Comparative Study on the Thermal Properties of Engine Oils and Their Nanofluids Incorporating Fullerene-C60, TiO2 and Fe2O3 at Different Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat Capacity Measurements
2.3. Flash Point Measurement
2.4. Measurements of Base Fluids
3. Results and Discussion
3.1. Effect of Temperature Values and Nanomaterials on Thermal Properties
3.1.1. Thermal Conductivity
3.1.2. Thermal Diffusivity
3.1.3. Volumetric Heat Capacity
3.1.4. Flash Point
3.2. Thermal Property Ratios
3.2.1. Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat Capacity Ratios
3.2.2. Flash Point Ratio
3.3. Correlations of Thermal Properties
4. Conclusions
- The thermal properties of engine oil-based nanofluids of metal oxide nanoparticles (TiO2 and Fe2O3) displayed significant increments compared to their respective base fluids.
- The TiO2/10W30 nanofluid showed the highest percentage increment of thermal properties in this experiment, with a 4.5% thermal conductivity ratio at a temperature of 40 °C, a 0.6% thermal diffusivity ratio at a temperature of 50 °C, a 3.7% volumetric heat capacity ratio at a temperature of 50 °C, and a 4.2% of flash point ratio.
- The Fe2O3/10W30 nanofluid was proved to have a 3.9% thermal conductivity ratio at a temperature of 80 °C, a 0.5% thermal diffusivity ratio at a temperature range of 30–80 °C, a 3.4% volumetric heat capacity ratio at a temperature of 80 °C, and a 3.5% flash point ratio, where it was observed that the Fe2O3/10W30 nanofluid has better thermal properties in higher temperatures compared to the TiO2/10W30 nanofluid.
- The fullerene-C60-based nanofluids exhibited a notable increase of 2.1% in flash points while not showing significant enhancements in the other thermal properties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tahmasebi Sulgani, M.; Karimipour, A. Improve the thermal conductivity of 10w40-engine oil at various temperature by addition of Al2O3/Fe2O3 nanoparticles. J. Mol. Liq. 2019, 283, 660–666. [Google Scholar] [CrossRef]
- Nojoomizadeh, M.; Karimipour, A. The effects of porosity and permeability on fluid flow and heat transfer of multi walled carbon nano-tubes suspended in oil (MWCNT/Oil nano-fluid) in a microchannel filled with a porous medium. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 84, 423–433. [Google Scholar] [CrossRef]
- (PDF) 123137893-Lubricant-Additives-Chemistry-and-Applications|Abdou Benkirane—Academia.edu. Available online: https://www.academia.edu/3892345/123137893_lubricant_additives_chemistry_and_applications (accessed on 11 October 2023).
- Asadi, A.; Asadi, M.; Rezaniakolaei, A.; Rosendahl, L.A.; Wongwises, S. An experimental and theoretical investigation on heat transfer capability of Mg (OH)2/MWCNT-engine oil hybrid nano-lubricant adopted as a coolant and lubricant fluid. Appl. Therm. Eng. 2018, 129, 577–586. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Karimipour, A.; Afrand, M.; Isfahani, A.H.M.; Shirneshan, A. Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe. Appl. Therm. Eng. 2017, 126, 538–547. [Google Scholar] [CrossRef]
- Das, S.K.; Choi, S.U.S.; Patel, H.E. Heat Transfer in Nanofluids—A Review. Heat Transf. Eng. 2006, 27, 3–19. [Google Scholar] [CrossRef]
- Ghasemi, S.; Karimipour, A. Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid. Appl. Therm. Eng. 2018, 128, 189–197. [Google Scholar] [CrossRef]
- Koca, H.D.; Doganay, S.; Turgut, A.; Tavman, I.H.; Saidur, R.; Mahbubul, I.M. Effect of particle size on the viscosity of nanofluids: A review. Renew. Sustain. Energy Rev. 2018, 82, 1664–1674. [Google Scholar] [CrossRef]
- Hamzah, M.H.; Sidik, N.A.C.; Ken, T.L.; Mamat, R.; Najafi, G. Factors affecting the performance of hybrid nanofluids: A comprehensive review. Int. J. Heat Mass Transf. 2017, 115, 630–646. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Meghdadi Isfahani, A.H.; Afrand, M.; Karimipour, A.; Hojaji, M. An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-flow: Applicable as a heat exchanger. Appl. Therm. Eng. 2017, 125, 69–79. [Google Scholar] [CrossRef]
- Pavía, M.; Alajami, K.; Estellé, P.; Desforges, A.; Vigolo, B. A critical review on thermal conductivity enhancement of graphene-based nanofluids. Adv. Colloid Interface Sci. 2021, 294, 102452. [Google Scholar] [CrossRef]
- Ettefaghi, E.; Rashidi, A.; Ahmadi, H.; Mohtasebi, S.S.; Pourkhalil, M. Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int. Commun. Heat Mass Transf. 2013, 48, 178–182. [Google Scholar] [CrossRef]
- Rostamian, S.H.; Saedodin, S.; Asgari, S.A.; Salarian, A.H. Effect of C60-SiO2 hybrid nanoparticles on thermophysical and tribological properties of a multigrade engine oil: An experimental study. J. Therm. Anal. Calorim. 2022, 147, 155–167. [Google Scholar] [CrossRef]
- Sukkar, K.A.; Karamalluh, A.A.; Jaber, T.N. Rheological and Thermal Properties of Lubricating Oil Enhanced by the Effect of CuO and TiO2 Nano-Additives. Al-Khwarizmi Eng. J. 2019, 15, 24–33. [Google Scholar] [CrossRef]
- Birleanu, C.; Pustan, M.; Cioaza, M.; Molea, A.; Popa, F.; Contiu, G. Effect of TiO2 nanoparticles on the tribological properties of lubricating oil: An experimental investigation. Sci. Rep. 2022, 12, 5201. [Google Scholar] [CrossRef]
- Sarbolookzadeh Harandi, S.; Karimipour, A.; Afrand, M.; Akbari, M.; D’Orazio, A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration. Int. Commun. Heat Mass Transf. 2016, 76, 171–177. [Google Scholar] [CrossRef]
- Borode, A.; Tshephe, T.; Olubambi, P.; Sharifpur, M.; Meyer, J. Stability and Thermophysical Properties of GNP-Fe2O3 Hybrid Nanofluid: Effect of Volume Fraction and Temperature. Nanomaterials 2023, 13, 1238. [Google Scholar] [CrossRef]
- Faisal, K.M.; Abdullah Mohammed, B. Design of Nanofluid-Based Spring Water/Tap Water and Nanoparticles of Fe2O3/ZnO as a Coolant for the Engines. Diyala J. Eng. Sci. 2023, 147–163. [Google Scholar] [CrossRef]
- Eneren, P.; Aksoy, Y.T.; Vetrano, M.R. Experiments on Single-Phase Nanofluid Heat Transfer Mechanisms in Microchannel Heat Sinks: A Review. Energies 2022, 15, 2525. [Google Scholar] [CrossRef]
- Ali, A.R.I.; Salam, B. A review on nanofluid: Preparation, stability, thermophysical properties, heat transfer characteristics and application. SN Appl. Sci. 2020, 2, 1636. [Google Scholar] [CrossRef]
- Kong, L.; Sun, J.; Bao, Y. Preparation, characterization and tribological mechanism of nanofluids. RSC Adv. 2017, 7, 12599–12609. [Google Scholar] [CrossRef]
- ASTM D7896-19; Standard Test Method for Thermal Conductivity, Thermal Diffusivity and Volumetric Heat Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal Conductivity Method. ASTM International: Conshohocken, PA, USA, 2019.
- ASTM D93; Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester. ASTM International: Conshohocken, PA, USA, 2013. Available online: https://www.astm.org/d0093-20.html (accessed on 11 October 2023).
- Wei, B.; Zou, C.; Li, X. Experimental investigation on stability and thermal conductivity of diathermic oil based TiO2 nanofluids. Int. J. Heat Mass Transf. 2017, 104, 537–543. [Google Scholar] [CrossRef]
- Abid, M.A.; Khan, I.; Ullah, Z.; Ullah, K.; Haider, A.; Ali, S.M. Dielectric and Thermal Performance Up-Gradation of Transformer Oil Using Valuable Nano-Particles. IEEE Access 2019, 7, 153509–153518. [Google Scholar] [CrossRef]
- Aberoumand, S.; Jafarimoghaddam, A. Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid. J. Taiwan Inst. Chem. Eng. 2017, 71, 315–322. [Google Scholar] [CrossRef]
- Asadi, M.; Asadi, A.; Aberoumand, S. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid. Int. J. Refrig. 2018, 89, 83–92. [Google Scholar] [CrossRef]
- Aberoumand, S.; Jafarimoghaddam, A. Tungsten (III) oxide (WO3)—Silver/transformer oil hybrid nanofluid: Preparation, stability, thermal conductivity and dielectric strength. Alex. Eng. J. 2018, 57, 169–174. [Google Scholar] [CrossRef]
- Ettefaghi, E.; Ahmadi, H.; Rashidi, A.; Nouralishahi, A.; Mohtasebi, S.S. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int. Commun. Heat Mass Transf. 2013, 46, 142–147. [Google Scholar] [CrossRef]
- Sathishkumar, S.D.; Rajmohan, T. Preparation and Analysis of the Thermal properties of Engine oil Reinforced with Multi-walled Carbon Nanotubes. IOP Conf. Ser. Mater. Sci. Eng. 2018, 390, 012068. [Google Scholar] [CrossRef]
- Aberoumand, S.; Jafarimoghaddam, A.; Moravej, M.; Aberoumand, H.; Javaherdeh, K. Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Appl. Therm. Eng. 2016, 101, 362–372. [Google Scholar] [CrossRef]
- Farbod, M.; Kouhpeymani Asl, R.; Noghreh Abadi, A.R. Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures. Colloids Surf. Physicochem. Eng. Asp. 2015, 474, 71–75. [Google Scholar] [CrossRef]
- Ettefaghi, E.; Ahmadi, H.; Rashidi, A.; Mohtasebi, S.S.; Alaei, M. Experimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditive. Int. J. Ind. Chem. 2013, 4, 28. [Google Scholar] [CrossRef]
- Chua Abdullah, M.I.H.; Abdollah, M.F.; Amiruddin, H.; Tamaldin, N.; Mat Nuri, N.R. Effect of hBN/Al2O3 Nanoparticle Additives on the Tribological Performance of Engine Oil. J. Teknol. 2014, 66. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Wang, X.; Wang, X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A 2011, 375, 1323–1328. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Chaabane, R. Experimental Study of Thermal Properties and Dynamic Viscosity of Graphene Oxide/Oil Nano-Lubricant. Energies 2021, 14, 2886. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Vaidyanathan, A.; Sunil Kumar, S. Experimental investigation on thermal performance of kerosene–graphene nanofluid. Exp. Therm. Fluid Sci. 2016, 71, 126–137. [Google Scholar] [CrossRef]
- Alqahtani, B.; Hoziefa, W.; Abdel Moneam, H.M.; Hamoud, M.; Salunkhe, S.; Elshalakany, A.B.; Abdel-Mottaleb, M.; Davim, J.P. Tribological Performance and Rheological Properties of Engine Oil with Graphene Nano-Additives. Lubricants 2022, 10, 137. [Google Scholar] [CrossRef]
- Li, Z.; Asadi, S.; Karimipour, A.; Abdollahi, A.; Tlili, I. Experimental study of temperature and mass fraction effects on thermal conductivity and dynamic viscosity of SiO2-oleic acid/liquid paraffin nanofluid. Int. Commun. Heat Mass Transf. 2020, 110, 104436. [Google Scholar] [CrossRef]
- Desai, N.; Nagaraj, A.M.; Sabnis, N. Analysis of thermo-physical properties of SAE20W40 engine oil by the addition of SiO2 nanoparticles. Mater. Today Proc. 2021, 47, 5646–5651. [Google Scholar] [CrossRef]
- Khalil, W.; Mohamed, A.; Bayoumi, M.; Osman, T.A. Thermal and Rheological Properties of Industrial Mineral Gear Oil and Paraffinic Oil/CNTs Nanolubricants. Iran. J. Sci. Technol. Trans. Mech. Eng. 2018, 42, 355–361. [Google Scholar] [CrossRef]
- Yang, L.; Mao, M.; Huang, J.; Ji, W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: An experimental study. Powder Technol. 2019, 356, 335–341. [Google Scholar] [CrossRef]
- Murshed, S.M.S. Simultaneous Measurement of Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Nanofluids. Heat Transf. Eng. 2012, 33, 722–731. [Google Scholar] [CrossRef]
- Wong, K.V.; De Leon, O. Applications of Nanofluids: Current and Future. Adv. Mech. Eng. 2010, 2, 519659. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Bao, D. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology 2010, 21, 055705. [Google Scholar] [CrossRef]
- Simpson, S.; Schelfhout, A.; Golden, C.; Vafaei, S. Nanofluid Thermal Conductivity and Effective Parameters. Appl. Sci. 2018, 9, 87. [Google Scholar] [CrossRef]
- Jia, L.; Chen, Y.; Lei, S.; Mo, S.; Luo, X.; Shao, X. External electromagnetic field-aided freezing of CMC-modified graphene/water nanofluid. Appl. Energy 2016, 162, 1670–1677. [Google Scholar] [CrossRef]
- Taherialekouhi, R.; Rasouli, S.; Khosravi, A. An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid. Int. J. Heat Mass Transf. 2019, 145, 118751. [Google Scholar] [CrossRef]
- Karimipour, A.; Taghipour, A.; Malvandi, A. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux. J. Magn. Magn. Mater. 2016, 419, 420–428. [Google Scholar] [CrossRef]
- Goodarzi, M.; Safaei, M.R.; Oztop, H.F.; Karimipour, A.; Sadeghinezhad, E.; Dahari, M.; Kazi, S.N.; Jomhari, N. Numerical Study of Entropy Generation due to Coupled Laminar and Turbulent Mixed Convection and Thermal Radiation in an Enclosure Filled with a Semitransparent Medium. Sci. World J. 2014, 2014, e761745. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Abbasian Arani, A.A.; Niroumand, A.H.; Yan, W.-M.; Karimipour, A. Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids. Int. J. Heat Mass Transf. 2015, 89, 783–791. [Google Scholar] [CrossRef]
- Akbari, M.; Afrand, M.; Arshi, A.; Karimipour, A. An experimental study on rheological behavior of ethylene glycol based nanofluid: Proposing a new correlation as a function of silica concentration and temperature. J. Mol. Liq. 2017, 233, 352–357. [Google Scholar] [CrossRef]
- Khodadadi, H.; Toghraie, D.; Karimipour, A. Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid. Powder Technol. 2019, 342, 166–180. [Google Scholar] [CrossRef]
- Shahsavar, A.; Khanmohammadi, S.; Karimipour, A.; Goodarzi, M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network. Int. J. Heat Mass Transf. 2019, 131, 432–441. [Google Scholar] [CrossRef]
- Karimipour, A.; Hemmat Esfe, M.; Safaei, M.R.; Toghraie Semiromi, D.; Jafari, S.; Kazi, S.N. Mixed con vection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys. Stat. Mech. Its Appl. 2014, 402, 150–168. [Google Scholar] [CrossRef]
- Karimipour, A.; Hossein Nezhad, A.; D’Orazio, A.; Hemmat Esfe, M.; Safaei, M.R.; Shirani, E. Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur. J. Mech.-B/Fluids 2015, 49, 89–99. [Google Scholar] [CrossRef]
- Nafchi, P.M.; Karimipour, A.; Afrand, M. The evaluation on a new non-Newtonian hybrid mixture composed of TiO2 /ZnO/EG to present a statistical approach of power law for its rheological and thermal properties. Phys. Stat. Mech. Its Appl. 2019, 516, 1–18. [Google Scholar] [CrossRef]
- Alrashed, A.A.A.A.; Karimipour, A.; Bagherzadeh, S.A.; Safaei, M.R.; Afrand, M. Electro- and thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica: Experimental data, modeling through enhanced ANN and curve fitting. Int. J. Heat Mass Transf. 2018, 127, 925–935. [Google Scholar] [CrossRef]
- Karimipour, A.; Bagherzadeh, S.A.; Goodarzi, M.; Alnaqi, A.A.; Bahiraei, M.; Safaei, M.R.; Shadloo, M.S. Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN. Int. J. Heat Mass Transf. 2018, 127, 1169–1179. [Google Scholar] [CrossRef]
Property | Fullerene | TiO2 | Fe2O3 |
---|---|---|---|
Density | 1.65 g/cm3 | 3.78 g/cm3 | 5.24 g/cm3 |
Size | 100–200 nm | 20–40 nm | 30–80 nm |
Thermal conductivity (W/mK) | 0.2 | 4 | 0.58 |
Purity (%) | 99.5 | 99 | 98 |
Appearance | Black powder | White powder | Red-brown powder |
Property | 10W30 | 20W40 | 20W50 |
---|---|---|---|
Density (Kg/m3) (at 30 °C) | 830.74 | 839.63 | 842.82 |
Thermal conductivity (30 °C) (W/mK) | 0.13152 | 0.13432 | 0.13398 |
Thermal conductivity (100 °C) (W/mk) | 0.12482 | 0.12804 | 0.12796 |
Flashpoint (°C) | 207.7 | 211 | 213.5 |
Engine Oil | Fullerene (g) | TiO2 (g) | Fe2O3 (g) |
---|---|---|---|
10W30 | 0.0040 | 0.0071 | 0.0076 |
20W40 | 0.0048 | - | - |
20W50 | 0.0048 | - | - |
Nanoparticle | Base Fluid | Temperature (°C) | Concentration | Thermal Conductivity Enhancement (%) | Flashpoint Enhancement (%) | Ref. |
---|---|---|---|---|---|---|
TiO2 | Oil/Virgin mineral oil | 25–50 | 0.1–1 wt.% | 7.08 | 14.7 | [24,25] |
Mg/MWCNT | Engine oil | 25–60 | 0.25–2 | 50 | - | [4] |
Cu | Oil | 40–100 | 0.2–1 wt.% | 49 | - | [26] |
Mg/MWCNT | 10W40 | 25–50 | 0.25–2 wt.% | 65 | - | [27] |
WO3-Ag | Transformer oil | 40–100 | 1–4 wt.% | 41 | - | [28] |
MWCNT | 20W50, 20W40 | 20 | 0.1–0.5 wt.%, 0.5 wt.% | 22.7 | 10.5 | [29,30] |
Ag | Engine oil | 40–100 | 0.36–0.72 wt.% | 37.1 | - | [31] |
CuO | 20W50 | 25 | 0.1–6 wt.% | 8.3 | 7.9 | [32,33] |
hBN/Al2O3 | 15W40 | - | 0.5 Vol.% | - | 0 | [34] |
Al2O3/Fe2O3 | 10W40 | 25–65 | 0.25–4 wt.% | 33 | - | [1] |
GO | Ethylene glycol/SAE50 engine oil | 10–60 | 1.9–9.3/0.01–1 wt.% | 58 | 8 | [35,36] |
Graphene | Kerosene/5W30 engine oil | 20–70 | 0.0005–0.2 wt.% | 23 | 25.4 | [37,38] |
SiO2 | Liquid paraffin/20W40 engine oil | 25–70 | 0.005–5 wt.%/0.3–1.5 wt.% | 38 | 6.97 | [39,40] |
ZnO | SAE50 engine oil | 25–55 | 0.1–1.5 wt.% | 8.74 | 13 | [41,42] |
TiO2 | 10W30 engine oil | 30–120 | 0.01 wt.% | 4.5 | 4.2 | This study |
Fe2O3 | 10W30 engine oil | 30–120 | 0.01 wt.% | 3.9 | 3.5 | This study |
Fullerene-C60 | 10W30 engine oil | 30–120 | 0.01 wt.% | - | 2.1 | This study |
Thermal Property | Fullerene-C60 Based Nanofluid | TiO2 Based Nanofluid | Fe2O3 Based Nanofluid |
---|---|---|---|
Thermal conductivity ratio (%) | - | 4.5 | 3.9 |
Thermal diffusivity ratio (%) | - | 0.6 | 0.5 |
Volumetric heat capacity ratio (%) | - | 3.7 | 3.4 |
Flashpoint ratio (%) | 2.1 | 4.2 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galpaya, C.; Induranga, A.; Vithanage, V.; Mantilaka, P.; Koswattage, K.R. Comparative Study on the Thermal Properties of Engine Oils and Their Nanofluids Incorporating Fullerene-C60, TiO2 and Fe2O3 at Different Temperatures. Energies 2024, 17, 732. https://doi.org/10.3390/en17030732
Galpaya C, Induranga A, Vithanage V, Mantilaka P, Koswattage KR. Comparative Study on the Thermal Properties of Engine Oils and Their Nanofluids Incorporating Fullerene-C60, TiO2 and Fe2O3 at Different Temperatures. Energies. 2024; 17(3):732. https://doi.org/10.3390/en17030732
Chicago/Turabian StyleGalpaya, Chanaka, Ashan Induranga, Vimukthi Vithanage, Prasanga Mantilaka, and Kaveenga Rasika Koswattage. 2024. "Comparative Study on the Thermal Properties of Engine Oils and Their Nanofluids Incorporating Fullerene-C60, TiO2 and Fe2O3 at Different Temperatures" Energies 17, no. 3: 732. https://doi.org/10.3390/en17030732
APA StyleGalpaya, C., Induranga, A., Vithanage, V., Mantilaka, P., & Koswattage, K. R. (2024). Comparative Study on the Thermal Properties of Engine Oils and Their Nanofluids Incorporating Fullerene-C60, TiO2 and Fe2O3 at Different Temperatures. Energies, 17(3), 732. https://doi.org/10.3390/en17030732