A Eutectic Mixture of Calcium Chloride Hexahydrate and Bischofite with Promising Performance for Thermochemical Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composite Material Development
2.2. Humidity Chamber Analysis
2.3. STA Analysis
2.4. Reactor System Description and Experimental Setup
3. Results and Discussion
3.1. Composite Material Development
3.1.1. Salt Selection and Evaluation
3.1.2. Host Matrix Selection and Evaluation
3.2. Hydration Characteristics of Single Particles
3.2.1. Effect of Humidity on Cyclability
3.2.2. Rate of Reaction of Single ENG Particles
3.2.3. STA Analysis
3.3. Hydration Characteristics in a Lab-Scale Reactor
3.3.1. Effect of Humidity on Cyclability
3.3.2. Effect of Humidity and Flow Rate on Temperature Lift
3.3.3. Power Output and Volumetric Thermal Energy Density
4. Comparison, Outlook, and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donkers, P.A.J.; Sögütoglu, L.C.; Huinink, H.P.; Fischer, H.R.; Adan, O.C.G. A review of salt hydrates for seasonal heat storage in domestic applications. Appl. Energy 2017, 199, 45–68. [Google Scholar] [CrossRef]
- Kousksou, T.; Bruel, P.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y. Energy storage: Applications and challenges. Sol. Energy Mater. Sol. Cells 2014, 120, 59–80. [Google Scholar] [CrossRef]
- Cot-Gores, J.; Castell, A.; Cabeza, L.F. Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions. Renew. Sustain. Energy Rev. 2012, 16, 5207–5224. [Google Scholar] [CrossRef]
- Hua, W.; Yan, H.; Zhang, X.; Xu, X.; Zhang, L.; Shi, Y. Review of salt hydrates-based thermochemical adsorption thermal storage technologies. J. Energy Storage 2022, 56, 106158. [Google Scholar] [CrossRef]
- Fischer, M.; Bruzzano, S.; Egenolf-Jonkmanns, B.; Zeidler-Fandrich, B.; Wack, H.; Deerberg, G. Thermal Storage by Thermoreversible Chemical Reaction Systems. Energy Procedia 2014, 48, 327–336. [Google Scholar] [CrossRef]
- Druske, M.-M.; Fopah-Lele, A.; Korhammer, K.; Rammelberg, H.U.; Wegscheider, N.; Ruck, W.; Schmidt, T. Developed Materials for Thermal Energy Storage: Synthesis and Characterization. Energy Procedia 2014, 61, 96–99. [Google Scholar] [CrossRef]
- Mehrabadi, A.; Farid, M. New salt hydrate composite for low-grade thermal energy storage. Energy 2018, 164, 194–203. [Google Scholar] [CrossRef]
- Michel, B.; Mazet, N.; Mauran, S.; Stitou, D.; Xu, J. Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed. Energy 2012, 47, 553–563. [Google Scholar] [CrossRef]
- Clark, R.-J.; Farid, M. Experimental investigation into the performance of novel SrCl2-based composite material for thermochemical energy storage. J. Energy Storage 2021, 36, 102390. [Google Scholar] [CrossRef]
- Lahmidi, H.; Mauran, S.; Goetz, V. Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems. Sol. Energy 2006, 80, 883–893. [Google Scholar] [CrossRef]
- Mauran, S.; Lahmidi, H.; Goetz, V. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60kWh by a solid/gas reaction. Sol. Energy 2008, 82, 623–636. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Wang, R.Z.; Zhang, Y.N.; Yu, N. Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat. Energy 2016, 115, 129–139. [Google Scholar] [CrossRef]
- Ousaleh, H.A.; Sair, S.; Mansouri, S.; Abboud, Y.; Faik, A.; El Bouari, A. New hybrid graphene/inorganic salt composites for thermochemical energy storage: Synthesis, cyclability investigation and heat exchanger metal corrosion protection performance. Sol. Energy Mater. Sol. Cells 2020, 215, 110601. [Google Scholar] [CrossRef]
- Opel, O.; Rammelberg, H.U.; Gérard, M.; Ruck, W. Thermochemical storage materials research-TGA/DSC-hydration studies. In Proceedings of the International Conference for Sustainable Energy Storage, Belfast, UK, 21–24 February 2011. [Google Scholar]
- Korhammer, K.; Druske, M.-M.; Fopah-Lele, A.; Rammelberg, H.U.; Wegscheider, N.; Opel, O.; Osterland, T.; Ruck, W. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage. Appl. Energy 2016, 162, 1462–1472. [Google Scholar] [CrossRef]
- Gaeini, M.; Rouws, A.L.; Salari, J.W.O.; Zondag, H.A.; Rindt, C.C.M. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage. Appl. Energy 2018, 212, 1165–1177. [Google Scholar] [CrossRef]
- Ousaleh, H.A.; Sair, S.; Zaki, A.; Younes, A.; Faik, A.; El Bouari, A. Advanced experimental investigation of double hydrated salts and their composite for improved cycling stability and metal compatibility for long-term heat storage technologies. Renew. Energy 2020, 162, 447–457. [Google Scholar] [CrossRef]
- Miao, Q.; Zhang, Y.; Jia, X.; Li, Z.; Tan, L.; Ding, Y. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage. Sol. Energy 2021, 220, 432–439. [Google Scholar] [CrossRef]
- Li, W.; Klemeš, J.J.; Wang, Q.; Zeng, M. Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage. Renew. Energy 2020, 157, 920–940. [Google Scholar] [CrossRef]
- Li, W.; Klemeš, J.J.; Wang, Q.; Zeng, M. Characterisation and sorption behaviour of LiOH-LiCl@EG composite sorbents for thermochemical energy storage with controllable thermal upgradeability. Chem. Eng. J. 2021, 421, 129586. [Google Scholar] [CrossRef]
- Zhao, Q.; Lin, J.; Huang, H.; Xie, Z.; Xiao, Y. Enhancement of heat and mass transfer of potassium carbonate-based thermochemical materials for thermal energy storage. J. Energy Storage 2022, 50, 104259. [Google Scholar] [CrossRef]
- Fisher, R.; Ding, Y.; Sciacovelli, A. Hydration kinetics of K2CO3, MgCl2 and vermiculite-based composites in view of low-temperature thermochemical energy storage. J. Energy Storage 2021, 38, 102561. [Google Scholar] [CrossRef]
- Salviati, S.; Carosio, F.; Cantamessa, F.; Medina, L.; Berglund, L.A.; Saracco, G.; Fina, A. Ice-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites. Renew. Energy 2020, 160, 698–706. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Wang, R.Z.; Zhao, Y.J.; Li, T.X.; Riffat, S.B.; Wajid, N.M. Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage. Energy 2016, 115, 120–128. [Google Scholar] [CrossRef]
- Sutton, R.J.; Jewell, E.; Elvins, J.; Searle, J.R.; Jones, P. Characterising the discharge cycle of CaCl2 and LiNO3 hydrated salts within a vermiculite composite scaffold for thermochemical storage. Energy Build. 2018, 162, 109–120. [Google Scholar] [CrossRef]
- Nejhad, M.K.; Aydin, D. Synthesize and hygro-thermal performance analysis of novel APC-CaCl2 composite sorbent for low-grade heat recovery, storage, and utilization. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 43, 3011–3031. [Google Scholar] [CrossRef]
- Aristov, Y.I.; Restuccia, G.; Tokarev, M.M.; Cacciola, G. Selective Water Sorbents for Multiple Applications. React. Kinet. Catal. Lett. 2000, 69, 345–353. [Google Scholar] [CrossRef]
- N’Tsoukpoe, K.E.; Schmidt, T.; Rammelberg, H.U.; Watts, B.A.; Ruck, W.K.L. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage. Appl. Energy 2014, 124, 1–16. [Google Scholar] [CrossRef]
- Ushak, S.; Gutierrez, A.; Galleguillos, H.; Fernandez, A.G.; Cabeza, L.F.; Grágeda, M. Thermophysical characterization of a by-product from the non-metallic industry as inorganic PCM. Sol. Energy Mater. Sol. Cells 2015, 132, 385–391. [Google Scholar] [CrossRef]
- Li, P.; Liu, B.; Lai, X.; Liu, W.; Gao, L.; Tang, Z. Thermal decomposition mechanism and pyrolysis products of waste bischofite calcined at high temperature. Thermochim. Acta 2022, 710, 179164. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Al-Amir, S.; Al-Marzouki, F.M.; Faidah, A.S.; Al-Ghamdi, A.A.; Al-Heniti, S. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking. Energy Convers. Manag. 2009, 50, 3104–3111. [Google Scholar] [CrossRef]
- Li, G.; Zhang, B.; Li, X.; Zhou, Y.; Sun, Q.; Yun, Q. The preparation, characterization and modification of a new phase change material: CaCl2·6H2O–MgCl2·6H2O eutectic hydrate salt. Sol. Energy Mater. Sol. Cells 2014, 126, 51–55. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, H.; Wang, W.; Liu, H.; Lv, J.; Yang, F. Reaction/sorption kinetics of salt hydrates for thermal energy storage. J. Energy Storage 2022, 56, 106122. [Google Scholar] [CrossRef]
- Kosny, J.; Shukla, N.; Fallahi, A. Cost Analysis of Simple Phase Change Material—Enhanced Building Envelopes in Southern US Climates; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Molenda, M.; Stengler, J.; Linder, M.; Wörner, A. Reversible hydration behavior of CaCl2 at high H2O partial pressures for thermochemical energy storage. Thermochim. Acta 2013, 560, 76–81. [Google Scholar] [CrossRef]
- Rambaud, G.; Mauran, S.; Mazet, N. Problématique des Transferts en Milieu Poreux Réactif Déformable Pour Procédés de Rafraîchissement Solaire. Ph.D. Thesis, Université de Perpignan, Perpignan, France, 2009. [Google Scholar]
- Courbon, E.; D’Ans, P.; Permyakova, A.; Skrylnyk, O.; Steunou, N.; Degrez, M.; Frère, M. A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability. Appl. Energy 2017, 190, 1184–1194. [Google Scholar] [CrossRef]
- Rommel, M.; Hauer, A.; van Helden, W. IEA SHC Task 42/ECES Annex 29 Compact Thermal Energy Storage. Energy Procedia 2016, 91, 226–230. [Google Scholar] [CrossRef]
- Clark, R.-J.; Farid, M. Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials. Appl. Energy 2022, 316, 119145. [Google Scholar] [CrossRef]
- Han, X.; Liu, S.; Zeng, C.; Yang, L.; Shukla, A.; Shen, Y. Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor. Renew. Energy 2020, 150, 1037–1046. [Google Scholar] [CrossRef]
- van Alebeek, R.; Scapino, L.; Beving, M.A.J.M.; Gaeini, M.; Rindt, C.C.M.; Zondag, H.A. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair. Appl. Therm. Eng. 2018, 139, 325–333. [Google Scholar] [CrossRef]
- Aydin, D.; Casey, S.P.; Chen, X.; Riffat, S. Novel “open-sorption pipe” reactor for solar thermal energy storage. Energy Convers. Manag. 2016, 121, 321–334. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef]
Name | Dimensions | Density (kg/m3) | Cost (USD/kg) |
---|---|---|---|
ENG | 1 × 1 × 1 cm | 190 | 2 |
EV | 1 × 1 × 1 mm | 100 | 0.3 |
EC | 7 mm diameter | 1000 | 0.13 |
Name | Energy Density (kWh/m3) | Cost (USD/kg) |
---|---|---|
CaCl2·6H2O | 601 | 0.6 [34] |
MgCl2·6H2O | 547 | 0.52 [29] |
Bischofite | 520 | 0.16 [29] |
Eutectic mixture (25% of MgCl2·6H2O) | 588 | 0.58 |
Eutectic mixture (25% of bischofite) | 580 | 0.49 |
Composite Host Matrix Material | Hydrated Composite Density (kg/m3) | Wt. % of Hydrated Salt | Anhydrous Composite Density (kg/m3) | Wt. % of Anhydrous Salt | Energy Density Upon Forming X·6H2O (kWh/m3) | |
---|---|---|---|---|---|---|
CaCl2 | Eutectic | |||||
ENG | 570 | 67 | 380 | 50 | 180 | 163 |
EV | 670 | 85 | 400 | 75 | 266 | 239 |
EC | 1470 | 32 | 1240 | 19 | 221 | 199 |
Composite Type | Composite Cost (USD/kg) | Composite Cost (USD/m3) | Energy Cost (USD/kWh) | |||
---|---|---|---|---|---|---|
CaCl2 | Eutectic | CaCl2 | Eutectic | CaCl2 | Eutectic | |
ENG | 1.1 | 1.0 | 627 | 570 | 3.5 | 3.5 |
EV | 0.56 | 0.46 | 375 | 308 | 1.4 | 1.3 |
EC | 0.28 | 0.25 | 412 | 368 | 1.9 | 1.8 |
Humidity Chamber | Reactor | ||||||
---|---|---|---|---|---|---|---|
Conditions | 50% | 60% | 70% | 20 L/min, 50% | 20 L/min, 60% | 20 L/min, 70% | 30 L/min, 70% |
ENG/CaCl2 | 5 h | 3 h | 3 h | 15 h | 10 h | 7 h | 5 h |
ENG/eutectic | 5 h | 4 h | 4 h | >20 h | >20 h | 10 h | 7 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Buisson, L.; Clark, R.-J.; Ushak, S.; Farid, M. A Eutectic Mixture of Calcium Chloride Hexahydrate and Bischofite with Promising Performance for Thermochemical Energy Storage. Energies 2024, 17, 578. https://doi.org/10.3390/en17030578
Li B, Buisson L, Clark R-J, Ushak S, Farid M. A Eutectic Mixture of Calcium Chloride Hexahydrate and Bischofite with Promising Performance for Thermochemical Energy Storage. Energies. 2024; 17(3):578. https://doi.org/10.3390/en17030578
Chicago/Turabian StyleLi, Bryan, Louise Buisson, Ruby-Jean Clark, Svetlana Ushak, and Mohammed Farid. 2024. "A Eutectic Mixture of Calcium Chloride Hexahydrate and Bischofite with Promising Performance for Thermochemical Energy Storage" Energies 17, no. 3: 578. https://doi.org/10.3390/en17030578
APA StyleLi, B., Buisson, L., Clark, R. -J., Ushak, S., & Farid, M. (2024). A Eutectic Mixture of Calcium Chloride Hexahydrate and Bischofite with Promising Performance for Thermochemical Energy Storage. Energies, 17(3), 578. https://doi.org/10.3390/en17030578