The Use of Renewable Energy Sources in Households in Poland—Current Status and Prospects for the Development of Energy Prosumption
Abstract
:1. Introduction
2. Literature Review
- No more than 56% of coal in electricity generation in 2030.
- At least 23% RES in gross final energy consumption in 2030.
- Implementation of nuclear power in 2033.
- Reduction in GHG emissions by 30% by 2030 (compared to 1990).
- Reduction in primary energy consumption by 23% by 2030 (compared to PRIMES forecasts from 2007).
3. Materials and Methods
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zaremba-Warnke, S. Marketing Ekologiczny; Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu: Wrocław, Poland, 2009. [Google Scholar]
- Siedlecka, A. Środowiskowe Aspekty Funkcjonowania Wiejskich Gospodarstw Domowych na Obszarach Przyrodniczo Cennych Województwa Lubelskiego; Wydawnictwo PSW JPII: Biała Podlaska, Poland, 2015. [Google Scholar]
- Graczyk, A.M. The profile of Polish prosumer and its political background. Econ. Environ. Stud. 2016, 16, 35–48. [Google Scholar]
- Biadacz, R.; Wysłocka, E. Wykorzystanie odnawialnych źródeł energii przez gospodarstwa domowe. Przegląd Organ. 2014, 9, 30–36. [Google Scholar] [CrossRef]
- Toffler, A. The Third Wave; Bantam Books: New York, NY, USA, 1980. [Google Scholar]
- Sharma, V.; Dash, M. Household energy use pattern in rural India: A path towards sustainable development. Environ. Chall. 2022, 6, 100404. [Google Scholar] [CrossRef]
- Huang, J.; Li, W.; Guo, L.; Hu, X.; Hall, J.W. Renewable energy and household economy in rural China. Renew. Energy 2020, 155, 669–676. [Google Scholar] [CrossRef]
- Guta, D.D. Determinants of household use of energy-efficient and renewable energy technologies in rural Ethiopia. Technol. Soc. 2020, 61, 101249. [Google Scholar] [CrossRef]
- Roth, A.; Boix, M.; Gerbaud, V.; Montastruc, L.; Etur, P. Impact of taxes and investment incentive on the development of renewable energy self-consumption: French households’ case study. J. Clean. Prod. 2020, 265, 121791. [Google Scholar] [CrossRef]
- Baul, T.K.; Datta, D.; Alam, A. A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh. Energy Policy 2018, 114, 598–608. [Google Scholar] [CrossRef]
- Singlitico, A.; Dussan, K.; O’Shea, R.; Wall, D.; Goggins, J.; Murphy, J.D.; Monaghan, R.F.D. Can thermal energy recovery from digestate make renewable gas from household waste more cost effective? A case study for the Republic of Ireland. J. Clean. Prod. 2020, 261, 121198. [Google Scholar] [CrossRef]
- Graczyk, A.M. Wykorzystanie odnawialnych źródeł energii w gospodarstwach domowych na Dolnym Śląsku. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2016, 453, 190–198. [Google Scholar]
- Zalega, T. Wykorzystanie odnawialnych źródeł energii w gospodarstwach domowych seniorów w Polsce w świetle wyników badań własnych. In Rola Odnawialnych Źródeł Energii w Rozwoju Społeczno-Ekonomicznym Kraju i Regionu; Nowak, A.Z., Szałański, M., Zborowska, W., Eds.; Wydział Zarządzania Uniwersytetu Warszawskiego: Warsaw, Poland, 2016; pp. 48–68. [Google Scholar]
- Ropuszyńska-Surma, E.; Węglarz, M. Profiling end user of renewable energy sources among residential consumers in Poland. Sustainability 2018, 10, 4452. [Google Scholar] [CrossRef]
- Piekut, M.; Valentukevičienė, M. Rola odnawialnych źródeł energii w Unii Europejskiej a sektor gospodarstw domowych. In Wybrane Zagadnienia Inżynierii Lądowej, Mechanicznej, Transportu i Zarządzania; Piekut, M., Szczucka-Lasota, B., Eds.; Politechnika Warszawska: Warsaw, Poland, 2019; pp. 128–136. [Google Scholar]
- Gorka, K. Wykorzystanie energii słonecznej do podgrzewania wody w gospodarstwach domowych. Odnawialne źródła energii. Aura 1990, 11, 28. [Google Scholar]
- Leal Filho, W.; Trevisan, L.V.; Salvia, A.L.; Mazutti, J.; Dibbern, T.; de Maya, S.R.; Bernal, E.F.; Eustachio, J.H.P.P.; Sharifi, A.; Alarcón-del-Amo, M.C.; et al. Prosumers and sustainable development: An international assessment in the field of renewable energy. Sustain. Futures 2024, 7, 100158. [Google Scholar] [CrossRef]
- Bessa, R.J.; Rua, D.; Abreu, C.; Gonçalves, C.; Reis, M. Data economy for prosumers in a smart grid ecosystem. In Proceedings of the e-Energy’18: The Ninth International Conference on Future Energy Systems, Karlsruhe, Germany, 12–15 June 2018; pp. 622–630. [Google Scholar]
- Kurz, D.; Nowak, A. Analysis of the Impact of the Level of Self-Consumption of Electricity from a Prosumer Photovoltaic Installation on Its Profitability under Different Energy Billing Scenarios in Poland. Energies 2023, 16, 946. [Google Scholar] [CrossRef]
- Borowski, P.F. Digital Transformation and Prosumers Activities in the Energy Sector. Lect. Notes Netw. Syst. 2023, 549, 129–150. [Google Scholar] [CrossRef]
- Muqeet, H.A.; Munir, H.M.; Javed, H.; Shahzad, M.; Jamil, M.; Guerrero, J.M. An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges. Energies 2021, 14, 6525. [Google Scholar] [CrossRef]
- Tenti, P.; Caldognetto, T. Integration of Local and Central Control Empowers Cooperation among Prosumers and Distributors towards Safe, Efficient, and Cost-Effective Operation of Microgrids. Energies 2023, 16, 2320. [Google Scholar] [CrossRef]
- Chen, B.; Xu, Q.; Zhao, Q.; Guo, X.; Zhang, Y.; Chi, J.; Li, C. A Prosumer Power Prediction Method Based on Dynamic Segmented Curve Matching and Trend Feature Perception. Sustainability 2023, 15, 3376. [Google Scholar] [CrossRef]
- Kuźmiński, Ł.; Halama, A.; Nadolny, M.; Dynowska, J. Economic Instruments and the Vision of Prosumer Energy in Poland. Analysis of the Potential Impacts of the “My Electricity” Program. Energies 2023, 16, 1680. [Google Scholar] [CrossRef]
- Jakimowicz, A. The Energy Transition as a Super Wicked Problem: The Energy Sector in the Era of Prosumer Capitalism. Energies 2022, 15, 9109. [Google Scholar] [CrossRef]
- Eon, C.; Morrison, G.M.; Byrne, J. The influence of design and everyday practices on individual heating and cooling behaviour in residential homes. Energy Effic. 2018, 11, 273–293. [Google Scholar] [CrossRef]
- Chen, C.-F.; Xu, X.; Arpan, L. Between the technology acceptance model and sustainable energy technology acceptance model: Investigating smart meter acceptance in the United States. Energy Res. Soc. Sci. 2017, 25, 93–104. [Google Scholar] [CrossRef]
- Jensen, C.L.; Goggins, G.; Fahy, F.; Grealis, E.; Vadovics, E.; Genus, A.; Rau, H. Towards a practice-theoretical classification of sustainable energy consumption initiatives: Insights from social scientific energy research in 30 European countries. Energy Res. Soc. Sci. 2018, 45, 297–306. [Google Scholar] [CrossRef]
- Trotta, G. Factors affecting energy-saving behaviours and energy efficiency investments in British households. Energy Policy 2018, 114, 529–539. [Google Scholar] [CrossRef]
- Andor, M.A.; Fels, K.M. Behavioral economics and energy conservation—A systematic review of non-rice interventions and their causal effects. Ecol. Econ. 2018, 148, 178–210. [Google Scholar] [CrossRef]
- Paone, A.; Bacher, J.-P. The impact of building occupant behavior on energy efficiency and methods to influence it: A review of the state of the art. Energies 2018, 11, 953. [Google Scholar] [CrossRef]
- Siedlecka, A.; Graszko, B. Odnawialne źródła energii jako narzędzie oddziaływania na jakość życia gospodarstw domowych. Rocz. Nauk. Stowarzyszenia Ekon. Rol. I Agrobiznesu 2016, 18, 237–242. [Google Scholar]
- Rodrigues, S.D.; Garcia, V.J. Transactive energy in microgrid communities: A systematic review. Renew. Sustain. Energy Rev. 2023, 171, 112999. [Google Scholar] [CrossRef]
- Bieszk-Stolorz, B. Impact of Subsidy Programmes on the Development of the Number and Output of RES Micro-Installations in Poland. Energies 2022, 15, 9357. [Google Scholar] [CrossRef]
- Wicki, L.; Pietrzykowski, R.; Kusz, D. Factors Determining the Development of Prosumer Photovoltaic Installations in Poland. Energies 2022, 15, 5897. [Google Scholar] [CrossRef]
- Gronier, T.; Franquet, E.; Gibout, S. Platform for transverse evaluation of control strategies for multi-energy smart grids. Smart Energy 2022, 7, 100079. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; Liao, H.; Liang, G.; Zhao, J. An improved carbon emission flow method for the power grid with prosumers. Energy Rep. 2023, 9, 114–121. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Rezaee Jordehi, A.; Icaza, D.; Mansouri, S.A.; Jurado, F. Optimal participation of prosumers in energy communities through a novel stochastic-robust day-ahead scheduling model. Int. J. Electr. Power Energy Syst. 2023, 147, 108854. [Google Scholar] [CrossRef]
- Postnikov, I. Methods for the reliability optimization of district-distributed heating systems with prosumers. Energy Rep. 2023, 9, 584–593. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Mu, Y.; Deng, Y.; Jia, H. Rolling horizon optimization for real-time operation of prosumers with Peer-to-Peer energy trading. Energy Rep. 2023, 9, 321–328. [Google Scholar] [CrossRef]
- Klepacka, A.M.; Florkowski, W.J.; Meng, T. Clean, accessible, and cost-saving: Reasons for rural household investment in solar panels in Poland. Resour. Conserv. Recycl. 2018, 139, 338–350. [Google Scholar] [CrossRef]
- Dudek, T. The Impacts of the Energy Potential of Forest Biomass on the Local Market: An Example of South-Eastern Poland. Energies 2020, 13, 4985. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Cheng, G.; Zhu, J.; Che, Y. Grid-friendly energy prosumers based on the energy router with load switching functionality. Int. J. Electr. Power Energy Syst. 2023, 144, 108496. [Google Scholar] [CrossRef]
- Volpato, G.; Carraro, G.; Cont, M.; Rech, S.; Lazzaretto, A. General guidelines for the optimal economic aggregation of prosumers in energy communities. Energy 2022, 258, 124800. [Google Scholar] [CrossRef]
- Ren, Z.; Verbič, G.; Guerrero, J. Multi-period dynamic tariffs for prosumers participating in virtual power plants. Electr. Power Syst. Res. 2022, 212, 108478. [Google Scholar] [CrossRef]
- Li, R.; Yan, X.; Liu, N. Hybrid energy sharing considering network cost for prosumers in integrated energy systems. Appl. Energy 2022, 323, 119627. [Google Scholar] [CrossRef]
- Zomorodi Moghadam, A.; Javidi, M.H. Designing a two-stage transactive energy system for future distribution networks in the presence of prosumers’ P2P transactions. Electr. Power Syst. Res. 2022, 211, 108202. [Google Scholar] [CrossRef]
- Lomascolo-Pujadó, A.; Martínez-García, H. Contribution to Collaborative Electricity Microgrid Management Strategies of Domestic Prosumers. Renew. Energy Power Qual. J. 2022, 20, 635–640. [Google Scholar] [CrossRef]
- Sotnyk, I.; Kurbatova, T.; Trypolska, G.; Sokhan, I.; Koshel, V. Research trends on development of energy efficiency and renewable energy in households: A bibliometric analysis. Environ. Econ. 2023, 14, 13–27. [Google Scholar] [CrossRef]
- Jahangir, M.H.; Shahsavari, A.; Vaziri Rad, M.A. Feasibility study of a zero emission PV/Wind turbine/Wave energy converter hybrid system for standalone power supply: A case study. J. Clean. Prod. 2020, 262, 121250. [Google Scholar] [CrossRef]
- Hassan, Q. Evaluation and optimization of off-grid and ongrid photovoltaic power system for typical household electrification. Renew. Energy 2021, 164, 375–390. [Google Scholar] [CrossRef]
- Hensgen, F.; Richter, F.; Wachendorf, M. Integrated generation of solid fuel and biogas from green cut material from landscape conservation and private households. Bioresour. Technol. 2011, 102, 10441–10450. [Google Scholar] [CrossRef]
- Tonini, D.; Dorini, G.; Astrup, T.F. Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process. Appl. Energy 2014, 121, 64–78. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Newell, P.J.; Carley, S. Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat. Hum. Behav. 2022, 6, 326–337. [Google Scholar] [CrossRef]
- Campos, I.; Marín-González, E. People in transitions: Energy citizenship, prosumerism and social movements in Europe. Energy Res. Soc. Sci. 2020, 69, 101718. [Google Scholar] [CrossRef]
- Gajdzik, B.; Jaciow, M.; Wolniak, R.; Wolny, R.; Grebski, W.W. Energy Behaviors of Prosumers in Example of Polish Households. Energies 2023, 16, 3186. [Google Scholar] [CrossRef]
- Ministerstwo Klimatu i Środowiska. Polityka Energetyczna Polski do 2040 r. Available online: https://www.gov.pl/web/klimat/polityka-energetyczna-polski (accessed on 23 October 2024).
- Eurostat. Share of Renewable Energy in Gross Final Energy Consumption by Sector. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_07_40__custom_12831996/default/table?lang=en (accessed on 23 October 2024).
- Statistics Poland. Energia 2024. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5485/1/12/1/energia_2024.pdf (accessed on 23 October 2024).
- Statistics Poland. Energia ze Źródeł Odnawialnych w 2022 Roku. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5485/3/17/1/energia_ze_zrodel_odnawialnych_w_2022_r.pdf (accessed on 23 October 2024).
- Statistics Poland. Efektywność Wykorzystania Energii w Latach 2012–2022. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5485/9/7/1/efektywnosc_wykorzystania_energii_w_latach_2012-2022_2.pdf (accessed on 23 October 2024).
- Energy.instrat.pl. Produkcja Energii Elektrycznej ze Źródeł Emisyjnych i Bezemisyjnych (OZE). Available online: https://energy.instrat.pl/system-elektroenergetyczny/produkcja-udzial-oze/ (accessed on 23 October 2024).
- Statistics Poland. Zużycie Nośników Energii w Gospodarstwach Domowych w 2021 r. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5485/13/1/1/zuzycie_nosnikow_energii_w_gospodarstwach_domowych_w_2021_r..pdf (accessed on 23 October 2024).
Specification | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|
Wind | 12,798.8 | 15,106.8 | 15,800.0 | 16,233.5 | 19,779.5 |
Solar photovoltaic | 300.5 | 710.7 | 1957.9 | 3934.4 | 8309.7 |
Solid biofuels | 5333.2 | 6441.2 | 6932.8 | 6398.4 | 5934.1 |
Hydro energy | 1970.0 | 1958.4 | 2118.3 | 2339.2 | 1968.2 |
Biogas | 1127.6 | 1135.0 | 1233.9 | 1307.3 | 1394.2 |
Municipal waste | 85.0 | 104.8 | 181.8 | 353.8 | 301.6 |
Bioliquids | 2.0 | 2.0 | 1.9 | 1.7 | 1.3 |
Energy Carriers | Use of Energy Carriers (in %) | ||
---|---|---|---|
For Heating the Apartment | For Water Heating | For Cooking | |
Electricity | 2.1 | 19.7 | 82.0 |
District heating | 52.2 | X | X |
District hot water | X | 41.1 | X |
Natural gas | 13.9 | 24.7 | 52.7 |
Liquefied gas | 0.7 | 1.1 | 30.5 |
Fuel oil | 0.3 | 0.2 | X |
Coal | 16.5 | 13.2 | 0.5 |
Lignite | 0.4 | 0.1 | 0.0 |
Coke | 0.2 | 0.1 | X |
Fuelwood | 11.3 | 11.9 | 1.4 |
Other types of biomass | 1.9 | 1.4 | 0.0 |
Solar energy | 0.1 | 2.5 | X |
Heat pump | 0.6 | 0.5 | X |
Variable | Value | n 1 | % |
---|---|---|---|
Sex | Men | 537 | 48.29 |
Woman | 575 | 51.71 | |
Place of residence | Village | 401 | 36.06 |
City with up to 20,000 inhabitants | 245 | 22.03 | |
City with 20,001 to 99,999 inhabitants | 158 | 14.21 | |
City with 100,000 to 499,999 inhabitants | 155 | 13.94 | |
City with over 500,000 inhabitants | 153 | 13.76 | |
Age | 18–24 years old | 86 | 7.73 |
25–34 years old | 183 | 16.46 | |
35–44 years old | 226 | 20.32 | |
45–54 years old | 176 | 15.83 | |
55–64 years old | 198 | 17.81 | |
65+ years old | 243 | 21.85 | |
Education | Elementary school | 36 | 3.24 |
Junior high school | 21 | 1.89 | |
Vocational school | 287 | 25.81 | |
High school | 410 | 36.87 | |
University | 358 | 32.19 | |
Income | up to PLN 1000 | 120 | 10.79 |
from PLN 1001 to PLN 2000 | 340 | 30.58 | |
from PLN 2001 to PLN 5000 | 563 | 50.63 | |
from PLN 5001 to PLN 8000 | 71 | 6.38 | |
above PLN 8000 | 18 | 1.62 |
Specification | % |
---|---|
Type of residential building | |
Multi-family building (e.g., apartment block) | 46.8 |
Single-family detached house | 46.5 |
Single-family house in a terraced or semi-detached building | 6.7 |
Ownership status of the property | |
I am the owner or co-owner | 62.0 |
A member of my family is the owner or co-owner | 25.2 |
I rent | 12.8 |
Specification | % |
---|---|
Fuelwood | 32.6 |
Coal (coal dust) | 25.7 |
Local heating network | 25.0 |
Natural gas from the network | 20.8 |
Electricity from the network | 12.0 |
Eco-pea coal | 10.2 |
Brushwood/branches | 10.0 |
Solar energy | 6.0 |
Coal briquettes | 5.9 |
Pellet fuel/woodchips | 5.1 |
Liquefied Petroleum Gas (LPG) | 3.6 |
Ambient energy/heat pump | 2.9 |
Other types of fuel | 2.3 |
Fuel oil | 1.8 |
Coke | 1.7 |
Other types of biomass | 0.5 |
Specification | % |
---|---|
Natural gas from the network | 24.1 |
Electricity from the network | 21.0 |
Local heating network | 20.2 |
Fuelwood | 19.1 |
Coal (coal dust) | 15.7 |
Solar energy | 7.6 |
Eco-pea coal | 6.4 |
Brushwood/branches | 6.2 |
Pellet fuel/woodchips | 4.1 |
Liquefied Petroleum Gas (LPG) | 3.3 |
Ambient energy/heat pump | 3.3 |
Coal briquettes | 3.1 |
Other types of fuel | 2.4 |
Fuel oil | 1.9 |
Coke | 1.1 |
Other types of biomass | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trębska, P.; Wysokiński, M.; Trocewicz, A.; Żurakowska-Sawa, J.; Tsybulska, J.; Płonka, A.; Bórawski, P.; Bełdycka-Bórawska, A. The Use of Renewable Energy Sources in Households in Poland—Current Status and Prospects for the Development of Energy Prosumption. Energies 2024, 17, 5935. https://doi.org/10.3390/en17235935
Trębska P, Wysokiński M, Trocewicz A, Żurakowska-Sawa J, Tsybulska J, Płonka A, Bórawski P, Bełdycka-Bórawska A. The Use of Renewable Energy Sources in Households in Poland—Current Status and Prospects for the Development of Energy Prosumption. Energies. 2024; 17(23):5935. https://doi.org/10.3390/en17235935
Chicago/Turabian StyleTrębska, Paulina, Marcin Wysokiński, Anna Trocewicz, Joanna Żurakowska-Sawa, Julia Tsybulska, Aleksandra Płonka, Piotr Bórawski, and Aneta Bełdycka-Bórawska. 2024. "The Use of Renewable Energy Sources in Households in Poland—Current Status and Prospects for the Development of Energy Prosumption" Energies 17, no. 23: 5935. https://doi.org/10.3390/en17235935
APA StyleTrębska, P., Wysokiński, M., Trocewicz, A., Żurakowska-Sawa, J., Tsybulska, J., Płonka, A., Bórawski, P., & Bełdycka-Bórawska, A. (2024). The Use of Renewable Energy Sources in Households in Poland—Current Status and Prospects for the Development of Energy Prosumption. Energies, 17(23), 5935. https://doi.org/10.3390/en17235935