Unpacking How Natural Gas, Digital Growth, and Hydro-Based Energy Sources Impact Ecological Sustainability in Egypt
Abstract
:1. Introduction
- How does digitalization impact ecological sustainability in Egypt?
- What role does hydroelectricity play in mitigating ecological degradation, and what are the environmental trade-offs associated with its use?
- Is the EKC hypothesis valid in Egypt?
- To what extent can natural gas function as an effective transitional energy source for reducing carbon emissions, and how does its ecological impact compare to that of hydroelectricity?
2. Literature Review
2.1. Digitalization and Ecological Quality
2.2. Economic Growth and Ecological Quality
2.3. Natural Gas (NGAS) and Ecological Quality
2.4. Urbanization (URB) and Ecological Quality
2.5. Hydroelectricity (HE) and Ecological Quality
3. Data and Methods
3.1. Theoretical Framework and Model Specification
3.2. Econometric Strategy
4. Presentation of Result and Discussion
Presentation of Result
5. Conclusions and Policy Remarks
Policy Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Abbreviations
ARDL | Autoregressive distributed lag |
EKC | Environmental Kuznets Curve |
MENA | Middle East and North Africa |
DIGIT | Digitalization |
HE | Hydroelectricity |
NGAS | Natural gas |
GDP | Economic growth |
EF | Ecological footprint |
ADF | Augmented Dickey–Fuller |
PP | Phillips–Perron |
CO2 | CO2 emissions |
URB | Urbanization |
GDPSQ | Square of economic growth |
ENVSU | Environmental sustainability |
References
- Bulut, U. Environmental sustainability in Turkey: An environmental Kuznets curve estimation for ecological footprint. Int. J. Sustain. Dev. World Ecol. 2021, 28, 227–237. [Google Scholar] [CrossRef]
- Ojekemi, O.S.; Ağa, M.; Magazzino, C. Towards Achieving Sustainability in the BRICS Economies: The Role of Renewable Energy Consumption and Economic Risk. Energies 2023, 16, 5287. [Google Scholar] [CrossRef]
- Umar, M.; Awosusi, A.A.; Adegboye, O.R.; Ojekemi, O.S. Geothermal energy and carbon emissions nexus in leading geothermal-consuming nations: Evidence from nonparametric analysis. Energy Environ. 2024, 35, 2726–2752. [Google Scholar] [CrossRef]
- Somoye, O.A.; Ayobamiji, A.A. Can energy intensity; clean energy utilization; economic expansion, and financial development contribute to ecological progress in Iceland? A quantile-on-quantile KRLS analysis. Nat. Resour. Forum 2024, 36, 306–321. [Google Scholar] [CrossRef]
- Sun, X.Q.; Awosusi, A.A.; Han, Z.; Uzun, B.; Öncü, E. Racing towards environmental sustainability: A synergy between economic complexity, political stability, and energy transition: Policy insight from a bootstrap time varying causality approach. Int. J. Sustain. Dev. World Ecol. 2024, 31, 206–221. [Google Scholar] [CrossRef]
- Ibrahim, R.L.; Awosusi, A.A.; Ajide, K.B.; Ozdeser, H. Exploring the renewable energy-environmental sustainability pathways: What do the interplay of technological innovation, structural change, and urbanization portends for BRICS? Environ. Dev. Sustain. 2023, 41, 1–21. [Google Scholar] [CrossRef]
- Zhou, H.; Awosusi, A.A.; Dagar, V.; Zhu, G.; Abbas, S. Unleashing the asymmetric effect of natural resources abundance on carbon emissions in regional comprehensive economic partnership: What role do economic globalization and disaggregating energy play? Res Pol 2023, 85, 103914. [Google Scholar] [CrossRef]
- Ojekemi, O.S.; Ağa, M. In the era of globalization, can renewable energy and eco-innovation be viable for environmental sustainability in BRICS economies? Environ. Sci. Pollut. Res. 2023, 30, 85249–85262. [Google Scholar] [CrossRef]
- Maftouh, A.; El Fatni, O.; Fayiah, M.; Liew, R.K.; Lam, S.S.; Bahaj, T.; Butt, M.H. The application of water–energy nexus in the Middle East and North Africa (MENA) region: A structured review. Appl. Water Sci. 2022, 12, 83. [Google Scholar] [CrossRef]
- Salah, S.I.; Eltaweel, M.; Abeykoon, C. Towards a sustainable energy future for Egypt: A systematic review of renewable energy sources, technologies, challenges, and recommendations. Clean. Eng. Technol. 2022, 8, 100497. [Google Scholar] [CrossRef]
- Benedetti, I.; Guarini, G.; Laureti, T. Digitalization in Europe: A potential driver of energy efficiency for the twin transition policy strategy. Socioecon. Plann. Sci. 2023, 89, 101701. [Google Scholar] [CrossRef]
- Xu, J.; Yu, Y.; Zhang, M.; Zhang, J.Z. Impacts of digital transformation on eco-innovation and sustainable performance: Evidence from Chinese manufacturing companies. J. Clean. Prod. 2023, 393, 136278. [Google Scholar] [CrossRef]
- Lee, C.-C.; He, Z.-W.; Wen, H. The impact of digitalization on green economic efficiency: Empirical evidence from city-level panel data in China. Energy Environ. 2024, 35, 23–46. [Google Scholar] [CrossRef]
- Ullah, A.; Dogan, M.; Pervaiz, A.; Bukhari, A.A.A.; Akkus, H.T.; Dogan, H. The impact of digitalization, technological and financial innovation on environmental quality in OECD countries: Investigation of N-shaped EKC hypothesis. Technol. Soc. 2024, 77, 102484. [Google Scholar] [CrossRef]
- Adeshola, I.; Usman, O.; Agoyi, M.; Awosusi, A.A.; Adebayo, T.S. Digitalization and the environment: The role of information and communication technology and environmental taxes in European countries. Nat. Resour. Forum 2024, 48, 1088–1110. [Google Scholar] [CrossRef]
- Alnaqbi, S.A.; Alasad, S.; Aljaghoub, H.; Alami, A.H.; Abdelkareem, M.A.; Olabi, A.G. Applicability of Hydropower Generation and Pumped Hydro Energy Storage in the Middle East and North Africa. Energies 2022, 15, 2412. [Google Scholar] [CrossRef]
- El Baradei, S.A.; Abdelkader, S.E.; Hussein, N.H. Impact of filling period of the grand Ethiopian renaissance dam on hydropower generation and hydropower water footprint of Aswan high dam. Innov. Infrastruct. Solut. 2022, 7, 300. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Ullah, A.; Topcu, B.A.; Dogan, M.; Imran, M. Exploring the nexus among hydroelectric power generation, financial development, and economic growth: Evidence from the largest 10 hydroelectric power-generating countries. Energy Strategy Rev. 2024, 52, 101339. [Google Scholar] [CrossRef]
- Sasges, G.; Ziegler, A.D. We Have Eaten the Rivers: The Past, Present, and Unsustainable Future of Hydroelectricity in Vietnam. Sustainability 2023, 15, 8969. [Google Scholar] [CrossRef]
- Proedrou, F. A geopolitical account of the Eastern Mediterranean conundrum: Sovereignty, balance of power and energy security considerations. Camb. Rev. Int. Aff. 2023, 36, 679–696. [Google Scholar] [CrossRef]
- Anser, M.K.; Khan, K.A.; Umar, M.; Awosusi, A.A.; Shamansurova, Z. Formulating sustainable development policy for a developed nation: Exploring the role of renewable energy, natural gas efficiency and oil efficiency towards decarbonization. Int. J. Sustain. Dev. World Ecol. 2023, 31, 247–263. [Google Scholar] [CrossRef]
- Hao, X.; Li, Y.; Ren, S.; Wu, H.; Hao, Y. The role of digitalization on green economic growth: Does industrial structure optimization and green innovation matter? J. Environ. Manag. 2023, 325, 1165. [Google Scholar] [CrossRef] [PubMed]
- Myovella, G.; Karacuka, M.; Haucap, J. Digitalization and economic growth: A comparative analysis of Sub-Saharan Africa and OECD economies. Telecommun. Policy 2020, 44, 101856. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, P.; Li, R.; Chen, A. Digital transformation and economic growth Efficiency improvement in the Digital media era: Digitalization of industry or Digital industrialization? Int. Rev. Econ. Finance 2024, 92, 667–677. [Google Scholar] [CrossRef]
- Mehmood, U.; Tariq, S.; Aslam, M.U.; Agyekum, E.B.; Uhunamure, S.E.; Shale, K.; Kamal, M.; Khan, M.F. Evaluating the impact of digitalization, renewable energy use, and technological innovation on load capacity factor in G8 nations. Sci. Rep. 2023, 13, 9131. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.; Ibrahim, R.L.; Uralovich, K.S. Greening the E7 environment: How can renewable and nuclear energy moderate financial development, natural resources, and digitalization towards the target? Int. J. Sustain. Dev. World Ecol. 2024, .31, 447–465. [Google Scholar] [CrossRef]
- Yao, W.; Liu, L.; Fujii, H.; Li, L. Digitalization and net-zero carbon: The role of industrial robots towards carbon dioxide emission reduction. J. Clean. Prod. 2024, 450, 141820. [Google Scholar] [CrossRef]
- Ha, L.T.; Huong, T.T.L.; Thanh, T.T. Is digitalization a driver to enhance environmental performance? An empirical investigation of European countries. Sustain. Prod. Consum. 2022, 32, 230–247. [Google Scholar] [CrossRef]
- Škare, M.; Gavurova, B.; Porada-Rochon, M. Digitalization and carbon footprint: Building a path to a sustainable economic growth. Technol. Forecast. Soc. Change 2024, 199, 123045. [Google Scholar] [CrossRef]
- Awosusi, A.A.; Akadiri, S.S.; Olanrewaju, V.O.; Rjoub, H.; Ozdeser, H.; Ojekemi, O. The role of energy, political stability, and real income on achieving carbon neutrality: Asymmetric evidence. Environ. Sci. Pollut. Res. 2023, 30, 83302–83318. [Google Scholar] [CrossRef] [PubMed]
- Su, C.W.; Umar, M.; Kirikkaleli, D.; Altuntaş, M. Testing the asymmetric effect of financial stability towards carbon neutrality target: The case of Iceland and global comparison. Gond. Res. 2023, 116, 125–135. [Google Scholar] [CrossRef]
- Awosusi, A.A.; Ozdeser, H.; Seraj, M.; Adegboye, O.R. Achieving carbon neutrality in energy transition economies: Exploring the environmental efficiency of natural gas efficiency, coal efficiency, and resources efficiency. Clean. Technol. Environ. Policy 2024. [Google Scholar] [CrossRef]
- Udemba, E.N.; Shah, S.A.R.; Philip, L.D.; Zhao, G. The mediating role of green energy and environmental policies in sustainable development for BRICS economies: A tripartite impact of entrepreneurial activities, urban development and economic growth on ecological footprint. Sustain. Dev. 2024, 32, 4649–4670. [Google Scholar] [CrossRef]
- Damak, O.I.; Eweade, B.S. Do economic growth: The legal system, and energy consumption lessen the ecological footprint? Evidence from South Korea. Energy Environ. 2024. [Google Scholar] [CrossRef]
- Boluk, G.; Karaman, S. The impact of agriculture, energy consumption and economic growth on ecological footprint: Testing the agriculture-induced EKC for Türkiye. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Daştan, M.; Eygü, H. An empirical investigation of the link between economic growth, unemployment, and ecological footprint in Turkey: Bridging the EKC and EPC hypotheses. Environ. Dev. Sustain. 2024, 26, 18957–18988. [Google Scholar] [CrossRef]
- Mohamed, E.F.; Abdullah, A.; Jaaffar, A.H.; Osabohien, R. Reinvestigating the EKC hypothesis: Does renewable energy in power generation reduce carbon emissions and ecological footprint? Energy Strategy Rev. 2024, 53, 101387. [Google Scholar] [CrossRef]
- Shah, M.A.H.; Ximei, W. Innovating for sustainability: Exploring the synergy between international digital trade, appeal mechanisms, renewable energy, and economic growth on ecological footprint in BRICST economies. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Usman, M.; Chughtai, S.; Rashid, A.; Khan, N. Disaggregated financial development and ecological sustainability: The critical role of urbanization, energy utilization, and economic growth in next 11 economies. Environ. Dev. Sustain. 2024, 26, 11455–11474. [Google Scholar] [CrossRef]
- Ding, C.; Awosusi, A.A.; Abbas, S.; Ojekemi, O.R. Formulating ecological sustainability policies for India within the coal energy, biomass energy, and economic globalization framework. Environ. Sci. Pollut. Res. 2023, 30, 112758–112772. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Hochman, G.; Zhang, Y.; Sun, R.; Li, H.; Liao, H. CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions. Energy Econ. 2018, 75, 180–192. [Google Scholar] [CrossRef]
- Shah, S.A.R.; Zhang, Q.; Abbas, J.; Balsalobre-Lorente, D.; Pilař, L. Technology, Urbanization and Natural Gas Supply Matter for Carbon Neutrality: A New Evidence of Environmental Sustainability under the Prism of COP26. Resour. Policy 2023, 82, 103465. [Google Scholar] [CrossRef]
- Azam, A.; Rafiq, M.; Shafique, M.; Yuan, J. An empirical analysis of the non-linear effects of natural gas, nuclear energy, renewable energy and ICT-Trade in leading CO2 emitter countries: Policy towards CO2 mitigation and economic sustainability. J. Environ. Manag. 2021, 286, 112232. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Ozturk, I.; Ağa, M.; Uhunamure, S.E.; Kirikkaleli, D.; Shale, K. Role of natural gas and nuclear energy consumption in fostering environmental sustainability in India. Sci. Rep. 2023, 13, 11030. [Google Scholar] [CrossRef]
- Zeraibi, A.; Jahangir, A.; Ramzan, M.; Adetayo, T.S. Investigating the effects of natural gas, nuclear energy, and democracy on environmental footprint and energy risk in France: Does financial inclusion matter? Prog. Nucl. Energy 2023, 159, 104621. [Google Scholar] [CrossRef]
- Abdullahi, N.M.; Ibrahim, A.A.; Zhang, Q.; Huo, X. Dynamic linkages between financial development, economic growth, urbanization, trade openness, and ecological footprint: An empirical account of ECOWAS countries. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Udemba, E.N.; Khan, N.-U.; Shah, S.A.R. Demographic change effect on ecological footprint: A tripartite study of urbanization, aging population, and environmental mitigation technology. J. Clean. Prod. 2024, 437, 140406. [Google Scholar] [CrossRef]
- Mehmood, U. Assessing the Impacts of Eco-innovations, Economic Growth, Urbanization on Ecological Footprints in G-11: Exploring the Sustainable Development Policy Options. J. Knowl. Econ. 2024. [Google Scholar] [CrossRef]
- Tanveer, A.; Song, H.; Faheem, M.; Daud, A. Caring for the environment. How do deforestation, agricultural land, and urbanization degrade the environment? Fresh insight through the ARDL approach. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Ullah, S. Towards a sustainable future: The role of energy efficiency, renewable energy, and urbanization in limiting CO2 emissions in Sweden. Sustain. Dev. 2023, 19, 244–259. [Google Scholar] [CrossRef]
- Ramzan, M.; Razi, U.; Usman, M.; Sarwar, S.; Talan, A.; Mundi, H.S. Role of nuclear energy, geothermal energy, agriculture, and urbanization in environmental stewardship. Gondwana Res. 2024, 125, 150–167. [Google Scholar] [CrossRef]
- Ullah, S.; Lin, B. Harnessing the synergistic impacts of financial structure, industrialization, and ecological footprint through the lens of the EKC hypothesis. Insights from Pakistan. Energy 2024, 307, 132540. [Google Scholar] [CrossRef]
- Lau, E.; Tan, C.-C.; Tang, C.-F. Dynamic linkages among hydroelectricity consumption, economic growth, and carbon dioxide emission in Malaysia. Energy Sources Part B Econ. Plan. Policy 2016, 11, 1042–1049. [Google Scholar] [CrossRef]
- Özbay, R.D.; Athari, S.A.; Saliba, C.; Kirikkaleli, D. Towards Environmental Sustainability in China: Role of Globalization and Hydroelectricity Consumption. Sustainability 2022, 14, 4182. [Google Scholar] [CrossRef]
- Saadaoui, H.; Dogan, M.; Omri, E. The impacts of hydroelectricity generation, financial development, geopolitical risk, income, and foreign direct investment on carbon emissions in Turkey. Environ. Econ. Policy Stud. 2024, 26, 239–261. [Google Scholar] [CrossRef]
- Zheng, Y.; Wei, W.; Murshed, M.; Khan, S.; Mahmood, H.; Das, N. Repercussions of Hydroelectricity use on Carbon Emissions in Bangladesh: Evidence using Novel Fourier-Bootstrapped ARDL and Fourier-Gradual Shift Causality analyses. Eval. Rev. 2023, 47, 1025–1065. [Google Scholar] [CrossRef]
- Xiaosan, Z.; Qingquan, J.; Iqbal, K.S.; Manzoor, A.; Ur, R.Z. Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China. Energy Policy 2021, 155, 112332. [Google Scholar] [CrossRef]
- Akadiri, S.S.; Adebayo, T.S.; Altuntaş, M.; Awosusi, A.A. Environmental effects of structural change, hydro and coal energy consumption on ecological footprint in India: Insights from the novel dynamic ARDL simulation. Environ. Dev. Sustain. 2022, 25, 14309–14332. [Google Scholar] [CrossRef]
- BP Global, Statistical Review of World Energy. 2023. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 15 May 2024).
- Global Footprint Network. Ecological Footprint. Available online: https://www.footprintnetwork.org/our-work/ecological-footprint/. (accessed on 1 June 2024).
- World Bank Open Data. Available online: https://data.worldbank.org (accessed on 23 May 2024).
- Holdren, J.P.; Ehrlich, P.R. Human Population and the Global Environment: Population growth, rising per capita material consumption, and disruptive technologies have made civilization a global ecological force. Am. Sci. 1974, 62, 282–292. [Google Scholar]
- Dietz, T.; Rosa, E.A. Rethinking the Environmental Impacts of Population, Affluence and Technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- Abbasi, K.R.; Awan, A.; Bandyopadhyay, A.; Rej, S.; Banday, T.P. Investigating the inverted N-shape EKC in the presence of renewable and nuclear energy in a global sample. Clean. Technol. Environ. Policy 2023, 25, 1179–1194. [Google Scholar] [CrossRef]
- Danish; Ozcan, B.; Ulucak, R. An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: Bridging IPAT and EKC hypotheses. Nucl. Eng. Technol. 2021, 53, 2056–2065. [Google Scholar] [CrossRef]
- Hashmi, S.M.; Yu, X.; Syed, Q.R.; Rong, L. Testing the environmental Kuznets curve (EKC) hypothesis amidst climate policy uncertainty: Sectoral analysis using the novel Fourier ARDL approach. Environ. Dev. Sustain. 2024, 26, 16503–16522. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Kripfganz, S.; Schneider, D.C. ARDL: Stata Module to Perform Autoregressive Distributed Lag Model Estimation. 2018. Available online: https://ideas.repec.org/c/boc/bocode/s458528.html (accessed on 26 October 2021).
- Breitung, J.; Candelon, B. Testing for short-; long-run causality: A frequency-domain approach. Econom. J. 2006, 132, 363–378. [Google Scholar] [CrossRef]
- Huilan, W.; Akadiri, S.S.; Haouas, I.; Awosusi, A.A.; Odu, A.T. Impact of trade liberalization and renewable energy on load capacity factor: Evidence from novel dual adjustment approach. Energy Environ. 2024, 35, 795–814. [Google Scholar] [CrossRef]
- Zhang, M.; Adebayo, T.S.; Awosusi, A.A.; Ramzan, M.; Otrakçı, C.; Kirikkaleli, D. Toward sustainable environment in Italy: The role of trade globalization, human capital, and renewable energy consumption. Energy Environ. 2024, 35, 2058–2086. [Google Scholar] [CrossRef]
- Zhang, S.; Ramzan, M.; Awosusi, A.A.; Eweade, B.S.; Ojekemi, O.S. Unraveling causal dynamics: Exploring resource efficiency and biomass utilization in Malaysia’s context. Renew. Energy 2024, 226, 120368. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Kartal, M.T.; Ullah, S. Role of hydroelectricity and natural gas consumption on environmental sustainability in the United States: Evidence from novel time-frequency approaches. J. Environ. Manag. 2023, 328, 116987. [Google Scholar] [CrossRef]
- Ayobamiji, A.A.; Somoye, O.A. How does the shock in technological innovation and hydroelectricity consumption influence the pursuit of carbon neutrality in Colombia? Clean. Technol. Environ. Policy 2023, 26, 2379–2394. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Rej, S.; Abbasi, K.R.; Awan, A. Nexus between tourism; hydropower, and CO2 emissions in India: Fresh insights from ARDL and cumulative fourier frequency domain causality. Environ. Dev. Sustain. 2023, 25, 10903–10927. [Google Scholar] [CrossRef]
- Cortés-Borda, D.; Polanco, J.; Escobar-Sierra, M. Social perception assessment of hydropower sustainability: A stepwise logistic regression modeling. Environ. Sci. Policy 2022, 134, 108–118. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA). Global CO2 Emissions Rebounded to Their Highest Level in History in 2021; EIA: Washington, DC, USA, 2022. Available online: https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021 (accessed on 28 November 2024).
- U.S. Energy Information Administration (EIA). Electric Power Sector CO2 Emissions Drop as Generation Mix Shifts from Coal to Natural Gas; EIA: Washington, DC, USA, 2021. Available online: https://www.eia.gov/todayinenergy/detail.php?id=48296 (accessed on 9 September 2024).
Indicators | Codes | Metric | Sources |
---|---|---|---|
CO2 emissions | CO2 | Million tons | [60] |
Ecological footprint | EF | Global hectares per capita | [61] |
Urbanization | URB | % of total population | [62] |
Digitalization | DIGIT | Fixed telephone subscriptions (per 100 people) | |
Natural gas | NGAS | Exajoules | [60] |
Hydroelectricity | HE | Exajoules | |
Economic growth | GDP | GDP per capita (constant 2015 US$) | [62] |
Square of GDP | GDPSQ | GDP per capita (constant 2015 US$) |
EF | CO2 | DIGIT | GDP | GDPSQ | HE | NGAS | URB | |
---|---|---|---|---|---|---|---|---|
Mean | 0.104 | 1.907 | 6.265 | 3.294 | 10.896 | 0.966 | 1.659 | 1.632 |
Median | 0.124 | 1.957 | 6.349 | 3.309 | 10.953 | 1.020 | 2.036 | 1.632 |
Maximum | 0.248 | 2.348 | 7.073 | 3.590 | 12.893 | 1.178 | 2.793 | 1.642 |
Minimum | −0.133 | 1.200 | 5.343 | 2.954 | 8.726 | 0.238 | −0.326 | 1.598 |
Std. dev. | 0.112 | 0.349 | 0.627 | 0.201 | 1.314 | 0.225 | 1.074 | 0.009 |
Skewness | −0.633 | −0.508 | −0.179 | −0.322 | −0.252 | −1.872 | −0.819 | −1.674 |
Kurtosis | 2.354 | 2.026 | 1.434 | 1.860 | 1.832 | 5.966 | 2.229 | 5.953 |
ADF | PP | |||
---|---|---|---|---|
Level | Δ | Level | Δ | |
ECF | −0.982 | −7.143 * | −1.133 | −7.188 * |
CO2 | −0.960 | −8.112 * | −0.960 | −8.099 * |
GDP | −0.861 | −4.702 * | −1.473 | −4.305 * |
GDPSQ | −2.067 | −4.642 * | −1.728 | −4.329 * |
DIGIT | −1.842 | −4.192 * | −1.249 | −4.186 |
EGLO | −2.903 | −7.794 * | −3.216 | −7.913 * |
HE | −4.595 * | −4.385 * | −4.146 * | −4.336 * |
NGAS | −1.310 | −3.232 *** | −0.978 | −7.274 * |
URB | −3.776 ** | −1.735 | −4.028 ** | −1.164 |
Model 1 | Model 2 | |
F-stat | 9.438 * | 9.507 * |
T-stat | −8.653 * | −8.913 * |
Diagnostic check | ||
Model 1 | Model 2 | |
χ2 Normality | 1.622 (0.444) | 4.512 (0.104) |
χ2 LM | 0.300 (0.742) | 1.900 (0.139) |
ARCH heteroscedasticity | 2.251 (0.139) | 2.671 (0.109) |
χ2 Ramsey | 1.388 (0.172) | 1.044 (0.305) |
Stability test | Stable at 5% level | Stable at 5% level |
Model 1 (CO2 Emissions) | Model 2 (EF) | |||
---|---|---|---|---|
Variable | Coefficients | SE | Coefficients | SE |
GDP | 6.596 ** | 2.669 | 11.925 * | 3.437 |
GDPSQ | −0.778 ** | 2.669 | −1.659 * | 0.499 |
DIGIT | −0.021 | 0.026 | −0.317 * | 0.054 |
HE | −0.583 * | 0.205 | −0.531 * | 0.123 |
NGAS | −0.068 *** | 0.038 | −0.051 | 0.030 |
URB | 0.090 | 1.169 | −9.322 | 9.471 |
ΔHE | −0.380 * | 0.106 | −0.531 * | 0.115 |
ΔDIGIT | - | - | −0.317 * | 0.063 |
ΔURB | −9.322 | 6.097 | ||
ECT (−1) | −0.691 * | 0.079 | −0.739 * | 0.082 |
Long Term | Medium Term | Short Term | ||||
---|---|---|---|---|---|---|
T-Stat | p-Value | T-Stat | p-Value | T-Stat | p-Value | |
GDP → CO2 | 6.278 ** | 0.043 | 3.590 | 0.166 | 0.947 | 0.623 |
CO2 → GDP | 4.707 *** | 0.095 | 6.024 ** | 0.049 | 9.505 * | 0.008 |
EF → GDP | 7.024 ** | 0.029 | 11.028 * | 0.002 | 10.375 | 0.005 |
GDP → EF | 8.560 ** | 0.013 | 0.805 | 0.668 | 0.219 | 0.896 |
NGAS → CO2 | 2.648 | 0.266 | 5.173 *** | 0.075 | 2.404 | 0.300 |
CO2 → NGAS | 10.992 | 0.004 | 8.399 ** | 0.015 | 8.840 ** | 0.012 |
NGAS → EF | 1.075 | 0.584 | 8.093 ** | 0.017 | 8.062 ** | 0.018 |
EF → NGAS | 6.487 ** | 0.039 | 0.596 | 0.742 | 0.517 | 0.772 |
CO2 → HE | 8.244 * | 0.016 | 3.527 | 0.171 | 2.853 | 0.240 |
HE → CO2 | 11.359 * | 0.003 | 5.005 *** | 0.082 | 2.336 | 0.311 |
HE → EF | 9.853 * | 0.007 | 8.863 ** | 0.012 | 2.734 | 0.255 |
EF → HE | 5.126 *** | 0.077 | 5.471 *** | 0.065 | 6.812 | 0.033 |
URB → CO2 | 5.751 *** | 0.056 | 7.151 ** | 0.028 | 9.067 ** | 0.011 |
CO2 → URB | 5.885 *** | 0.052 | 3.076 | 0.215 | 3.104 | 0.212 |
URB → EF | 0.521 | 0.770 | 5.444 *** | 0.065 | 5.212 *** | 0.073 |
EF → URB | 3.393 | 0.183 | 8.651 ** | 0.013 | 4.190 | 0.123 |
CO2 → DIGIT | 8.896 ** | 0.012 | 5.273 *** | 0.072 | 4.657 *** | 0.097 |
DIGIT → CO2 | 7.298 ** | 0.026 | 2.785 | 0.248 | 1.909 | 0.384 |
DIGIT → EF | 4.892 *** | 0.086 | 5.110 *** | 0.077 | 1.063 | 0.587 |
EF → DIGIT | 5.886 *** | 0.053 | 6.418 ** | 0.040 | 5.554 *** | 0.062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmanaei, H.M.S.; Khalifa, W.M.S.; Berberoğlu, A. Unpacking How Natural Gas, Digital Growth, and Hydro-Based Energy Sources Impact Ecological Sustainability in Egypt. Energies 2024, 17, 6230. https://doi.org/10.3390/en17246230
Elmanaei HMS, Khalifa WMS, Berberoğlu A. Unpacking How Natural Gas, Digital Growth, and Hydro-Based Energy Sources Impact Ecological Sustainability in Egypt. Energies. 2024; 17(24):6230. https://doi.org/10.3390/en17246230
Chicago/Turabian StyleElmanaei, Hala Mohamed Sh, Wagdi M. S. Khalifa, and Ayşen Berberoğlu. 2024. "Unpacking How Natural Gas, Digital Growth, and Hydro-Based Energy Sources Impact Ecological Sustainability in Egypt" Energies 17, no. 24: 6230. https://doi.org/10.3390/en17246230
APA StyleElmanaei, H. M. S., Khalifa, W. M. S., & Berberoğlu, A. (2024). Unpacking How Natural Gas, Digital Growth, and Hydro-Based Energy Sources Impact Ecological Sustainability in Egypt. Energies, 17(24), 6230. https://doi.org/10.3390/en17246230