Anomaly Detection in Gas Turbines Using Outlet Energy Analysis with Cluster-Based Matrix Profile
Abstract
:1. Introduction
2. Background
2.1. Matrix Profile
2.1.1. Matrix Profile in Time Series
2.1.2. Matrix Profile for Time Series Anomaly Detection
2.1.3. Matrix Profile Method
Algorithm 1 Matrix Profile. |
Input: T, a time series of length n m, the length of the subsequence/pattern Output: , the Matrix Profile begin
end |
Algorithm 2 K discords’ computation. |
Input: T, a time series of length n m, the length of the subsequence/pattern K, the number of discords Output: in the time series T for a given subsequence of length m begin
end |
2.2. Other Time Series Discord Methods
3. Cluster-Based Matrix Profile Methodology
Algorithm 3 Optimal Discord Detection method. |
Input: T, a time series of length n m, the length of the subsequence/pattern Output: , the Matrix Profile , The Matrix Profile top K discords begin
end |
4. Experimentation and Results
4.1. Experimental Setup
4.1.1. Dataset
4.1.2. Software and Hardware
4.2. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German Manufacturing Industry; Final Report of the Industrie 4.0 Working Group; National Academy of Science and Engineering: Munich, Germany, 2013. [Google Scholar]
- Osmani, A.; Hamidi, M.; Bouhouche, S. Monitoring of a Dynamic System Based on Autoencoders. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, Macao, China, 10–16 August 2019; pp. 1836–1843. [Google Scholar] [CrossRef]
- Liu, Y.; Banerjee, A.; Ravichandran, T.; Kumar, A.; Heppler, G. Data Analytics for Performance Monitoring of Gas Turbine Engine. In Proceedings of the Annual Conference of the PHM Society, Philadelphia, PA, USA, 24–27 September 2018; Volume 10. [Google Scholar] [CrossRef]
- Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249. [Google Scholar] [CrossRef]
- Panza, M.A.; Pota, M.; Esposito, M. Anomaly Detection Methods for Industrial Applications: A Comparative Study. Electronics 2023, 12, 3971. [Google Scholar] [CrossRef]
- Kang, H.S.; Choi, Y.S.; Yu, J.S.; Jin, S.W.; Lee, J.M.; Kim, Y.J. Hyperparameter Tuning of OC-SVM for Industrial Gas Turbine Anomaly Detection. Energies 2022, 15, 8757. [Google Scholar] [CrossRef]
- Agung, I.G.N. Advanced Time Series Data Analysis; John Wiley & Sons, Ltd.: Bridgewater, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Li, F.; Wang, H.; Zhou, G.; Yu, D.; Li, J.; Gao, H. Anomaly detection in gas turbine fuel systems using a sequential symbolic method. Energies 2017, 10, 724. [Google Scholar] [CrossRef]
- Zhu, Y.; Gharghabi, S.; Silva, D.F.; Dau, H.A.; Yeh, C.C.M.; Shakibay Senobari, N.; Almaslukh, A.; Kamgar, K.; Zimmerman, Z.; Funning, G.; et al. The Swiss army knife of time series data mining: Ten useful things you can do with the Matrix Profile and ten lines of code. Data Min. Knowl. Discov. 2020, 34, 949–979. [Google Scholar] [CrossRef]
- Zhu, Y.; Zimmerman, Z.; Senobari, N.S.; Yeh, C.C.M.; Funning, G.; Mueen, A.; Brisk, P.; Keogh, E. Matrix Profile II: Exploiting a novel algorithm and GPUs to break the one hundred million barrier for time series motifs and joins. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 739–748. [Google Scholar] [CrossRef]
- Kamgar, K.; Gharghabi, S.; Keogh, E. Matrix Profile XV: Exploiting time series consensus motifs to find structure in time series sets. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; pp. 1156–1161. [Google Scholar] [CrossRef]
- Luo, W.; Tan, H.; Mao, H.; Ni, L.M. Efficient similarity joins on massive high-dimensional datasets using MapReduce. In Proceedings of the 2012 IEEE 13th International Conference on Mobile Data Management, Bengaluru, India, 23–26 July 2012; pp. 1–10. [Google Scholar] [CrossRef]
- Ma, Y.; Meng, X.; Wang, S. Parallel similarity joins on massive high-dimensional data using MapReduce. Concurr. Comput. Pract. Exp. 2016, 28, 166–183. [Google Scholar] [CrossRef]
- Yoon, C.E.; O’Reilly, O.; Bergen, K.J.; Beroza, G.C. Earthquake detection through computationally efficient similarity search. Sci. Adv. 2015, 1, e1501057. [Google Scholar] [CrossRef]
- Hehir, C.; Smeaton, A.F. Calculating the Matrix Profile from noisy data. PLoS ONE 2023, 18, e0286763. [Google Scholar] [CrossRef]
- Assent, I.; Kranen, P.; Baldauf, C.; Seidl, T. AnyOut: Anytime outlier detection on streaming data. In Proceedings of the International Conference on Database Systems for Advanced Applications, Busan, Republic of Korea, 15–19 April 2012; Lee, S., Peng, Z., Zhou, X., Moon, Y.S., Unland, R., Yoo, J., Eds.; pp. 228–242. [Google Scholar] [CrossRef]
- Ueno, K.; Xi, X.; Keogh, E.; Lee, D. Anytime classification using the nearest neighbor algorithm with applications to stream mining. In Proceedings of the Sixth International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; pp. 623–632. [Google Scholar] [CrossRef]
- Ding, H.; Trajcevski, G.; Scheuermann, P.; Wang, X.; Keogh, E. Querying and mining of time series data: Experimental comparison of representations and distance measures. Proc. VLDB Endow. 2008, 1, 1542–1552. [Google Scholar] [CrossRef]
- Mueen, A. Time series motif discovery: Dimensions and applications. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2014, 4, 152–159. [Google Scholar] [CrossRef]
- Takahashi, Y. Anomaly Detection using Vibration Analysis with Machine Learning Technology for Industrial IoT System. OKI Tech. Rev. 2017, 84, 30–33. Available online: https://www.oki.com/en/otr/2017/n230/pdf/otr-230-R09.pdf (accessed on 24 January 2024).
- Lee, Y.Q.; Beh, W.L.; Ooi, B.Y. Tracking Operation Status of Machines through Vibration Analysis using Motif Discovery. J. Phys. Conf. Ser. 2020, 1529, 052005. [Google Scholar] [CrossRef]
- Durgam, S.; Bawankule, L.N.; Khindkar, P.S. Prediction of Fault Detection Based on Vibration Analysis for Motor Applications. In Proceedings of the 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), NaviMumbai, India, 15–16 January 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Do, J.S.; Kareem, A.B.; Hur, J.W. LSTM-autoencoder for vibration anomaly detection in vertical carousel storage and retrieval system (VCSRS). Sensors 2023, 23, 1009. [Google Scholar] [CrossRef]
- Al Aghbari, Z.; Al-Hamadi, A. Finding k most significant motifs in big time series data. Procedia Comput. Sci. 2020, 170, 595–601. [Google Scholar] [CrossRef]
- Keogh, E.; Lin, J.; Fu, A. HOT SAX: Finding the most unusual time series subsequence: Algorithms and applications. In Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05), Houston, TX, USA, 27–30 November 2005; pp. 440–449. [Google Scholar] [CrossRef]
- Yeh, C.C.M.; Zhu, Y.; Ulanova, L.; Begum, N.; Ding, Y.; Dau, H.A.; Silva, D.F.; Mueen, A.; Keogh, E. Matrix Profile I: All pairs similarity joins for time series: A unifying view that includes motifs, discords and shapelets. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 1317–1322. [Google Scholar] [CrossRef]
- Gerazov, B.; Hadjieva, E.; Krivošei, A.; Sanchez, F.I.S.; Rostovski, J.; Kuusik, A.; Alam, M. Matrix Profile based Anomaly Detection in Streaming Gait Data for Fall Prevention. In Proceedings of the 2023 30th International Conference on Systems, Signals and Image Processing (IWSSIP), Ohrid, North Macedonia, 27–29 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Li, Y.; Leong, H.U.; Yiu, M.L.; Gong, Z. Quick-motif: An efficient and scalable framework for exact motif discovery. In Proceedings of the 2015 IEEE 31st International Conference on Data Engineering, Seoul, Republic of Korea, 13–17 April 2015; pp. 579–590. [Google Scholar] [CrossRef]
- Mueen, A.; Keogh, E.; Zhu, Q.; Cash, S.; Westover, B. Exact discovery of time series motifs. In Proceedings of the 2009 SIAM International Conference on Data Mining, Sparks, NV, USA, 30 April–2 May 2009; pp. 473–484. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, R.; Mueen, A.; Zuluaga, M.A.; Keogh, E. Matrix Profile XXIV: Scaling time series anomaly detection to trillions of datapoints and ultra-fast arriving data streams. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 1173–1182. [Google Scholar] [CrossRef]
- Chandola, V.; Cheboli, D.; Kumar, V. Detecting Anomalies in a Time Series Database; Technical Report 09-004; University of Minnesota Twin Cities: Minneapolis, MN, USA, 2009; Available online: https://hdl.handle.net/11299/215791 (accessed on 24 January 2024).
- Hills, J.; Lines, J.; Baranauskas, E.; Mapp, J.; Bagnall, A. Classification of time series by shapelet transformation. Data Min. Knowl. Discov. 2014, 28, 851–881. [Google Scholar] [CrossRef]
- De Francisci Morales, G.; Gionis, A. Streaming Similarity Self-Join. Proc. VLDB Endow. 2016, 9, 792–803. [Google Scholar] [CrossRef]
- Lainscsek, C.; Hernandez, M.E.; Weyhenmeyer, J.; Sejnowski, T.J.; Poizner, H. Non-linear dynamical analysis of EEG time series distinguishes patients with Parkinson’s disease from healthy individuals. Front. Neurol. 2013, 4, 200. [Google Scholar] [CrossRef] [PubMed]
- Serrà, J.; Müller, M.; Grosche, P.; Arcos, J.L. Unsupervised music structure annotation by time series structure features and segment similarity. IEEE Trans. Multimed. 2014, 16, 1229–1240. [Google Scholar] [CrossRef]
- Silva, D.F.; Yeh, C.C.M.; Zhu, Y.; Batista, G.E.A.P.A.; Keogh, E. Fast similarity Matrix Profile for music analysis and exploration. IEEE Trans. Multimed. 2018, 21, 29–38. [Google Scholar] [CrossRef]
- Reinhardt, A.; Christin, D.; Kanhere, S.S. Predicting the power consumption of electric appliances through time series pattern matching. In Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, Roma, Italy, 13–14 November 2013; pp. 1–2. [Google Scholar] [CrossRef]
- Zymbler, M.; Ivanova, E. Matrix Profile-based approach to industrial sensor data analysis inside RDBMS. Mathematics 2021, 9, 2146. [Google Scholar] [CrossRef]
- Gharghabi, S.; Ding, Y.; Yeh, C.C.M.; Kamgar, K.; Ulanova, L.; Keogh, E. Matrix Profile VIII: Domain agnostic online semantic segmentation at superhuman performance levels. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 117–126. [Google Scholar] [CrossRef]
- Zhu, Y.; Imamura, M.; Nikovski, D.; Keogh, E. Matrix Profile VII: Time series chains: A new primitive for time series data mining (best student paper award). In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 695–704. [Google Scholar] [CrossRef]
- Imani, S.; Madrid, F.; Ding, W.; Crouter, S.; Keogh, E. Matrix Profile XIII: Time series snippets: A new primitive for time series data mining. In Proceedings of the 2018 IEEE International Conference on Big Knowledge (ICBK), Singapore, 17–18 November 2018; pp. 382–389. [Google Scholar] [CrossRef]
- Yeh, C.C.M.; Kavantzas, N.; Keogh, E. Matrix Profile VI: Meaningful multidimensional motif discovery. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 565–574. [Google Scholar] [CrossRef]
- Yankov, D.; Keogh, E.; Medina, J.; Chiu, B.; Zordan, V. Detecting time series motifs under uniform scaling. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA, 13–15 August 2007; pp. 844–853. [Google Scholar] [CrossRef]
- Tafazoli, S.; Keogh, E. Matrix Profile XXVIII: Discovering Multi-Dimensional Time Series Anomalies with K of N Anomaly Detection. In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), Minnesota, MN, USA, 27–29 April 2023; pp. 685–693. [Google Scholar] [CrossRef]
- Yankov, D.; Keogh, E.; Rebbapragada, U. Disk aware discord discovery: Finding unusual time series in terabyte sized datasets. Knowl. Inf. Syst. 2008, 17, 241–262. [Google Scholar] [CrossRef]
- Bouezmarni, T.; Rombouts, J.V. Nonparametric density estimation for positive time series. Comput. Stat. Data Anal. 2010, 54, 245–261. [Google Scholar] [CrossRef]
- Blázquez-García, A.; Conde, A.; Mori, U.; Lozano, J.A. A review on outlier/anomaly detection in time series data. ACM Comput. Surv. (CSUR) 2021, 54, 56. [Google Scholar] [CrossRef]
- DeMedeiros, K.; Hendawi, A.; Alvarez, M. A survey of AI-based anomaly detection in IoT and sensor networks. Sensors 2023, 23, 1352. [Google Scholar] [CrossRef]
- Wang, X.; Lin, J.; Patel, N.; Braun, M. Exact variable-length anomaly detection algorithm for univariate and multivariate time series. Data Min. Knowl. Discov. 2018, 32, 1806–1844. [Google Scholar] [CrossRef]
- Schmidl, S.; Wenig, P.; Papenbrock, T. Anomaly detection in time series: A comprehensive evaluation. Proc. VLDB Endow. 2022, 15, 1779–1797. [Google Scholar] [CrossRef]
- Liu, J.; Huang, W.; Li, H.; Ji, S.; Du, Y.; Li, T. SLAFusion: Attention fusion based on SAX and LSTM for dangerous driving behavior detection. Inf. Sci. 2023, 640, 119063. [Google Scholar] [CrossRef]
- Buu, H.T.Q.; Anh, D.T. Time series discord discovery based on iSAX symbolic representation. In Proceedings of the 2011 Third International Conference on Knowledge and Systems Engineering, Hanoi, Vietnam, 14–17 October 2011; pp. 11–18. [Google Scholar] [CrossRef]
- Bai, M.; Liu, J.; Ma, Y.; Zhao, X.; Long, Z.; Yu, D. Long short-term memory network-based normal pattern group for fault detection of three-shaft marine gas turbine. Energies 2020, 14, 13. [Google Scholar] [CrossRef]
- Choi, H.; Kim, S.; Kang, P. Recurrent auto-encoder with multi-resolution ensemble and predictive coding for multivariate time series anomaly detection. Appl. Intell. 2023, 53, 25330–25342. [Google Scholar] [CrossRef]
- Bhoomika, A.; Chitta, S.N.S.; Laxmisetti, K.; Sirisha, B. Time Series Forecasting and Point Anomaly Detection of Sensor Signals Using LSTM Neural Network Architectures. In Proceedings of the 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 15–17 March 2023; pp. 1257–1262. [Google Scholar]
- Nor, A.K.M.; Pedapati, S.R.; Muhammad, M.; Leiva, V. Abnormality detection and failure prediction using explainable Bayesian deep learning: Methodology and case study with industrial data. Mathematics 2022, 10, 554. [Google Scholar] [CrossRef]
- Bu, Y.; Leung, T.W.; Fu, A.W.C.; Keogh, E.; Pei, J.; Meshkin, S. WAT: Finding top-K discords in time series database. In Proceedings of the 2007 SIAM International Conference on Data Mining, Minneapolis, MN, USA, 26–28 April 2007; pp. 449–454. [Google Scholar] [CrossRef]
- Khanh, N.D.K.; Anh, D.T. Time series discord discovery using WAT algorithm and iSAX representation. In Proceedings of the 3rd Symposium on Information and Communication Technology, Ha Long, Vietnam, 23–14 August 2012; pp. 207–213. [Google Scholar] [CrossRef]
- van Leeuwen, R.; Koole, G. Anomaly detection in univariate time series incorporating active learning. J. Comput. Math. Data Sci. 2023, 6, 100072. [Google Scholar] [CrossRef]
- Liu, H.; Li, L. Anomaly detection of high-frequency sensing data in transportation infrastructure monitoring system based on fine-tuned model. IEEE Sens. J. 2023, 23, 8630–8638. [Google Scholar] [CrossRef]
- Larsson, E. Model Based Diagnosis and Supervision of Industrial Gas Turbines; Linköping Studies in Science and Technology. Ph.D. Thesis, Department of Electrical Engineering, Linköping University, Linköping, Sweden, 2014. [Google Scholar]
- Sgt-800: Industrial Gas Turbine: Gas Turbines: Manufacturer: Siemens Energy Global. Available online: https://www.siemens-energy.com/global/en/offerings/power-generation/gas-turbines/sgt-800.html (accessed on 3 November 2021).
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 56–61. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Waskom, M.; Botvinnik, O.; O’Kane, D.; Hobson, P.; Lukauskas, S.; Gemperline, D.C.; Augspurger, T.; Halchenko, Y.; Cole, J.B.; Warmenhoven, J.; et al. mwaskom/seaborn: V0.8.1 (September 2017). 2017. Available online: https://zenodo.org/records/883859 (accessed on 26 January 2024).
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Law, S.M. STUMPY: A Powerful and Scalable Python Library for Time Series Data Mining. J. Open Source Softw. 2019, 4, 1504. [Google Scholar] [CrossRef]
- Van Benschoten, A.H.; Ouyang, A.; Bischoff, F.; Marrs, T.W. MPA: A novel cross-language API for time series analysis. J. Open Source Softw. 2020, 5, 2179. [Google Scholar] [CrossRef]
- Bagherzade Ghazvini, M.; Sànchez-Marrè, M.; Bahilo, E.; Angulo, C. Operational Modes Detection in Industrial Gas Turbines Using an Ensemble of Clustering Methods. Sensors 2021, 21, 8047. [Google Scholar] [CrossRef]
Window Size | Motif Index | Nearest Neighbor | Operation Pattern |
---|---|---|---|
1440 | 4555 | 8870 | High_Low |
2880 | 7872 | 3557 | High_Low |
4320 | 0 | 9765 | Low/Middle_High |
5760 | 7614 | 3312 | High_Low_High |
Window Size | Number of Discords | Discord Index | Operation Pattern |
---|---|---|---|
1440 | 2 | 6698 9181 | High Middle |
2880 | 2 | 18,819 19,648 | Low Low_Upper low |
4320 | 2 | 18,094 18,213 | Upper low_Low Low_Upper low |
5760 | 1 | 12,384 | High_Middle_High_Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazvini, M.B.; Sànchez-Marrè, M.; Naderi, D.; Angulo, C. Anomaly Detection in Gas Turbines Using Outlet Energy Analysis with Cluster-Based Matrix Profile. Energies 2024, 17, 653. https://doi.org/10.3390/en17030653
Ghazvini MB, Sànchez-Marrè M, Naderi D, Angulo C. Anomaly Detection in Gas Turbines Using Outlet Energy Analysis with Cluster-Based Matrix Profile. Energies. 2024; 17(3):653. https://doi.org/10.3390/en17030653
Chicago/Turabian StyleGhazvini, Mina Bagherzade, Miquel Sànchez-Marrè, Davood Naderi, and Cecilio Angulo. 2024. "Anomaly Detection in Gas Turbines Using Outlet Energy Analysis with Cluster-Based Matrix Profile" Energies 17, no. 3: 653. https://doi.org/10.3390/en17030653
APA StyleGhazvini, M. B., Sànchez-Marrè, M., Naderi, D., & Angulo, C. (2024). Anomaly Detection in Gas Turbines Using Outlet Energy Analysis with Cluster-Based Matrix Profile. Energies, 17(3), 653. https://doi.org/10.3390/en17030653