Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection
Abstract
:1. Introduction
- Major malfunctions that cause downtime are reduced to a minimum.
- Costs of operation and maintenance are decreased.
- The equipment is maintained based on the system parameters.
- It increases the equipment’s lifespan and effectiveness.
- Reduces the frequency of downtime.
- Risks to employees are reduced.
- The stations operate within vibration, pressure, and temperature limits.
- The cost of maintenance drops by 50% to 80%.
- Equipment breakdowns are reduced by 50% to 80%.
- Reduces machine downtime by 50–80%.
- Overtime costs are reduced by 20% to 50%.
- Machine lifetime rises by 20% to 40%.
- Profits rise by 25% to 30%.
2. Related Work
- Studies on Hydro Turbines
- Using AI in the field of dams
3. Materials and Methods
3.1. Case Study
3.2. Data Collection and Description
3.3. Exploratory Data Analysis (EDA)
3.3.1. Correlation
3.3.2. System Stability Behavior Analysis
3.3.3. Cleaning Data
3.3.4. Data Normalization
3.3.5. Hot Reconfiguration and Encryption
3.4. Forecasting Methodology
3.4.1. Data Preprocessing
3.4.2. Recurrent Neural Network and Long Short-Term Memory (LSTM)
Recurrent Neural Networks (RNN)
Long Short-Term Memory (LSTM)
- Input Gate: Filters incoming information, allowing relevant data to enter the memory cell.
- Forget Gate: Helps the network forget previously stored information that is no longer needed, maintaining focus on new data.
- Output Gate: Decides whether the information in the memory cell should be outputted or retained.
Key Advantages
- RNNs: Suitable for tasks involving short-term dependencies in sequential data.
- LSTMs: Overcome the limitations of RNNs by efficiently handling long-term dependencies, making them ideal for complex sequential data tasks.
4. Results and Discussion
4.1. Prediction Results
4.1.1. Prediction Using RNN and LSTM Models with Adam Optimizer
4.1.2. Prediction Using LSTM, and RNN Algorithms with RMSprop Optimizer
4.1.3. Prediction Using LSTM and RNN Algorithms with Adagrad Optimizer
4.1.4. Prediction Using LSTM and RNN Algorithms with Adadelta Optimizer
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zolfaghari, M.; Golabi, M.R. Modeling and predicting the electricity production in hydropower using conjunction of wavelet transform, long short-term memory, and random forest models. Renew. Energy 2021, 170, 1367–1381. [Google Scholar] [CrossRef]
- Kartal, M.T.; Kılıç Depren, S.; Ayhan, F.; Depren, Ö. Impact of renewable and fossil fuel energy consumption on environmental degradation: Evidence from USA by nonlinear approaches. Int. J. Sustain. Dev. World Ecol. 2022, 29, 738–755. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Zhang, R.; Ouyang, S.; Wang, X.; Liao, X. Integrated optimization of hydroelectric energy in the upper and middle Yangtze River. Renew. Sustain. Energy Rev. 2015, 45, 481–512. [Google Scholar] [CrossRef]
- Varol, M. CO2 emissions from hydroelectric reservoirs in the Tigris River basin, a semi-arid region of southeastern Turkey. J. Hydrol. 2019, 569, 782–794. [Google Scholar] [CrossRef]
- Alagöz, İ.; Bulut, M.; Geylani, V.; Yıldırım, A. Importance of real-time hydro power plant condition monitoring systems and contribution to electricity production. Turk. J. Electr. Power Energy Syst. 2021, 1, 1–11. [Google Scholar] [CrossRef]
- Nadeau, M.J.; Kim, Y.D. World Energy Resources Charting the Upsurge in Hydropower Development. Technical Report; World Energy Council: London, UK, 2015; Available online: https://www.worldenergy.org/assets/downloads/World-Energy-Resources_Charting-the-Upsurge-in-Hydropower-Development_2015_Report2.pdf (accessed on 1 June 2024).
- Muhsen, A.A.; Szymański, G.M.; Mankhi, T.A.; Attiya, B. Selecting the most efficient maintenance approach using AHP multiple criteria decisions making at haditha hydropower plant. Zesz. Nauk. Politech. Poznańskiej Organ. I Zarządzanie 2018, 78, 113–136. [Google Scholar]
- Yaseen, Z.M.; Ameen, A.M.S.; Aldlemy, M.S.; Ali, M.; Abdulmohsin Afan, H.; Zhu, S.; Sami Al-Janabi, A.M.; Al-Ansari, N.; Tiyasha, T.; Tao, H. State-of-the art-powerhouse, dam structure, and turbine operation and vibrations. Sustainability 2020, 12, 1676. [Google Scholar] [CrossRef]
- Al-Hadeethi, M.M.; Mustafa, M.W.B.; Muhsen, A.A. Exploiting Renewable Energy in Iraq to Conquer the Problem of Electricity Shortage and Mitigate Greenhouse Gas Emissions. In Proceedings of the 9th Virtual International Conference on Science, Technology and Management in Energy. Complex System Research Centre, Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrad, Serbia, 23–24 November 2023. [Google Scholar]
- Muhsen, A.A.; Al-Malik, A.A.; Attiya, B.H.; Al-Hardanee, O.F.; Abdalazize, K.A. Modal analysis of Kaplan turbine in Haditha hydropower plant using ANSYS and SolidWorks. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: London, UK, 2021; Volume 1105, p. 012056. [Google Scholar]
- Proske, D. Comparison of dam failure frequencies and failure probabilities. Beton-Und Stahlbetonbau 2018, 113, 2–6. [Google Scholar] [CrossRef]
- Cleary, P.W.; Prakash, M.; Mead, S.; Tang, X.; Wang, H.; Ouyang, S. Dynamic simulation of dam-break scenarios for risk analysis and disaster management. Int. J. Image Data Fusion 2012, 3, 333–363. [Google Scholar] [CrossRef]
- Reza, G.; Dziedzic, M. An Improved Conceptual Bayesian Model for Dam Break Risk Assessment. In World Environmental and Water Resources Congress; ASCE: Reston, VA, USA, 2024; pp. 1002–1018. [Google Scholar]
- Wang, S.; Yang, B.; Chen, H.; Fang, W.; Yu, T. LSTM-based deformation prediction model of the embankment dam of the danjiangkou hydropower station. Water 2022, 14, 2464. [Google Scholar] [CrossRef]
- CIGRE Study Committee SC11, EG11.02. Hydrogenerator Failures-Results of the Survey. 2003. Available online: https://www.e-cigre.org/publications/detail/392-survey-of-hydrogenerator-failures.html (accessed on 15 June 2024).
- TEIAŞ (Turkish Electricity Transmission Co.). Turkey Electricity Production and Transmission Statistics. 2020. Available online: https://www.teias.gov.tr/tr-TR/turkiye-elektrik-uretim-iletim-istatistikleri (accessed on 26 January 2020).
- OBRUK HEPP. Available online: https://www.euas.gov.tr/en-US/power-plants/obruk-hepp (accessed on 24 June 2024).
- Kao, C.Y.; Loh, C.H. Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Struct. Control Health Monit. 2013, 20, 282–303. [Google Scholar] [CrossRef]
- Ghiasi, B.; Noori, R.; Sheikhian, H.; Zeynolabedin, A.; Sun, Y.; Jun, C.; Hamouda, M.; Bateni, S.M.; Abolfathi, S. Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams. Sci. Rep. 2022, 12, 4610. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Li, X.; Yang, B.; Wen, Z. Wavelet support vector machine-based prediction model of dam deformation. Mech. Syst. Signal Process. 2018, 110, 412–427. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Karimian, H.; Xiao, G.; Huang, J. A novel framework for prediction of dam deformation based on extreme learning machine and Lévy flight bat algorithm. J. Hydroinform. 2021, 23, 935–949. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Wang, Y.; Yu, G.; Wang, Y. Information set supported deep learning architectures for improving noisy image classification. Sci. Rep. 2023, 13, 4417. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Song, M.M.; Xiong, Z.C.; Zhong, J.H.; Xiao, S.G.; Tang, Y.H. Research on fault diagnosis method of planetary gearbox based on dynamic simulation and deep transfer learning. Sci. Rep. 2022, 12, 17023. [Google Scholar] [CrossRef] [PubMed]
- Asutkar, S.; Tallur, S. Deep transfer learning strategy for efficient domain generalisation in machine fault diagnosis. Sci. Rep. 2023, 13, 6607. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Li, P. Research on gearbox temperature field image fault diagnosis method based on transfer learning and deep belief network. Sci. Rep. 2023, 13, 6664. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Alam, M.S.B.; Hassan, M.; Rozbu, M.R.; Ishtiak, T.; Rafa, N.; Mofijur, M.; Shawkat Ali, A.B.M.; Gandomi, A.H. Deep learning modelling techniques: Current progress, applications, advantages, and challenges. Artif. Intell. Rev. 2023, 56, 13521–13617. [Google Scholar] [CrossRef]
- Dai, S.Z.; Li, L.; Li, Z.H. Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction. IEEE Access 2019, 7, 38287–38296. [Google Scholar] [CrossRef]
- Frame, J.M.; Kratzert, F.; Raney, A.; Rahman, M.; Salas, F.R.; Nearing, G.S. Post-processing the national water model with long short-term memory networks for streamflow predictions and model diagnostics. J. Am. Water Resour. Assoc. 2021, 57, 885–905. [Google Scholar] [CrossRef]
- Fan, D.Y.; Sun, H.; Yao, J.; Zhang, K.; Yan, X.; Sun, Z.X. Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy 2021, 220, 119708. [Google Scholar] [CrossRef]
- Yang, S.; Han, X.; Kuang, C.; Fang, W.; Zhang, J.; Yu, T. Comparative study on deformation prediction models of Wuqiangxi concrete gravity dam based on monitoring data. Comput. Model. Eng. Sci. 2022, 131, 49–72. [Google Scholar] [CrossRef]
- Qu, X.D.; Yang, J.; Chang, M. A deep learning model for concrete dam deformation prediction based on RS-LSTM. J. Sens. 2019, 2019, 4581672. [Google Scholar] [CrossRef]
- Ahmad, I.; Rashid, A. On-line monitoring of hydro power plants in Pakistan. Inf. Technol. J. 2007, 6, 919–923. [Google Scholar] [CrossRef]
- Lai, J.P.; Chang, Y.M.; Chen, C.H.; Pai, P.F. A survey of machine learning models in renewable energy predictions. Appl. Sci. 2020, 10, 5975. [Google Scholar] [CrossRef]
- Liu, Z.; Zou, S.; Zhou, L. Condition Monitoring System for Hydro Turbines Based on LabVIEW. In Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conference, Shanghai, China, 27–29 March 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Mohanta, R.K.; Chelliah, T.R.; Allamsetty, S.; Akula, A.; Ghosh, R. Sources of vibration and their treatment in hydro power stations-A review. Eng. Sci. Technol. Int. J. 2017, 20, 637–648. [Google Scholar] [CrossRef]
- CAS Dataloggers, (Vibration Monitoring System for Hydro Turbines). Available online: https://www.dataloggerinc.com/wp-content/uploads/2016/03/18-Vibration_Monitoring_System_for_Hydro_Turbines.pdf (accessed on 20 June 2024).
- Vijaya, K.K.; Surender, S. Industry Monitoring Robot using Arduino Uno with Matlab Interface. Adv. Robot. Autom. 2016, 5, 2–4. [Google Scholar] [CrossRef]
- Bansal, P.; Vedaraj, I.S.R. Monitoring and Analysis of Vibration Signal in Machine Tool Structures. Int. J. Eng. Dev. Res. 2014, 2, 2310–2317. [Google Scholar]
- Al-Hardanee, O.; Çankaya, İ.; Muhsen, A.; Canbolat, H. Design a control system for observing vibration and temperature of turbines. Indones. J. Electr. Eng. Comput. Sci. 2021, 24, 1437–1444. [Google Scholar] [CrossRef]
- Hammid, A.T.; Sulaiman, M.H.B.; Abdalla, A.N. Prediction of small hydropower plant power production in Himreen Lake dam (HLD) using artificial neural network. Alex. Eng. J. 2018, 57, 211–221. [Google Scholar] [CrossRef]
- Sun, L.; Liu, T.; Xie, Y.; Zhang, D.; Xia, X. Real-time power prediction approach for turbine using deep learning techniques. Energy 2021, 233, 121130. [Google Scholar] [CrossRef]
- Dao, F.; Zeng, Y.; Zou, Y.; Qian, J. Wear fault diagnosis in hydro-turbine via the incorporation of the IWSO algorithm optimized CNN-LSTM neural network. 2024; preprint. [Google Scholar]
- Yang, B.; Bo, Z.; Yawu, Z.; Xi, Z.; Dongdong, Z.; Yalan, J. The vibration trend prediction of hydropower units based on wavelet threshold denoising and bi-directional long short-term memory network. In Proceedings of the 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), Shenyang, China, 22–24 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 575–579. [Google Scholar]
- Gao, X.; Li, X.; Zhao, B.; Ji, W.; Jing, X.; He, Y. Short-term electricity load forecasting model based on EMD-GRU with feature selection. Energies 2019, 12, 1140. [Google Scholar] [CrossRef]
- Abumohsen, M.; Owda, A.Y.; Owda, M. Electrical load forecasting using LSTM, GRU, and RNN algorithms. Energies 2023, 16, 2283. [Google Scholar] [CrossRef]
- He, F.; Zhou, J.; Feng, Z.K.; Liu, G.; Yang, Y. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm. Appl. Energy 2019, 237, 103–116. [Google Scholar] [CrossRef]
- Jaramillo, M.; Pavón, W.; Jaramillo, L. Adaptive Forecasting in Energy Consumption: A Bibliometric Analysis and Review. Data 2024, 9, 13. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Z.; Wei, Z. Absolute logarithmic calibration for correlation coefficient with multiplicative distortion. Commun. Stat.-Simul. Comput. 2020, 52, 482–505. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Data Mining: The Textbook; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1. [Google Scholar]
- Punyani, P.; Gupta, R.; Kumar, A. A multimodal biometric system using match score and decision level fusion. Int. J. Inf. Technol. 2022, 14, 725–730. [Google Scholar] [CrossRef]
- Yuan, B.; He, B.; Yan, J.; Jiang, J.; Wei, Z.; Shen, X. Short-term electricity consumption forecasting method based on empirical mode decomposition of long-short term memory network. IOP Conf. Ser. Earth Environ. Sci. 2022, 983, 12004. [Google Scholar] [CrossRef]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A critical review of recurrent neural networks for sequence learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Dupond, S. A thorough review on the current advance of neural network structures. Annu. Rev. Control 2019, 14, 200–230. [Google Scholar]
- Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma Tech. Univ. München 1991, 91, 31. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Fan, H.; Jiang, M.; Xu, L.; Zhu, H.; Cheng, J.; Jiang, J. Comparison of long short-term memory networks and the hydrological model in runoff simulation. Water 2020, 12, 175. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
Time | Vib.U3 Lower Guide | Vib.U3 (Turbine Guide Bearing) | Vib.U3 (Upper Guide B.) | Unite Vib. Power | Vib.U3 Lower Guide | Vib.U3 (Turbine Guide Bearing) | Vib.U3 (Upper Guide B.) | Unite Vib. Power |
---|---|---|---|---|---|---|---|---|
8/9/2021 10:35 | 74.7 | 82.6 | 135 | 34.9 | 74.8 | 82.7 | 135 | 34.9 |
8/9/2021 10:40 | 76.0 | 79.4 | 129 | 34.8 | 76.1 | 79.5 | 129 | 34.8 |
8/9/2021 10:45 | 77.4 | 78.8 | 127 | 34.8 | 77.5 | 78.9 | 127 | 34.8 |
8/9/2021 10:50 | 75.3 | 82.4 | 124 | 35.5 | 75.4 | 82.4 | 124 | 35.5 |
8/9/2021 10:55 | 74.5 | 82.3 | 124 | 35.7 | 74.5 | 82.3 | 124 | 35.7 |
8/9/2021 11:00 | 74.5 | 81.8 | 123 | 35.8 | 74.5 | 81.9 | 123 | 35.8 |
8/9/2021 11:05 | 74.6 | 85.8 | 123 | 35.7 | 74.6 | 85.9 | 123 | 35.7 |
8/9/2021 11:10 | 74.3 | 82.2 | 123 | 35.7 | 74.3 | 82.3 | 123 | 35.7 |
8/9/2021 11:15 | 73.6 | 85.1 | 125 | 35.7 | 73.6 | 85.2 | 125 | 35.7 |
8/9/2021 11:20 | 73.5 | 86.9 | 126 | 35.7 | 73.5 | 86.10 | 126 | 35.7 |
Time | Head Cover Vacuum Pressure (MPa) | Main Shaft Sealing Pressure (MPa) | Draft Tube Inlet Pressure (MPa) | Draft Tube Exit Pressure (MPa) | Water Head Diff. Pressure (MPa) | Butterfly Valve Oil Pressure (MPa) | Governor Oil Pressure (MPa) |
---|---|---|---|---|---|---|---|
8/9/2021 10:35 | 0.161413 | 0.187875 | −0.0144 | 0.050831 | 0.6016 | 16.27969 | 6.19 |
8/9/2021 10:40 | 0.174763 | 0.188625 | −0.01363 | 0.051038 | 0.5957 | 16.14531 | 6.11 |
8/9/2021 10:45 | 0.176075 | 0.18835 | −0.01758 | 0.050925 | 0.6022 | 16.11094 | 6.06 |
8/9/2021 10:50 | 0.176525 | 0.189475 | −0.01465 | 0.051206 | 0.5983 | 16.07813 | 6.02 |
8/9/2021 10:55 | 0.1781 | 0.186775 | −0.01365 | 0.051338 | 0.593 | 16.07813 | 5.96 |
8/9/2021 11:00 | 0.178513 | 0.1885 | −0.01297 | 0.051431 | 0.5886 | 16.04375 | 5.93 |
8/9/2021 11:05 | 0.177613 | 0.188275 | −0.01522 | 0.051019 | 0.5995 | 16.04375 | 5.92 |
8/9/2021 11:10 | 0.180913 | 0.18665 | −0.01477 | 0.051094 | 0.5955 | 16.00781 | 5.89 |
8/9/2021 11:15 | 0.179638 | 0.187175 | −0.01463 | 0.051113 | 0.5832 | 16.00781 | 5.87 |
Time | Thrust Bearing Shoe Temp.1 (°C) | Upper Guide Bearing Shoe Temp.2 (°C) | Lower Guide Bearing Shoe Temp.1 (°C) | Lower Guide Bearing Shoe Temp.2 (°C) | Main Transformer Oil Temp. (°C) | Main Transformer Winding Temp. (°C) | G. Stator Temp. Z1 (°C) | G. Stator Temp. Z11 (°C) |
---|---|---|---|---|---|---|---|---|
8/9/2021 10:35 | 32.12813 | 38.52188 | 28.91251 | 27.69376 | 18.58125 | 22.71563 | 34.17 | 36.49 |
8/9/2021 10:40 | 31.93125 | 41.50313 | 29.50313 | 28.28438 | 18.77813 | 22.9125 | 36.65 | 39.33 |
8/9/2021 10:45 | 31.93125 | 42.4875 | 29.89688 | 28.67813 | 18.975 | 23.30625 | 38.24 | 41.45 |
8/9/2021 10:50 | 31.93125 | 43.07813 | 30.29063 | 28.875 | 19.36875 | 23.50313 | 39.65 | 43.05 |
8/9/2021 10:55 | 31.93125 | 43.47188 | 30.4875 | 29.07188 | 19.7625 | 23.89688 | 40.71 | 44.47 |
8/9/2021 11:00 | 32.12813 | 43.86563 | 30.4875 | 29.26875 | 20.55 | 24.88125 | 41.6 | 45.53 |
8/9/2021 11:05 | 32.12813 | 44.0625 | 30.68438 | 29.26875 | 21.73125 | 25.86563 | 42.31 | 46.24 |
8/9/2021 11:10 | 32.12813 | 44.25938 | 30.68438 | 29.46563 | 22.71563 | 27.04688 | 43.01 | 46.95 |
8/9/2021 11:15 | 32.12813 | 44.45625 | 30.88126 | 29.46563 | 23.89688 | 28.03125 | 43.54 | 47.66 |
8/9/2021 11:20 | 32.12813 | 44.65313 | 30.88126 | 29.46563 | 24.88125 | 28.81876 | 44.08 | 48.19 |
Value | Headcover Vacuum Pressure (MPa) | Main Shaft Sealing Pressure (MPa) | Draft Tube Inlet Pressure (MPa) | Draft Tube Exit Pressure (MPa) | Water Head Diff. Pressure (MPa) | Butterfly Valve Oil Pressure (MPa) | Spiral Case Inlet Pressure (MPa) | Spiral Case Exit Pressure (MPa) | Governor Oil Pressure (MPa) |
---|---|---|---|---|---|---|---|---|---|
Min Emergency Stop | 5 | ||||||||
Min Nominal Value | −0.1 | 0 | −0.1 | 0 | 0 | 13.5 | 0 | 0 | 5.8 |
Max Nominal Value | 0.5 | 0.4 | 0.3 | 0.3 | 1.6 | 17.5 | 1.6 | 1.6 | 6.3 |
Max Emergency Stop | 0.51 | 0.41 | 0.31 | 0.31 | 1.61 | 17.51 | 1.61 | 1.61 | 6.31 |
Value | 154 kV Busbar Voltage (kV) | Units Speed (%) | Generator Active Power (MW) | Generator Reactive Power (MVar) | Generator Cos α | Governor Oil Level (cm) | DAM Tailwater (m) | DAM Water Level (m) |
---|---|---|---|---|---|---|---|---|
Min Nominal Value | 140 | 0% | 0 | −17 | 0.9 | 50 | 443.3 | 506 |
Max Nominal Value | 170 | 100% | 52.7 | 30 | 0.9 | 90 | 446 | 510 |
Max Emergency Stop | 140% |
Value | Thrust Bearing Shoe Temp. ( °C ) | UP. Guide Bearing Shoe Temp. ( °C ) | Lower Guide Bearing Shoe Temp. ( °C ) | Lower Guide Bearing Oil Slot Temp. ( °C ) | Main Transformer Oil Temp. ( °C ) | Main Transformer Winding Temp. ( °C ) | Turbine Guide Bearing Shoe Temp ( °C ) | Generator Stator Temp. Z1 ( °C ) | Generator Stator Temp. Z11 ( °C ) | Generator Stator Temp. Z29 ( °C ) |
---|---|---|---|---|---|---|---|---|---|---|
Min Nominal Value | 40 | 40 | 40 | |||||||
Max Nominal Value | 105 | 105 | 105 | |||||||
Max Emergency Stop | 65 | 65 | 65 | 65 | 95 | 110 | 65 |
Model | Layer’s Number | Learning Rate | Accuracy | MSE | MAE | RMSE | ||||
---|---|---|---|---|---|---|---|---|---|---|
Acc | Val-Acc | Loss | Val-Loss | Loss | Var | Loss | Val | |||
RNN | One hidden layer | 0.01 | 0.7846 | 0.8185 | 0.2086 | 0.2197 | 0.2446 | 0.2270 | 0.3331 | 0.2988 |
0.001 | 0.9831 | 0.9791 | 0.0513 | 0.0633 | 0.0175 | 0.0376 | 0.0846 | 0.1263 | ||
LSTM | 0.01 | 0.8120 | 0.8603 | 0.1835 | 0.1682 | 0.1662 | 0.1715 | 0.3035 | 0.2640 | |
0.001 | 0.9955 | 0.9923 | 0.0072 | 0.0093 | 0.0053 | 0.0172 | 0.0551 | 0.0827 | ||
RNN | Two hidden layers | 0.01 | 0.6934 | 0.6825 | 0.2740 | 0.2815 | 0.2584 | 0.2449 | 0.4159 | 0.4198 |
0.001 | 0.9812 | 0.9824 | 0.0603 | 0.0537 | 0.0251 | 0.0273 | 0.1007 | 0.1378 | ||
LSTM | 0.01 | 0.7234 | 0.5952 | 0.2744 | 0.2610 | 0.2136 | 0.2124 | 0.3102 | 0.3121 | |
0.001 | 0.9940 | 0.9824 | 0.0117 | 0.0335 | 0.0058 | 0.0165 | 0.0553 | 0.0842 | ||
RNN | Three hidden layers | 0.01 | 0.5639 | 0.5325 | 0.3074 | 0.3105 | 0.2609 | 0.2469 | 0.3321 | 0.4412 |
0.001 | 0.9158 | 0.9516 | 0.1099 | 0.0981 | 0.0674 | 0.0452 | 0.1689 | 0.1931 | ||
LSTM | 0.01 | 0.6324 | 0.5325 | 0.3074 | 0.3105 | 0.3436 | 0.3453 | 0.3282 | 0.3241 | |
0.001 | 0.9934 | 0.9901 | 0.0136 | 0.0397 | 0.0057 | 0.0178 | 0.0563 | 0.1488 |
Model | Layer’s Number | Learning Rate | Accuracy | MSE | MAE | RMSE | ||||
---|---|---|---|---|---|---|---|---|---|---|
Acc | Val-Acc | Loss | Val-Loss | Loss | Val-Loss | Loss | Val-Loss | |||
RNN | One H. layer | 0.001 | 0.9682 | 0.9582 | 0.0734 | 0.0966 | 0.0302 | 0.0504 | 0.1504 | 0.1054 |
LSTM | 0.001 | 0.9793 | 0.9505 | 0.0494 | 0.0594 | 0.0279 | 0.0297 | 0.1207 | 0.1053 | |
RNN | Two H. layers | 0.001 | 0.9427 | 0.0828 | 0.0876 | 0.0684 | 0.0537 | 0.0226 | 0.1391 | 0.1278 |
LSTM | 0.001 | 0.9694 | 0.9879 | 0.0591 | 0.0564 | 0.0429 | 0.0382 | 0.1219 | 0.1356 | |
RNN | Three H. layers | 0.001 | 0.9339 | 0.9384 | 0.0992 | 0.1178 | 0.0739 | 0.0537 | 0.1889 | 0.1310 |
LSTM | 0.001 | 0.9311 | 0.9549 | 0.0614 | 0.0728 | 0.0838 | 0.0567 | 0.1352 | 0.1128 |
Model | Layer’s Number | Learning Rate | Accuracy | MSE | MAE | RMSE | ||||
---|---|---|---|---|---|---|---|---|---|---|
Acc | Val-Acc | Loss | Val-Loss | Loss | Val-Loss | Loss | Val-Loss | |||
RNN | One H. layer | 0.001 | 0.7318 | 0.7521 | 0.2081 | 0.1860 | 0.2585 | 0.2458 | 0.3521 | 0.3394 |
LSTM | 0.001 | 0.7347 | 0.7547 | 0.2291 | 0.2129 | 0.2844 | 0.2764 | 0.3668 | 0.3598 | |
RNN | Two H. layers | 0.001 | 0.7201 | 0.7349 | 0.2237 | 0.2043 | 0.2630 | 0.2523 | 0.3498 | 0.3348 |
LSTM | 0.001 | 0.7270 | 0.7613 | 0.2463 | 0.2402 | 0.2975 | 0.2943 | 0.3679 | 0.3615 | |
RNN | Three H. layers | 0.001 | 0.6933 | 0.6953 | 0.2435 | 0.2284 | 0.2706 | 0.2626 | 0.3615 | 0.3516 |
LSTM | 0.001 | 0.7270 | 0.7415 | 0.2324 | 0.2165 | 0.3289 | 0.3295 | 0.3836 | 0.3806 |
Model | Layer’s Number | Learning Rate | Accuracy | MSE | MAE | RMSE | ||||
---|---|---|---|---|---|---|---|---|---|---|
Acc | Val-Acc | Loss | Val-Loss | Loss | Val-Loss | Loss | Val-Loss | |||
RNN | One H. layer | 0.001 | 0.5685 | 0.5402 | 0.2640 | 0.2581 | 0.3353 | 0.3377 | 0.3980 | 0.4013 |
LSTM | 0.001 | 0.5639 | 0.5325 | 0.3027 | 0.2886 | 0.3336 | 0.3468 | 0.4134 | 0.4171 | |
RNN | Two H. layers | 0.001 | 0.5639 | 0.5325 | 0.2776 | 0.2778 | 0.3431 | 0.3325 | 0.4043 | 0.4057 |
LSTM | 0.001 | 0.5639 | 0.5325 | 0.3039 | 0.3187 | 0.3403 | 0.3438 | 0.4146 | 0.4188 | |
RNN | Three H. layers | 0.001 | 0.5615 | 0.5303 | 0.2841 | 0.2853 | 0.3355 | 0.3389 | 0.4094 | 0.4127 |
LSTM | 0.001 | 0.5639 | 0.5325 | 0.3091 | 0.3245 | 0.3513 | 0.3554 | 0.4139 | 0.4181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hardanee, O.F.; Demirel, H. Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection. Energies 2024, 17, 5599. https://doi.org/10.3390/en17225599
Al-Hardanee OF, Demirel H. Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection. Energies. 2024; 17(22):5599. https://doi.org/10.3390/en17225599
Chicago/Turabian StyleAl-Hardanee, Omar Farhan, and Hüseyin Demirel. 2024. "Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection" Energies 17, no. 22: 5599. https://doi.org/10.3390/en17225599
APA StyleAl-Hardanee, O. F., & Demirel, H. (2024). Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection. Energies, 17(22), 5599. https://doi.org/10.3390/en17225599