New Fuels and Advanced Combustion Modes for Innovative Internal Combustion Engines: An Overview
Abstract
1. Introduction
2. New Fuels for ICEs
3. Additives for ICEs Fed with Conventional Fuels
4. CFD Simulation for the Analysis and Design of ICE Components
Conflicts of Interest
References
- Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER editorial: The future of the internal combustion engine. Int. J. Engine Res. 2020, 21, 3–10. [Google Scholar] [CrossRef]
- El-Adawy, M.; Nemitallah, M.A.; Abdelhafez, A. Towards sustainable hydrogen and ammonia internal combustion engines: Challenges and opportunities. Fuel 2024, 364, 131090. [Google Scholar] [CrossRef]
- Benajes, J.; García, A.; Monsalve-Serrano, J.; Guzmán-Mendoza, M. A review on low carbon fuels for road vehicles: The good, the bad and the energy potential for the transport sector. Fuel 2024, 361, 130647. [Google Scholar] [CrossRef]
- Dell’aversano, S.; Villante, C.; Gallucci, K.; Vanga, G.; Di Giuliano, A. E-Fuels: A Comprehensive Review of the Most Promising Technological Alternatives towards an Energy Transition. Energies 2024, 17, 3995. [Google Scholar] [CrossRef]
- Caliskan, H.; Yildiz, I.; Mori, K. Biofuels combustion in internal combustion engines. In Advances in Biofuels Production, Optimization and Applications; Elsevier: Amsterdam, The Netherlands, 2024; pp. 185–205. [Google Scholar]
- Manzoor, M.U.; Dou, X.; Yosri, M.; Talei, M.; Yang, Y. Capturing different modes of hydrogen combustion in a spark-ignition engine using numerical simulations. Fuel 2024, 375, 132343. [Google Scholar] [CrossRef]
- Galloni, E.; Lanni, D.; Fontana, G.; D’antuono, G.; Stabile, S. Performance Estimation of a Downsized SI Engine Running with Hydrogen. Energies 2022, 15, 4744. [Google Scholar] [CrossRef]
- Li, X.; Zhuang, Y.; Wang, Y.; Zhu, Z.; Qian, Y.; Zhai, R. An experimental investigation on the lean-burn characteristics of a novel hydrogen fueled spark ignition engine: Hydrogen injection via a micro-hole on the spark plug. Int. J. Hydrogen Energy 2024, 57, 990–999. [Google Scholar] [CrossRef]
- Matla, J.; Kaźmierczak, A.R.; Haller, P.; Trocki, M. Hydrogen as a fuel for spark ignition combustion engines-state of knowledge and concept. Combust. Engines 2024, 196, 73–79. [Google Scholar] [CrossRef]
- Rueda-Vázquez, J.M.; Serrano, J.; Pinzi, S.; Jiménez-Espadafor, F.J.; Dorado, M.P. A Review of the Use of Hydrogen in Compression Ignition Engines with Dual-Fuel Technology and Techniques for Reducing NOx Emissions. Sustainability 2024, 16, 3462. [Google Scholar] [CrossRef]
- Onorati, A.; Payri, R.; Vaglieco, B.; Agarwal, A.; Bae, C.; Bruneaux, G.; Canakci, M.; Gavaises, M.; Günthner, M.; Hasse, C.; et al. The role of hydrogen for future internal combustion engines. Int. J. Engine Res. 2022, 23, 529–540. [Google Scholar] [CrossRef]
- Pinzón, M.; García-Carpintero, R.; de la Osa, A.; Romero, A.; Abad-Correa, D.; Sánchez, P. Ammonia as a hydrogen carrier: An energy approach. Energy Convers. Manag. 2024, 321, 118998. [Google Scholar] [CrossRef]
- Lhuillier, C.; Brequigny, P.; Contino, F.; Rousselle, C. Combustion Characteristics of Ammonia in a Modern Spark-Ignition Engine; SAE Technical Paper No. 2019-24-0237; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Lhuillier, C.; Brequigny, P.; Contino, F.; Mounaïm-Rousselle, C. Experimental investigation on ammonia combustion behavior in a spark-ignition engine by means of laminar and turbulent expanding flames. Proc. Combust. Inst. 2021, 38, 5859–5868. [Google Scholar] [CrossRef]
- D’Antuono, G.; Galloni, E.; Lanni, D.; Contino, F.; Brequigny, P.; Mounaïm-Rousselle, C. Assessment of combustion development and pollutant emissions of a spark ignition engine fueled by ammonia and ammonia-hydrogen blends. Int. J. Hydrogen Energy 2024, 85, 191–199. [Google Scholar] [CrossRef]
- Lhuillier, C.; Brequigny, P.; Contino, F.; Rousselle, C. Performance and Emissions of an Ammonia-Fueled SI Engine with Hydrogen Enrichment; SAE Technical Paper No. 2019-24-0137; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Lee, J.; Jang, Y.; Park, C.; Kim, Y.; Choi, Y. Operable range extension of ammonia direct injection spark ignition engine by hydrogen addition. Int. J. Hydrogen Energy 2024, 58, 1631–1639. [Google Scholar] [CrossRef]
- D’Antuono, G.; Lanni, D.; Galloni, E.; Fontana, G. Numerical Modeling and Simulation of a Spark-Ignition Engine Fueled with Ammonia-Hydrogen Blends. Energies 2023, 16, 2543. [Google Scholar] [CrossRef]
- Uddeen, K.; Tang, Q.; Shi, H.; Magnotti, G.; Turner, J. A novel multiple spark ignition strategy to achieve pure ammonia combustion in an optical spark-ignition engine. Fuel 2023, 349, 128741. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, J. Preliminary assessment of the potential for rapid combustion of pure ammonia in engine cylinders using the multiple spark ignition strategy. Int. J. Hydrogen Energy 2024, 55, 375–385. [Google Scholar] [CrossRef]
- Zhang, B.; Rubio, M.; Egolfopoulos, F.; Cronin, S.B. Stable combustion of ammonia in an internal combustion engine: A single fuel approach enabled by multi-pulse transient plasma ignition. Fuel 2025, 381, 133502. [Google Scholar] [CrossRef]
- Dimitriou, P.; Javaid, R. A review of ammonia as a compression ignition engine fuel. Int. J. Hydrogen Energy 2020, 45, 7098–7118. [Google Scholar] [CrossRef]
- Malik, M.A.I.; Kalam, M.; Abbas, M.M.; Silitonga, A.S.; Ikram, A. Recent advancements, applications, and technical challenges in fuel additives-assisted engine operations. Energy Convers. Manag. 2024, 313, 118643. [Google Scholar] [CrossRef]
- Zhou, W. HCCI Technology: Operating Principles, Advantages, Challenges, and Future Prospects. Highlights Sci. Eng. Technol. 2024, 88, 585–592. [Google Scholar] [CrossRef]
- Paykani, A.; Garcia, A.; Shahbakhti, M.; Rahnama, P.; Reitz, R.D. Reactivity controlled compression ignition engine: Pathways towards commercial viability. Appl. Energy 2021, 282, 116174. [Google Scholar] [CrossRef]
- Zhu, S.; Akehurst, S.; Lewis, A.; Yuan, H. A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines. Renew. Sustain. Energy Rev. 2022, 154, 111872. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, B.; Akehurst, S.; Copeland, C.; Lewis, A.; Yuan, H.; Kennedy, I.; Bernards, J.; Branney, C. A review of water injection applied on the internal combustion engine. Energy Convers. Manag. 2019, 184, 139–158. [Google Scholar] [CrossRef]
- Wan, J.; Zhuang, Y.; Huang, Y.; Qian, Y.; Qian, L. A review of water injection application on spark-ignition engines. Fuel Process. Technol. 2021, 221, 106956. [Google Scholar] [CrossRef]
- Lanni, D.; Galloni, E.; Fontana, G. Numerical analysis of the effects of port water injection in a downsized SI engine at partial and full load operation. Appl. Therm. Eng. 2022, 205, 118060. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, T.; Xiao, D.; Xu, H.; Li, X.; Xu, M. Effect of port water injection on the characteristics of combustion and emissions in a spark ignition direct injection engine. Fuel 2021, 283, 119271. [Google Scholar] [CrossRef]
- Fratita, M.; Popescu, F.; Martins, J.; Brito, F.; Costa, T. Direct water injection and combustion time in SI engines. Energy Rep. 2021, 7, 798–803. [Google Scholar] [CrossRef]
- Lanni, D.; Galloni, E. Direct Water Injection Strategies for Performance Improvement of a Turbocharged Spark-Ignition Engine at High Load Operation; SAE Technical Paper No. 2022-37-0007; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Lanni, D.; Galloni, E.; Fontana, G.; Erme, G. Experimental and Numerical Analyses of Direct and Port Water Injection in a Turbocharged Spark-Ignition Engine; SAE Technical Paper 2021-24-0035; SAE International: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Lanni, D.; Galloni, E.; Fontana, G.; D’Antuono, G. Assessment of the Operation of an SI Engine Fueled with Ammonia. Energies 2022, 15, 8583. [Google Scholar] [CrossRef]
- Tutak, W.; Jamrozik, A.; Grab-Rogaliński, K. Co-Combustion of Hydrogen with Diesel and Biodiesel (RME) in a Dual-Fuel Compression-Ignition Engine. Energies 2023, 16, 4892. [Google Scholar] [CrossRef]
- Tutak, W.; Pyrc, M.; Gruca, M.; Jamrozik, A. Ammonia Combustion in a Spark-Ignition Engine Supported with Dimethyl Ether. Energies 2023, 16, 7283. [Google Scholar] [CrossRef]
- Arsie, I.; Battistoni, M.; Brancaleoni, P.P.; Cipollone, R.; Corti, E.; Di Battista, D.; Millo, F.; Occhicone, A.; Peiretti Paradisi, B.; Rolando, L.; et al. A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future. Energies 2024, 17, 34. [Google Scholar] [CrossRef]
- Kolahchian Tabrizi, M.; Cerri, T.; Bonalumi, D.; Lucchini, T.; Brenna, M. Retrofit of Diesel Engines with H2 for Potential Decarbonization of Non-Electrified Railways: Assessment with Lifecycle Analysis and Advanced Numerical Modeling. Energies 2024, 17, 996. [Google Scholar] [CrossRef]
- Catapano, F.; Di Iorio, S.; Magno, A.; Sementa, P.; Vaglieco, B.M. A Complete Assessment of the Emission Performance of an SI Engine Fueled with Methanol, Methane and Hydrogen. Energies 2024, 17, 1026. [Google Scholar] [CrossRef]
- Gill, A.; Pielecha, I.; Szwajca, F. A New Method of Failure Mode and Severity Effects Analysis for Hydrogen-Fueled Combustion Systems. Energies 2024, 17, 4802. [Google Scholar] [CrossRef]
- Chivu, R.M.; Martins, J.; Popescu, F.; Uzuneanu, K.; Ion, I.V.; Goncalves, M.; Codău, T.-C.; Onofrei, E.; Brito, F.P. Turpentine as an Additive for Diesel Engines: Experimental Study on Pollutant Emissions and Engine Performance. Energies 2023, 16, 5150. [Google Scholar] [CrossRef]
- Marchitto, L.; Costagliola, M.A.; Berra, A. Influence of Performance Packages on Fuel Consumption and Exhaust Emissions of Passenger Cars and Commercial Vehicles under WLTP. Energies 2024, 17, 3356. [Google Scholar] [CrossRef]
- Martos, F.J.; Soriano, J.A.; Braic, A.; Fernández-Yáñez, P.; Armas, O. A CFD Modelling Approach for the Operation Analysis of an Exhaust Backpressure Valve Used in a Euro 6 Diesel Engine. Energies 2023, 16, 4112. [Google Scholar] [CrossRef]
- Jeong, S.-J. CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review. Energies 2024, 17, 4696. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanni, D.; Galloni, E. New Fuels and Advanced Combustion Modes for Innovative Internal Combustion Engines: An Overview. Energies 2024, 17, 6228. https://doi.org/10.3390/en17246228
Lanni D, Galloni E. New Fuels and Advanced Combustion Modes for Innovative Internal Combustion Engines: An Overview. Energies. 2024; 17(24):6228. https://doi.org/10.3390/en17246228
Chicago/Turabian StyleLanni, Davide, and Enzo Galloni. 2024. "New Fuels and Advanced Combustion Modes for Innovative Internal Combustion Engines: An Overview" Energies 17, no. 24: 6228. https://doi.org/10.3390/en17246228
APA StyleLanni, D., & Galloni, E. (2024). New Fuels and Advanced Combustion Modes for Innovative Internal Combustion Engines: An Overview. Energies, 17(24), 6228. https://doi.org/10.3390/en17246228