Siliceous Members. Org. Geochem. 1990, 15, 249–265. [Google Scholar] [CrossRef]
- He, T.; Li, W.; Lu, S.; Yang, E.; Jing, T.; Ying, J.; Zhu, P.; Wang, X.; Pan, W.; Zhang, B.; et al. Quantitatively unmixing method for complex mixed oil based on its fractions carbon isotopes: A case from the Tarim Basin, NW China. Pet. Sci. 2023, 20, 102–113. [Google Scholar] [CrossRef]
- He, T.; Zeng, Q.; Lu, S.; Li, W.; Li, M.; Wen, Z.; Yang, E.; Jing, T.; Ying, J.; Zhu, P.; et al. Aryl isoprenoids from the Lower Paleozoic in the Tarim Basin, NW China: Insight into deep ancient hydrocarbon exploration. Geoenergy Sci. Eng. 2023, 225, 211666. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Lu, S.; Chen, G.; Pang, X.; Zhang, P.; He, T. Evaluation of gas-in-place content and gas-adsorbed ratio using carbon isotope fractionation model: A case study from Longmaxi shales in Sichuan Basin, China. Int. J. Coal Geol. 2022, 249, 103881. [Google Scholar] [CrossRef]
- Li, W.; Lu, S.; Li, J.; Wei, Y.; Zhao, S.; Zhang, P.; Wang, Z.; Li, X.; Wang, J. Research progress on isotopic fractionation in the process of shale gas/coalbed methane migration. Pet. Explor. Dev. 2022, 49, 1069–1084. [Google Scholar] [CrossRef]
Depth/m | Lithology | Layer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4580.85 | Mudstone | P1f3 | 0.13 | 1.05 | 0.48 | 0.39 | 1.00 | 0.89 | 0.84 | 1.47 | 0.56 | 1.17 | Type I source rock |
4585.59 | Mudstone | P1f3 | 0.11 | 1.14 | 0.48 | 0.40 | 1.08 | 0.97 | 0.96 | 1.54 | 0.62 | 1.12 | |
4590.70 | Mudstone | P1f3 | 0.12 | 1.19 | 0.48 | 0.39 | 0.91 | 0.91 | 0.80 | 1.31 | 0.45 | 1.38 | |
4595.61 | Mudstone | P1f3 | 0.06 | 1.26 | 0.47 | 0.36 | 0.94 | 0.83 | 0.99 | 1.39 | 0.60 | 0.92 | |
4599.68 | Mudstone | P1f3 | 0.11 | 1.04 | 0.48 | 0.35 | 0.96 | 0.84 | 0.77 | 1.31 | 0.46 | 1.14 | |
4601.96 | Mudstone | P1f3 | 0.11 | 1.16 | 0.46 | 0.36 | 0.99 | 0.82 | 0.75 | 1.34 | 0.44 | 1.14 | |
4605.10 | Mudstone | P1f3 | 0.11 | 0.84 | 0.47 | 0.40 | 1.03 | 0.84 | 0.65 | 1.26 | 0.41 | 1.23 | |
4609.34 | Mudstone | P1f3 | 0.16 | 0.93 | 0.47 | 0.41 | 1.08 | 0.68 | 0.93 | 1.46 | 0.61 | 2.34 | |
4613.67 | Mudstone | P1f3 | 0.23 | 0.92 | 0.47 | 0.38 | 0.99 | 0.88 | 0.82 | 1.25 | 0.45 | 2.04 | |
4631.20 | Mudstone | P1f2 | 0.25 | 0.81 | 0.47 | 0.36 | 1.18 | 1.13 | 0.90 | 1.56 | 0.51 | 2.44 | |
4639.47 | Mudstone | P1f2 | 0.15 | 0.94 | 0.46 | 0.34 | 1.01 | 0.97 | 0.89 | 1.38 | 0.47 | 1.82 | |
4646.64 | Mudstone | P1f2 | 0.26 | 0.93 | 0.47 | 0.33 | 1.04 | 0.88 | 0.81 | 1.32 | 0.48 | 1.68 | |
4660.71 | Mudstone | P1f2 | 0.19 | 0.92 | 0.48 | 0.35 | 1.20 | 1.02 | 0.90 | 1.41 | 0.39 | 1.78 | |
4669.49 | Mudstone | P1f2 | 0.30 | 0.85 | 0.50 | 0.35 | 1.11 | 0.94 | 0.90 | 1.38 | 0.45 | 2.24 | |
4678.02 | Mudstone | P1f2 | 0.20 | 0.91 | 0.48 | 0.36 | 1.17 | 1.07 | 1.00 | 1.50 | 0.50 | 2.33 | |
4683.82 | Mudstone | P1f2 | 0.31 | 0.80 | 0.48 | 0.35 | 1.43 | 1.17 | 0.91 | 1.65 | 0.51 | 2.30 | Type II source rock |
4687.45 | Mudstone | P1f2 | 0.30 | 0.76 | 0.48 | 0.36 | 1.43 | 1.18 | 1.16 | 1.78 | 0.69 | 2.23 | |
4693.94 | Mudstone | P1f2 | 0.45 | 0.64 | 0.48 | 0.34 | 1.42 | 1.11 | 1.16 | 1.62 | 0.57 | 2.04 | |
4704.14 | Mudstone | P1f2 | 0.40 | 0.65 | 0.47 | 0.35 | 1.37 | 1.03 | 0.99 | 1.60 | 0.48 | 2.07 | |
4708.80 | Mudstone | P1f2 | 0.64 | 0.63 | 0.47 | 0.33 | 1.46 | 1.03 | 1.12 | 1.49 | 0.50 | 2.02 | |
4710.54 | Mudstone | P1f2 | 0.33 | 0.65 | 0.48 | 0.36 | 1.27 | 1.01 | 0.95 | 1.51 | 0.43 | 3.24 | |
4713.61 | Mudstone | P1f2 | 0.69 | 0.60 | 0.48 | 0.33 | 1.49 | 1.06 | 1.10 | 1.60 | 0.55 | 1.85 | |
4719.36 | Mudstone | P1f2 | 0.68 | 0.61 | 0.48 | 0.33 | 1.62 | 1.18 | 1.17 | 1.77 | 0.73 | 1.71 | |
4721.97 | Mudstone | P1f2 | 0.39 | 0.68 | 0.48 | 0.35 | 1.37 | 1.07 | 1.06 | 1.63 | 0.56 | 2.68 | |
4725.59 | Mudstone | P1f2 | 0.46 | 0.62 | 0.47 | 0.34 | 1.51 | 1.16 | 1.21 | 1.86 | 0.77 | 2.13 | |
4729.64 | Mudstone | P1f2 | 0.52 | 0.55 | 0.48 | 0.34 | 1.40 | 1.06 | 1.23 | 1.61 | 0.70 | 1.71 | |
4734.34 | Mudstone | P1f2 | 0.69 | 0.56 | 0.48 | 0.33 | 1.56 | 1.10 | 1.23 | 1.61 | 0.60 | 2.01 | |
4742.28 | Mudstone | P1f2 | 0.54 | 0.55 | 0.48 | 0.35 | 1.39 | 1.04 | 1.09 | 1.61 | 0.52 | 2.67 | |
4759.58 | Mudstone | P1f2 | 0.64 | 0.61 | 0.48 | 0.35 | 1.38 | 1.06 | 1.07 | 1.51 | 0.48 | 2.53 | |
4770.86 | Mudstone | P1f2 | 0.54 | 0.71 | 0.47 | 0.36 | 1.32 | 1.05 | 1.05 | 1.60 | 0.49 | 3.13 | |
4789.14 | Mudstone | P1f2 | 0.97 | 0.74 | 0.47 | 0.34 | 1.35 | 1.12 | 1.04 | 1.68 | 0.57 | 2.77 | Type III source rock |
4792.80 | Mudstone | P1f2 | 1.00 | 0.73 | 0.48 | 0.34 | 1.38 | 1.12 | 1.13 | 1.82 | 0.71 | 2.57 | |
4794.96 | Mudstone | P1f2 | 1.04 | 0.80 | 0.48 | 0.34 | 1.30 | 1.06 | 1.15 | 1.62 | 0.58 | 3.11 | |
4796.75 | Mudstone | P1f2 | 1.04 | 0.82 | 0.46 | 0.34 | 1.31 | 1.04 | 1.09 | 1.71 | 0.61 | 3.31 | |
4797.49 | Mudstone | P1f2 | 1.04 | 0.83 | 0.46 | 0.36 | 1.23 | 1.05 | 1.12 | 1.66 | 0.64 | 2.93 | |
4799.57 | Mudstone | P1f2 | 1.35 | 0.77 | 0.48 | 0.35 | 1.33 | 1.01 | 1.27 | 1.68 | 0.66 | 3.49 | |
4813.17 | Mudstone | P1f2 | 1.39 | 0.89 | 0.46 | 0.35 | 1.24 | 0.97 | 1.17 | 1.64 | 0.64 | 4.29 | |
4816.27 | Mudstone | P1f2 | 1.00 | 0.77 | 0.47 | 0.36 | 1.81 | 1.10 | 1.40 | 2.62 | 1.27 | 3.18 | |
4836.18 | Mudstone | P1f2 | 0.91 | 0.76 | 0.46 | 0.37 | 1.54 | 1.15 | 1.20 | 2.28 | 0.99 | 3.22 |
Sedimentary Environment | Tricyclic Terpane Ratios | Relative Percentage Content of Tricyclic Terpanes (%) | Type | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Freshwater-to-slightly-brackish water environment | 0.91~1.20 1.05 | 0.68~1.13 0.91 | 0.65~1.00 0.86 | 1.25~1.56 1.39 | 0.39~0.62 0.49 | 32~37 35 | 46~51 48 | 14~20 17 | Type I source rock |
Moderate-salinity environment | 1.27~1.62 1.43 | 1.01~1.18 1.09 | 0.91~1.23 1.10 | 1.49~1.86 1.63 | 0.43~0.77 0.57 | 27~34 31 | 49~52 51 | 15~21 18 | Type II source rock |
Saline environment | 1.23~1.81 1.39 | 0.97~1.15 1.07 | 1.04~1.40 1.17 | 1.62~2.62 1.86 | 0.57~1.27 0.74 | 20~31 28 | 50~54 52 | 18~26 20 | Type III source rock |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhang, M.; He, T. Effect of Ancient Salinity on the Distribution and Composition of Tricyclic Terpane in Hydrocarbon Source Rocks in the Mahu Depression. Energies 2024, 17, 748. https://doi.org/10.3390/en17030748
Chen H, Zhang M, He T. Effect of Ancient Salinity on the Distribution and Composition of Tricyclic Terpane in Hydrocarbon Source Rocks in the Mahu Depression. Energies. 2024; 17(3):748. https://doi.org/10.3390/en17030748
Chicago/Turabian StyleChen, Haojie, Min Zhang, and Taohua He. 2024. "Effect of Ancient Salinity on the Distribution and Composition of Tricyclic Terpane in Hydrocarbon Source Rocks in the Mahu Depression" Energies 17, no. 3: 748. https://doi.org/10.3390/en17030748
APA StyleChen, H., Zhang, M., & He, T. (2024). Effect of Ancient Salinity on the Distribution and Composition of Tricyclic Terpane in Hydrocarbon Source Rocks in the Mahu Depression. Energies, 17(3), 748. https://doi.org/10.3390/en17030748