A Proposal for A Human-in-the-Loop Daylight Control System—Preliminary Experimental Results
Abstract
:1. Introduction
2. Background Knowledge and Research Aims
- design difficulties;
- installation problems;
- the difficult calibration phase of the photosensors;
- the onerous evaluation of the actual energy savings that can be achieved (with modeling tools;
- the poor acceptance of automatic light changes by the user.
3. Related Works
3.1. Image-Sensing-Based Lighting Control
3.2. Light-Sensing-Based Lighting Control
3.3. An Overview of the DALI Protocol
4. Methods
4.1. Experimental Setup
Lighting Requirements | Value |
---|---|
Maintained illuminance | 300 lx |
Illuminance uniformity | 0.6 |
Color rendering index (CRI) | 80 |
Unified glare rating (UGR) | 19 |
Physical Quantity | Value |
---|---|
Dimensions (length × width) | 1195 × 295 mm |
Weight | 3.465 kg |
CRI | ≥80 |
Luminous flux | 3600 lm |
Maximum power consumption | 33 W |
Correlated color temperature (CCT) | 4000 K |
Luminous efficacy | 109 lm/W |
UGR | <19 (EN 12464) |
4.2. Lighting Scenarios
4.3. Custom Node Hardware Architecture
5. Results
6. Discussion
7. Conclusions
- The proposed system has shown the ability to dim the luminaire intensity to keep the illuminance on the target work plane around the desired level with an error in the order of ten lux;
- The power consumption is considerably less than that of the comparison device (about 40% less);
- The prototype DLCS has allowed the user’s direct interaction with the control system, allowing them to obtain a human-in-the-loop controller.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- González-Torres, M.; Pérez-Lombard, L.; Coronel, J.F.; Maestre, I.R.; Yan, D. A Review on Buildings Energy Information: Trends, End-Uses, Fuels and Drivers. Energy Rep. 2022, 8, 626–637. [Google Scholar] [CrossRef]
- Delmastro, C.; de Bienassis, T.; Goodson, T.; Lane, K.; la Marois, J.-B.; Martinez-Gordon, R.; Husek, M. IEA Buildings Report; GlobalABC: Paris, France, 2022. [Google Scholar]
- Al-Shargabi, A.A.; Almhafdy, A.; Ibrahim, D.M.; Alghieth, M.; Chiclana, F. Buildings’ Energy Consumption Prediction Models Based on Buildings’ Characteristics: Research Trends, Taxonomy, and Performance Measures. J. Build. Eng. 2022, 54, 104577. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Q.; Tian, Z.; He, B.; Jin, G. A Comprehensive Analysis on Definitions, Development, and Policies of Nearly Zero Energy Buildings in China. Renew. Sustain. Energy Rev. 2019, 114, 109314. [Google Scholar] [CrossRef]
- Economidou, M.; Todeschi, V.; Bertoldi, P.; D’Agostino, D.; Zangheri, P.; Castellazzi, L. Review of 50 years of EU Energy Efficiency Policies for Buildings. Energy Build. 2020, 225, 110322. [Google Scholar] [CrossRef]
- De Rubeis, T.; Gentile, N.; Smarra, F.; D’Innocenzo, A.; Ambrosini, D.; Paoletti, D. A novel method for daylight harvesting optimization based on lighting simulation and data-driven optimal control. In Proceedings of the 16th IBPSA Conference, Rome, Italy, 2–4 September 2019. [Google Scholar] [CrossRef]
- De Rubeis, T.; Giacchetti, L.; Paoletti, D.; Ambrosini, D. Building Energy Performance Analysis at Urban Scale: A Supporting Tool for Energy Strategies and Urban Building Energy Rating Identification. Sustain. Cities Soc. 2021, 74, 103220. [Google Scholar] [CrossRef]
- Nesticò, A.; Macchiaroli, M.; Pipolo, O. Historic buildings and energetic requalification—A model for the selection of technologically advanced interventions. In Computational Science and Its Applications—Lecture Notes in Computer Science, Proceedings of the 15th International Conference—ICCSA 2015, Banff, AB, Canada, 22–25 June 2015; Gervasi, O., Ed.; Springer: Cham, Switzerland, 2015; Volume 9157, p. 9157. [Google Scholar] [CrossRef]
- Li, D.H.W.; Lam, J.C. Evaluation of Lighting Performance in Office Buildings with Daylighting Controls. Energy Build. 2001, 33, 793–803. [Google Scholar] [CrossRef]
- Shen, E.; Hu, J.; Patel, M. Energy and Visual Comfort Analysis of Lighting and Daylight Control Strategies. Build. Environ. 2014, 78, 155–170. [Google Scholar] [CrossRef]
- Li, D.H.W.; Lam, J.C.; Wong, S.L. Daylighting and Its Effects on Peak Load Determination. Energy 2005, 30, 1817–1831. [Google Scholar] [CrossRef]
- De Rubeis, T.; Smarra, F.; Gentile, N.; D’innocenzo, A.; Ambrosini, D.; Paoletti, D. Learning Lighting Models for Optimal Control of Lighting System via Experimental and Numerical Approach. Sci. Technol. Built Environ. 2021, 27, 1018–1030. [Google Scholar] [CrossRef]
- MacNaughton, P.; Woo, M.; Tinianov, B.; Boubekri, M.; Satish, U. Economic Implications of Access to Daylight and Views in Office Buildings from Improved Productivity. J. Appl. Soc. Psychol. 2021, 51, 1176–1183. [Google Scholar] [CrossRef]
- Aries, M.; Aarts, M.; van Hoof, J. Daylight and Health: A Review of the Evidence and Consequences for the Built Environment. Light. Res. Technol. 2015, 47, 6–27. [Google Scholar] [CrossRef]
- De Rubeis, T.; Nardi, I.; Muttillo, M.; Ranieri, S.; Ambrosini, D. Room and Window Geometry Influence for Daylight Harvesting Maximization—Effects on Energy Savings in an Academic Classroom. Energy Procedia 2018, 148, 1090–1097. [Google Scholar] [CrossRef]
- Koo, S.Y.; Yeo, M.S.; Kim, K.W. Automated Blind Control to Maximize the Benefits of Daylight in Buildings. Build. Environ. 2010, 45, 1508–1520. [Google Scholar] [CrossRef]
- Bourgeois, D.; Reinhart, C.; Macdonald, I. Adding Advanced Behavioural Models in Whole Building Energy Simulation: A Study on the Total Energy Impact of Manual and Automated Lighting Control. Energy Build. 2006, 38, 814–823. [Google Scholar] [CrossRef]
- Yu, X.; Su, Y. Daylight Availability Assessment and Its Potential Energy Saving Estimation—A Literature Review. Renew. Sustain. Energy Rev. 2015, 52, 494–503. [Google Scholar] [CrossRef]
- Shen, E.; Hong, T. Simulation-Based Assessment of the Energy Savings Benefits of Integrated Control in Office Buildings. Build. Simul. 2009, 2, 239. [Google Scholar] [CrossRef]
- Shi, J.; Yu, N.; Yao, W. Energy Efficient Building HVAC Control Algorithm with Real-Time Occupancy Prediction. Energy Procedia 2017, 111, 267–276. [Google Scholar] [CrossRef]
- Kaminska, A.; Ożadowicz, A. Lighting Control Including Daylight and Energy Efficiency Improvements Analysis. Energies 2018, 11, 2166. [Google Scholar] [CrossRef]
- Kocabey, S.; Ekren, N. A New Approach for Examination of Performance of Interior Lighting Systems. Energy Build. 2014, 74, 1–7. [Google Scholar] [CrossRef]
- Díaz-Vilariño, L.; Lagüela, S.; Armesto, J.; Arias, P. Indoor Daylight Simulation Performed on Automatically Generated As-Built 3D Models. Energy Build. 2014, 68, 54–62. [Google Scholar] [CrossRef]
- Park, J.Y.; Ouf, M.M.; Gunay, B.; Peng, Y.; O’Brien, W.; Kjærgaard, M.B.; Nagy, Z. A Critical Review of Field Implementations of Occupant-Centric Building Controls. Build. Environ. 2019, 165, 106351. [Google Scholar] [CrossRef]
- Tan, F.; Caicedo, D.; Pandharipande, A.; Zuniga, M. Sensor-Driven, Human-in-the-Loop Lighting Control. Light. Res. Technol. 2018, 50, 660–680. [Google Scholar] [CrossRef]
- Bellia, L.; Fragliasso, F. Automated Daylight-Linked Control Systems Performance with Illuminance Sensors for Side-Lit Offices in the Mediterranean Area. Autom. Constr. 2019, 100, 145–162. [Google Scholar] [CrossRef]
- Bellia, L.; Fragliasso, F.; Stefanizzi, E. Why Are Daylight-Linked Controls (DLCs) Not so Spread? A Literature Review. Build. Environ. 2016, 106, 301–312. [Google Scholar] [CrossRef]
- Odiyur Vathanam, G.S.; Kalyanasundaram, K.; Elavarasan, R.M.; Hussain Khahro, S.; Subramaniam, U.; Pugazhendhi, R.; Ramesh, M.; Gopalakrishnan, R.M. A Review on Effective Use of Daylight Harvesting Using Intelligent Lighting Control Systems for Sustainable Office Buildings in India. Sustainability 2021, 13, 4973. [Google Scholar] [CrossRef]
- Beccali, M.; Bonomolo, M.; Ciulla, G.; Lo Brano, V. Assessment of Indoor Illuminance and Study on Best Photosensors’ Position for Design and Commissioning of Daylight Linked Control Systems: A New Method Based on Artificial Neural Networks. Energy 2018, 154, 466–476. [Google Scholar] [CrossRef]
- Tsangrassoulis, A.; Doulos, L.; Mylonas, A. Simulating the Impact of Daytime Calibration in the Behavior of a Closed Loop Proportional Lighting Control System. Energies 2021, 14, 7056. [Google Scholar] [CrossRef]
- Lampert, C. Smart Switchable Glazing for Solar Energy and Daylight Control. Sol. Energy Mater. Sol. Cells 1998, 52, 207–221. [Google Scholar] [CrossRef]
- Kirankumar, G.; Saboor, S.; Vali, S.S.; Mahapatra, D.; Talanki Puttaranga Setty, A.B.; Kim, K.-H. Thermal and Cost Analysis of Various Air Filled Double Glazed Reflective Windows for Energy Efficient Buildings. J. Build. Eng. 2020, 28, 101055. [Google Scholar] [CrossRef]
- Pereira, J.; Teixeira, H.; Gomes, M.D.G.; Moret Rodrigues, A. Performance of Solar Control Films on Building Glazing: A Literature Review. Appl. Sci. 2022, 12, 5923. [Google Scholar] [CrossRef]
- Futagami, T.; Yano, T.; Huang, C.; Enohara, T. Experimental Evaluation for Daylight-linked Gradation Lighting Control Using Image-based Motion Sensors. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 723–732. [Google Scholar] [CrossRef]
- Ahmed, R.; Oh, S.J.; Mehmood, M.U.; Kim, Y.; Jeon, G.; Han, H.J.; Lim, S.H. Computer Vision and Photosensor Based Hybrid Control Strategy for a Two-Axis Solar Tracker—Daylighting Application. Sol. Energy 2021, 224, 175–183. [Google Scholar] [CrossRef]
- Kim, M.; Tzempelikos, A. Performance Evaluation of Non-Intrusive Luminance Mapping towards Human-Centered Daylighting Control. Build. Environ. 2022, 213, 108857. [Google Scholar] [CrossRef]
- Wu, Y.; Kämpf, J.H.; Scartezzini, J.-L. Design and Validation of a Compact Embedded Photometric Device for Real-Time Daylighting Computing in Office Buildings. Build. Environ. 2019, 148, 309–322. [Google Scholar] [CrossRef]
- Sarkar, A.; Fairchild, M.; Salvaggio, C. Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging; Blouke, M.M., Bodegom, E., Eds.; SPIE: Bellingham, WA, USA, 2008; p. 68160F. [Google Scholar]
- Winkler, T.; Rinner, B. Security and Privacy Protection in Visual Sensor Networks. ACM Comput. Surv. 2014, 47, 1–42. [Google Scholar] [CrossRef]
- López-Lovillo, R.M.; Domínguez-Amarillo, S.; Sendra, J.J.; Acosta, I. How Can a Daylighting and User-Oriented Control System Be Configured? A State-of-the-Art Critical Review. J. Build. Eng. 2023, 64, 105704. [Google Scholar] [CrossRef]
- ul Haq, M.A.; Hassan, M.Y.; Abdullah, H.; Rahman, H.A.; Abdullah, M.P.; Hussin, F.; Said, D.M. A Review on Lighting Control Technologies in Commercial Buildings, Their Performance and Affecting Factors. Renew. Sustain. Energy Rev. 2014, 33, 268–279. [Google Scholar] [CrossRef]
- Pandharipande, A.; Caicedo, D. Daylight Integrated Illumination Control of LED Systems Based on Enhanced Presence Sensing. Energy Build. 2011, 43, 944–950. [Google Scholar] [CrossRef]
- Caicedo, D.; Pandharipande, A.; Willems, F.M.J. Daylight-Adaptive Lighting Control Using Light Sensor Calibration Prior-Information. Energy Build. 2014, 73, 105–114. [Google Scholar] [CrossRef]
- Van de Meugheuvel, N.; Pandharipande, A.; Caicedo, D.; van den Hof, P.P.J. Distributed Lighting Control with Daylight and Occupancy Adaptation. Energy Build. 2014, 75, 321–329. [Google Scholar] [CrossRef]
- Pandharipande, A.; Caicedo, D. Smart Indoor Lighting Systems with Luminaire-Based Sensing: A Review of Lighting Control Approaches. Energy Build. 2015, 104, 369–377. [Google Scholar] [CrossRef]
- Cheng, Y.; Fang, C.; Yuan, J.; Zhu, L. Design and Application of a Smart Lighting System Based on Distributed Wireless Sensor Networks. Appl. Sci. 2020, 10, 8545. [Google Scholar] [CrossRef]
- Nagy, Z.; Yong, F.Y.; Frei, M.; Schlueter, A. Occupant Centered Lighting Control for Comfort and Energy Efficient Building Operation. Energy Build. 2015, 94, 100–108. [Google Scholar] [CrossRef]
- Papinutto, M.; Boghetti, R.; Colombo, M.; Basurto, C.; Reutter, K.; Lalanne, D.; Kämpf, J.H.; Nembrini, J. Saving Energy by Maximising Daylight and Minimising the Impact on Occupants: An Automatic Lighting System Approach. Energy Build. 2022, 268, 112176. [Google Scholar] [CrossRef]
- Tang, S.; Kalavally, V.; Ng, K.Y.; Parkkinen, J. Development of a prototype smart home intelligent lighting control architecture using sensors onboard a mobile computing system. Energy Build. 2017, 138, 368–376. [Google Scholar] [CrossRef]
- Raspberrypi.com. Raspberry Pi 3. Available online: https://www.raspberrypi.com/products/raspberry-pi-3-model-b/ (accessed on 1 December 2023).
- Ramya, C.M.; Shanmugaraj, M.; Prabakaran, R. Study on ZigBee technology. In Proceedings of the 2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, India, 8–10 April 2011; pp. 297–301. [Google Scholar]
- Gao, Y.; Cheng, Y.; Zhang, H.; Zou, N. Dynamic Illuminance Measurement and Control Used for Smart Lighting with LED. Measurement 2019, 139, 380–386. [Google Scholar] [CrossRef]
- De Rubeis, T.; Muttillo, M.; Pantoli, L.; Nardi, I.; Leone, I.; Stornelli, V.; Ambrosini, D. A First Approach to Universal Daylight and Occupancy Control System for Any Lamps: Simulated Case in an Academic Classroom. Energy Build. 2017, 152, 24–39. [Google Scholar] [CrossRef]
- Scorpio, M.; Ciampi, G.; Gentile, N.; Sibilio, S. Effectiveness of Low-Cost Non-Invasive Solutions for Daylight and Electric Lighting Integration to Improve Energy Efficiency in Historical Buildings. Energy Build. 2022, 270, 112281. [Google Scholar] [CrossRef]
- Choi, S.; Choi, A.; Sung, M. Cloud-Based Lighting Control Systems: Fatigue Analysis and Recommended Luminous Environments. Build. Environ. 2022, 214, 108947. [Google Scholar] [CrossRef]
- Kent, M.; Huynh, N.K.; Schiavon, S.; Selkowitz, S. Using Support Vector Machine to Detect Desk Illuminance Sensor Blockage for Closed-Loop Daylight Harvesting. Energy Build. 2022, 274, 112443. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Chen, W.-T. An automatic and adaptive light control system by integrating wireless sensors and brain-computer interface. In Proceedings of the 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017; pp. 1399–1402. [Google Scholar]
- Lalitha, V.; Kathiravan, S. A Review of Manchester, Miller, and FM0 Encoding Techniques. Smart Comput. Rev. 2014, 4, 481–490. [Google Scholar]
- Wu, W.; Wu, M.; Liu, Y. A design of embedded DALI controller. In Proceedings of the 2006 4th IEEE International Conference on Industrial Informatics, Singapore, 16–18 August 2006; pp. 1237–1240. [Google Scholar]
- Ma, Y.; Wobschall, D. A sensor network for buildings based on the DALI bus. In Proceedings of the 2007 IEEE Sensors Applications Symposium, San Diego, CA, USA, 6–8 February 2007; pp. 1–3. [Google Scholar]
- Wu, M.-L.; Kung, C.-M.; Lin, Y.-N. DALI-2 intelligent lighting control system. In Proceedings of the 2020 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 13–16 November 2020; pp. 158–161. [Google Scholar]
- Wang, S.-C.; Liu, Y.-H.; Yuan-Lin, C.; Jyun-Yan, C. Development of DALI-based electronic ballast with energy saving control for ultraviolet lamps. In Proceedings of the 2010 8th IEEE International Conference on Industrial Informatics, Osaka, Japan, 13–16 July 2010; pp. 214–219. [Google Scholar]
- Beg-luxomat.com. Luxomat PD4-M-1C Datasheet. Available online: https://www.beg-luxomat.com/it/prodotti/luxomat/rilevatori-di-presenza-per-montaggio-a-soffitto/1-canale/pd4-m-1c/ (accessed on 1 December 2023).
- Relux.com. ReluxDesktop. Available online: https://relux.com/en/relux-desktop.html (accessed on 1 December 2023).
- UNI EN 12464-1; Light and Lighting—Lighting of Work Places—Part 1: Indoor Work Places. EN Standard: Plzen, Czech Republic, 2021. Available online: https://www.en-standard.eu/din-en-12464-1-light-and-lighting-lighting-of-work-places-part-1-indoor-work-places/ (accessed on 1 December 2023).
- Disano.it. 842 LED Panel—UGR < 19—CRI ≥ 80. Available online: https://www.disano.it/en/cat/disano/10502-recessed-modulars/35510-842-led-panel---ugr<19---cri%e2%89%a580/ (accessed on 1 December 2023).
- Vishay.com. Vishay Semiconductors VEML7700 Datasheet. Available online: https://www.vishay.com/docs/84286/veml7700.pdf (accessed on 1 December 2023).
- Codemercs.com. Code Mercenaries LW-14. Available online: https://codemercs.com/downloads/ledwarrior/LW14_Datasheet.pdf (accessed on 1 December 2023).
- Extech-Online.com. EXTECH SDL400. Available online: https://www.extech-online.com/index.php?main_page=product_info&cpath=78_21_33&products_id=418 (accessed on 1 December 2023).
- Gomez, C.; Oller, J.; Paradells, J. Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology. Sensors 2012, 12, 11734–11753. [Google Scholar] [CrossRef]
- Dali-Alliance.com. DALI Alliance IEC 62386 Standard. Available online: https://www.dali-alliance.org/dali/standards.html (accessed on 1 December 2023).
- Recom-Power.com. Recom RAC02 AC-DC Converters. Available online: https://recom-power.com/pdf/powerline_ac-dc/rac02-gb.pdf (accessed on 1 December 2023).
- Hioki.com. HIOKI 3333 Power HiTester. Available online: https://www.hioki.com/euro-en/products/power-meters/single-phase-ac/id_5908 (accessed on 1 December 2023).
- Kodosky, J. LabVIEW. Proc. ACM Program. Lang. 2020, 4, 1–54. [Google Scholar] [CrossRef]
- CETEMPS—Center of Excellence. Available online: http://cetemps.aquila.infn.it/ (accessed on 1 December 2023).
A Scenario | B Scenario |
---|---|
Commercial controller | Custom controller |
The light sensor is placed on the ceiling | The light sensor is placed on the work plane |
Manual configuration on the physical device | The configuration of the system is carried out in wireless mode using a smartphone |
The illuminance over time is measured on the work plane by a lux meter | The illuminance over time is measured on the work plane by a lux meter |
Measurement Slot 1 (February 2023) | Measurement Slot 2 (November 2023) | |||
---|---|---|---|---|
Commercial | Custom | Commercial | Custom | |
Average lamp power (VA) | 15.7 | 18.9 | 26.5 | 22.2 |
Average controller power (mVA) | 600 | 370 | 600 | 370 |
Max desk illuminance variation from setpoint, absolute value (lux) | 220 | 10 | 85 | 11 |
Commercial Ceiling Controller | Custom Controller | ||
---|---|---|---|
Strength | Weakness | Strength | Weakness |
Ready to buy | Relatively expensive | Based on known components | Non-commercial at the actual state |
Sensor calibration has already been performed | Light intensity management is not very accurate | Easy to manage for the user | Requires space on the desk |
Large room-sensing area | Requires pre-existent cabling for the DALI bus | Users are easily involved in the control process | User should be informed about the DLCS operation |
Does not require space on the desk | Requires manual trimmer configuration | Wireless smartphone configuration | Requires pre-existent cabling for the DALI bus |
The sensor placement is less affected by undesired shadings | The illuminance value on the work plane could be far from the setpoint value | More stable illuminance value on the work plane | Undesired shadings should be avoided |
The system is already set to allow occupancy sensing | Higher energy consumption | Lower energy consumption | The distance between the user and the controller needs to be limited to the BLE radio coverage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Rubeis, T.; Ragnoli, M.; Leoni, A.; Ambrosini, D.; Stornelli, V. A Proposal for A Human-in-the-Loop Daylight Control System—Preliminary Experimental Results. Energies 2024, 17, 544. https://doi.org/10.3390/en17030544
de Rubeis T, Ragnoli M, Leoni A, Ambrosini D, Stornelli V. A Proposal for A Human-in-the-Loop Daylight Control System—Preliminary Experimental Results. Energies. 2024; 17(3):544. https://doi.org/10.3390/en17030544
Chicago/Turabian Stylede Rubeis, Tullio, Mattia Ragnoli, Alfiero Leoni, Dario Ambrosini, and Vincenzo Stornelli. 2024. "A Proposal for A Human-in-the-Loop Daylight Control System—Preliminary Experimental Results" Energies 17, no. 3: 544. https://doi.org/10.3390/en17030544
APA Stylede Rubeis, T., Ragnoli, M., Leoni, A., Ambrosini, D., & Stornelli, V. (2024). A Proposal for A Human-in-the-Loop Daylight Control System—Preliminary Experimental Results. Energies, 17(3), 544. https://doi.org/10.3390/en17030544