Proposal of Three Methods for Deriving Representative Mean Radiant Temperatures Considering Zone Spatial Distributions
Abstract
:1. Introduction
2. Review of Existing MRT Derivation Methods
3. Derivation of Method
4. Experiment and Result
4.1. Experiment Set-Up
4.2. Result
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
mean radiant temperature (°C) | |
j-th indoor surface temperature (°C) | |
j-th indoor surface area () | |
(,t) | absolute surface temperature of indoor surface j at time t |
angle factor | |
projected area factor of human body surface | |
sunlit factor | |
direct normal irradiance (W/m2) | |
diffuse irradiance (W/m2) | |
shortwave radiation absorption coefficient ( = 0.57) | |
MRT calculation point | |
t | time |
n, | number of calculation points |
perimeter zone | |
interior zone | |
width of calculation points | |
depth of calculation points | |
width of a target space | |
depth of a target space | |
permissible spacing between calculation points along both horizontal and vertical directions | |
unshaded fraction | |
solar transmittance | |
Abbreviations and acronyms | |
MRT | mean radiant temperature |
PMV | predicted mean vote |
GT | globe thermometer |
CT | contact thermometer |
IR | infrared |
Win. | winter |
Sum. | summer |
S.L. | single location |
A.W. | area weighted |
S.Z. | sub-zonal |
sMRT | single-zone averaged mean radiant temperature |
mMRT | multi-zone averaged mean radiant temperature |
pMRT | point-zone mean radiant temperature |
HVF | horizontal view factor |
SVF | sky view factor |
GHP | gas heat pump |
Greek letters | |
emissivity | |
Stefan–Boltzmann constant ( W/m2K4) |
References
- Park, J.; Kim, T.; Lee, C.-s. Development of Thermal Comfort-Based Controller and Potential Reduction of the Cooling Energy Consumption of a Residential Building in Kuwait. Energies 2019, 12, 3348. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, Q. Artificial Neural Network Models Using Thermal Sensations and Occupants’ Behavior for Predicting Thermal Comfort. Energy Build. 2018, 174, 587–602. [Google Scholar] [CrossRef]
- Ku, K.L.; Liaw, J.S.; Tsai, M.Y.; Liu, T.S. Automatic Control System for Thermal Comfort Based on Predicted Mean Vote and Energy Saving. IEEE Trans. Autom. Sci. Eng. 2015, 12, 378–383. [Google Scholar] [CrossRef]
- Dogan, A.; Kayaci, N.; Demir, H.; Kemal, M. Energy & Buildings An Experimental Comparison of Radiant Wall and Ceiling Cooling System Integrated with Ground Source Heat Pump and Direct Expansion Fan Coil System in a Highly Glazed Office Room. Energy Build. 2023, 273, 112412. [Google Scholar] [CrossRef]
- Hwang, R.L.; Fang, P.L.; Chen, W.A. Impact of Solar Radiation on Indoor Thermal Comfort near Highly Glazed Façades in a Hot-Humid Subtropical Climate: An Experimental Evaluation. Build. Environ. 2023, 243, 110725. [Google Scholar] [CrossRef]
- Piasecki, M.; Fedorczak-cisak, M.; Furtak, M.; Biskupski, J. Experimental Confirmation of the Reliability of Fanger’ s Thermal Comfort Model—Case Study of a Near-Zero Energy Building (NZEB) O Ffi Ce Building. Sustainability 2019, 11, 2461. [Google Scholar] [CrossRef]
- Sung, S.H.; Yun, W.S.; Ryu, W.; Seo, H.; Hong, W.H. Development of Mean Radiant Temperature Virtual Sensor for Core and Perimeter Zones during the Summer Using Random Forest. J. Archit. Inst. Korea 2023, 39, 171–177. [Google Scholar] [CrossRef]
- Kubwimana, B.; Seyednezhad, M.; Najafi, H. Thermoelectric-Based Radiant Cooling Systems: An Experimental and Numerical Investigation of Thermal Comfort. Energies 2023, 16, 6981. [Google Scholar] [CrossRef]
- Huang, L.; John, Z. Critical Review and Quantitative Evaluation of Indoor Thermal Comfort Indices and Models Incorporating Solar Radiation Effects. Energy Build. 2020, 224, 110204. [Google Scholar] [CrossRef]
- Aparicio, P.; Salmerón, J.M.; Ruiz, Á.; Sánchez, F.J.; Brotas, L. The Globe Thermometer in Comfort and Environmental Studies in Buildings. Rev. Constr. 2016, 15, 57–66. [Google Scholar] [CrossRef]
- Uribe, D.; Vera, S. Assessment of the Effect of Phase Change Material (PCM) Glazing on the Energy Consumption and Indoor Comfort of an Office in a Semiarid Climate. Appl. Sci. 2021, 11, 9597. [Google Scholar] [CrossRef]
- Wang, D.; Chen, G.; Song, C.; Liu, Y.; He, W.; Zeng, T.; Liu, J. Experimental Study on Coupling Effect of Indoor Air Temperature and Radiant Temperature on Human Thermal Comfort in Non-Uniform Thermal Environment. Build. Environ. 2019, 165, 106387. [Google Scholar] [CrossRef]
- Chang, H.; Park, S.-H.; Park, B. Analysis on Indoor Thermal Comfort of Buildings in Campus during Intermediate Season. J. Arch. Inst. Korea 2014, 16, 187–194. [Google Scholar]
- Arnesano, M.; Calvaresi, A.; Pietroni, F.; Zampetti, L.; Magnani, S.; Casadei, O.; Revel, G.M. A Sub-Zonal PMV-Based HVAC and Façade Control System for Curtain Wall Buildings. Proceedings 2018, 2, 1596. [Google Scholar] [CrossRef]
- Zampetti, L.; Arnesano, M.; Revel, G.M. Experimental Testing of a System for the Energy-Efficient Sub-Zonal Heating Management in Indoor Environments Based on PMV. Energy Build. 2018, 166, 229–238. [Google Scholar] [CrossRef]
- Park, J.; Choi, H.; Kim, D.; Kim, T. Development of Novel PMV-Based HVAC Control Strategies Using a Mean Radiant Temperature Prediction Model by Machine Learning in Kuwaiti Climate. Build. Environ. 2021, 206, 108357. [Google Scholar] [CrossRef]
- Chaudhuri, T.; Soh, Y.C.; Bose, S.; Xie, L.; Li, H. On Assuming Mean Radiant Temperature Equal to Air Temperature during PMV-Based Thermal Comfort Study in Air-Conditioned Buildings. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 7065–7070. [Google Scholar] [CrossRef]
- Guo, H.; Teitelbaum, E.; Houchois, N.; Bozlar, M.; Meggers, F. Revisiting the Use of Globe Thermometers to Estimate Radiant Temperature in Studies of Heating and Ventilation. Energy Build. 2018, 180, 83–94. [Google Scholar] [CrossRef]
- Lee, D.; Jo, J. Application of IR Camera and Pyranometer for Estimation of Longwave and Shortwave Mean Radiant Temperatures at Multiple Locations. Build. Environ. 2022, 207, 108423. [Google Scholar] [CrossRef]
- Kosiński, P.; Skotnicka-Siepsiak, A. Possibilities of Adapting the University Lecture Room to the Green University Standard in Terms of Thermal Comfort and Ventilation Accuracy. Energies 2022, 15, 3735. [Google Scholar] [CrossRef]
- Sung Jin, K.; Dong Seok, L. Method for Determining the Representative Mean Radiant Temperature for Heating and Cooling Control Application. J. Korean Inst. Archit. Sustain. Environ. Build. Syst. 2024, 18, 165–174. [Google Scholar]
- Lee, D.S.; Jo, J.H. Pan–Tilt Ir Scanning Method for the Remote Measurement of Mean Radiant Temperatures at Multi-Location in Buildings. Remote Sens. 2021, 13, 2158. [Google Scholar] [CrossRef]
- La Gennusa, M.; Nucara, A.; Rizzo, G.; Scaccianoce, G. The Calculation of the Mean Radiant Temperature of a Subject Exposed to the Solar Radiation—A Generalised Algorithm. Build. Environ. 2005, 40, 367–375. [Google Scholar] [CrossRef]
- Baker, N.; Steemers, K. Energy and Environment in Architecture a Technical Design Guide; Taylor & Francis: Abingdon, UK, 1998; p. 224. [Google Scholar]
- Choi, S.; Lee, D.; Jo, J. Method of Deriving Shaded Fraction According to Shading Movements of Kinetic Façade. Sustainability 2017, 9, 1449. [Google Scholar] [CrossRef]
- Lee, D.; Jo, J. Application of Simple Sky and Building Models for the Evaluation of Solar Irradiance Distribution at Indoor Locations in Buildings. Build. Environ. 2021, 197, 107840. [Google Scholar] [CrossRef]
- Lee, D.S.; Kim, E.J.; Cho, Y.H.; Kang, J.W.; Jo, J.H. A Field Study on Application of Infrared Thermography for Estimating Mean Radiant Temperatures in Large Stadiums. Energy Build. 2019, 202, 109360. [Google Scholar] [CrossRef]
- Kyung-soo, L.S.L. A Research on the Decomposition Model and Transposition Model Using the Measured Pyranometer Irradiation Data. J. Korean Sol. Energy Soc. 2018, 38, 1–20. [Google Scholar]
- Hawks, M.A.; Cho, S. Review and Analysis of Current Solutions and Trends for Zero Energy Building (ZEB) Thermal Systems. Renew. Sustain. Energy Rev. 2024, 189, 114028. [Google Scholar] [CrossRef]
- Guo, H.; Ferrara, M.; Coleman, J.; Loyola, M.; Meggers, F. Simulation and Measurement of Air Temperatures and Mean Radiant Temperatures in a Radiantly Heated Indoor Space. Energy 2020, 193, 116369. [Google Scholar] [CrossRef]
Year | Bldg. Type | Season | Instrument | Representative MRT * | Radiant | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Air | GT | IR | CT | S.L. | A.W. | S.Z. | LW | SW | |||||
2018 | Office | Win. and sum. | x | x | [1] | ||||||||
2019 | Chamber | Sum. | x | x | [2] | ||||||||
2015 | Office | Sum. | x | x | [3] | ||||||||
2023 | Office | Sum. | x | x | x | x | [4] | ||||||
2023 | Chamber | Sum. | x | x | x | x | [5] | ||||||
2019 | Office | Win. | x | x | x | x | [6] | ||||||
2023 | Classroom | Sum. | x | x | x | x | [7] | ||||||
2023 | Chamber | Not presented | x | x | x | x | [8] | ||||||
2020 | Office | Win. | x | x | x | x | [9] | ||||||
2016 | Chamber | Sum. | x | x | x | x | [10] | ||||||
2021 | Office | Sum. | x | x | x | x | [11] | ||||||
2019 | Chamber | Sum. | x | x | x | [12] | |||||||
2014 | Office | Win. | x | x | x | [13] | |||||||
2020 | Office | Sum. | x | x | x | [14] | |||||||
2018 | Office | Win. | x | x | x | [15] |
Season | Cases | System Type |
---|---|---|
Heating | Case 1 | None |
Case 2 | GHP | |
Case 3 | Roll Blind | |
Case 4 | Radiator | |
Cooling | Case 5 | None |
Case 6 | Roll Blind | |
Case 7 | GHP | |
Case 8 | Roll Blind and GHP |
Device Name | Specifications | |
---|---|---|
Pan-tilt IR scanning system (developed by Lee et al., 2021 [22]) | Model | FLIR A310/±2 °C |
Temperature range | −20 to 350 °C | |
Accuracy | ±2% | |
IR resolution | 320 × 240 pixels | |
Pyranometer | Model | MS-40 |
Irradiance range | 0 to 2000 W/m2 | |
Accuracy | ±12 W/m2 | |
Sensitivity | 7–14 µV/W/m2 | |
Thermo-hygrometer | Model | Testo 174H |
Operating temperature | −20 to 70 °C | |
Accuracy | (T) ± 0.5 °C | |
Resolution | 0.1 °C |
Cases System Type | Applied Methods * | Measured Representative MRT Values | |||||
---|---|---|---|---|---|---|---|
09:05 | 12:05 | 15:05 | 18:05 | ||||
Case 1 None | Measured data | Spatial MRT data | |||||
Min–Max | 15.7–24.2 | 16.6–26.7 | 16.1–17.1 | 15.7–16.4 | |||
Exst. | 15.2 | 17.0 | 16.4 | 15.6 | |||
Single location | P0 | 16.4 | 17.9 | 17.0 | 16.4 | ||
P1/P2 | 16.4/16.3 | 18.1/17.6 | 17.1/16.8 | 16.3/16.3 | |||
Area-weighted | 15.8 | 17.5 | 16.5 | 15.8 | |||
Prop. | 17.4 | 18.1 | 16.9 | 16.3 | |||
Peri./Int. | 18.2/16.7 | 18.7/17.5 | 17.0/16.8 | 16.3/16.3 | |||
Case 2 GHP | Measured data | Spatial MRT data | |||||
Min–Max | 18.2–27.3 | 19.8–28.7 | 20.3–21.8 | 19.4–20.7 | |||
Exst. | 15.9 | 19.6 | 19.9 | 19.5 | |||
Single location | P0 | 19.1 | 21.0 | 21.4 | 20.2 | ||
P1/P2 | 16.4/16.3 | 18.1/17.6 | 17.1/16.8 | 16.3/16.3 | |||
Area-weighted | 19.0 | 21.0 | 21.3 | 20.1 | |||
Prop. | 20.2 | 21.2 | 21.3 | 20.2 | |||
Peri./Int. | 21.1/19.4 | 21.8/20.7 | 21.4/21.2 | 20.1/20.1 | |||
Case 3 Roll Blind | Measured data | Spatial MRT data | |||||
Min–Max | 15.2–17.3 | 16.2–18.2 | 15.7–16.7 | 15.4–16.1 | |||
Exst. | 15.6 | 16.7 | 16.0 | 15.3 | |||
Single location | P0 | 16.6 | 17.4 | 16.5 | 16.0 | ||
P1/P2 | 17.0/16.2 | 17.9/17.0 | 16.6/16.3 | 16.0/15.9 | |||
Area-weighted | 16.6 | 17.7 | 16.4 | 15.8 | |||
Prop. | 16.4 | 17.3 | 16.5 | 16.0 | |||
Peri./Int. | 16.7/16.2 | 17.6/17.0 | 16.6/16.4 | 16.0/15.9 | |||
Case 4 Radiator (900 W) | Measured data | Spatial MRT data | |||||
Min–Max | 14.8–24.3 | 16.5–27.5 | 16.4–20.2 | 16.0–19.3 | |||
Exst. | 15.9 | 18.1 | 17.5 | 16.9 | |||
Single location | P0 | 16.0 | 18.0 | 17.5 | 16.9 | ||
P1/P2 | 16.3/15.7 | 18.7/17.6 | 17.9/17.2 | 17.0/16.7 | |||
Area-weighted | 15.6 | 17.8 | 17.3 | 16.6 | |||
Prop. | 17.0 | 18.2 | 17.5 | 16.8 | |||
Peri./Int. | 18.0/15.9 | 18.8/17.6 | 17.7/17.3 | 16.9/16.7 |
Cases System Type | Applied Methods * | Measured Representative MRT Values | ||||||
---|---|---|---|---|---|---|---|---|
09:05 | 12:05 | 15:05 | 18:05 | |||||
Case 5 None | Measured data | Spatial MRT data | ||||||
Min–Max | 28.6–35.4 | 29.1–33.9 | 29.2–30.1 | 28.7–29.1 | ||||
Exst. | 28.8 | 29.6 | 29.7 | 29.3 | ||||
Single location | P0 | 28.7 | 29.3 | 29.3 | 28.7 | |||
P1/P2 | 29.0/28.6 | 29.8/29.1 | 29.7/29.2 | 28.8/28.7 | ||||
Area-weighted | 29.1 | 29.7 | 29.7 | 29.1 | ||||
Prop. | 29.0 | 29.4 | 29.4 | 28.8 | ||||
Peri./Int. | 29.3/28.7 | 29.7/29.2 | 29.6/29.3 | 28.8/28.8 | ||||
Case 6 Roll Blind | Measured data | Spatial MRT data | ||||||
Min–Max | 28.5–29.0 | 28.7–29.2 | 28.9–29.3 | 28.6–29.0 | ||||
Exst. | 28.8 | 29.4 | 29.5 | 29.2 | ||||
Single location | P0 | 28.5 | 28.7 | 28.9 | 28.6 | |||
P1/P2 | 28.7/28.5 | 28.9/28.7 | 29.1/28.9 | 28.7/28.6 | ||||
Area-weighted | 29.1 | 29.4 | 29.5 | 29.0 | ||||
Prop. | 28.6 | 28.9 | 29.0 | 28.7 | ||||
Peri./Int. | 28.7/28.6 | 28.9/28.8 | 29.1/29.0 | 28.7/28.7 | ||||
Case 7 GHP | Measured data | Spatial MRT data | ||||||
Min–Max | 29.2–35.3 | 26.1–31.8 | 25.7–26.6 | 25.8–26.1 | ||||
Exst. | 29.4 | 24.7 | 24.0 | 24.5 | ||||
Single location | P0 | 29.4 | 26.7 | 26.1 | 25.9 | |||
P1/P2 | 29.9/29.3 | 27.2/26.5 | 26.4/26.0 | 26.0/25.8 | ||||
Area-weighted | 29.9 | 26.7 | 26.0 | 26.0 | ||||
Prop. | 29.6 | 26.7 | 26.1 | 25.9 | ||||
Peri./Int. | 30.0/29.3 | 26.9/26.4 | 26.2/25.9 | 25.9/25.9 | ||||
Case 8 Roll Blind and GHP | Measured data | Spatial MRT data | ||||||
Min–Max | 27.4–27.8 | 25.6–26.0 | 25.4–25.8 | 25.5–25.7 | ||||
Exst. | 27.7 | 24.4 | 24.3 | 24.3 | ||||
Single location | P0 | 27.4 | 25.8 | 25.5 | 25.5 | |||
P1/P2 | 27.4/27.4 | 25.9/25.7 | 25.6/25.5 | 25.6/25.5 | ||||
Area-weighted | 27.7 | 25.8 | 25.7 | 25.7 | ||||
Prop. | 27.5 | 25.7 | 25.5 | 25.6 | ||||
Peri./Int. | 27.5/27.5 | 25.8/25.7 | 25.6/25.6 | 25.6/25.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.-J.; Jo, J.-H.; Lee, D.-S. Proposal of Three Methods for Deriving Representative Mean Radiant Temperatures Considering Zone Spatial Distributions. Energies 2024, 17, 5221. https://doi.org/10.3390/en17205221
Kwon S-J, Jo J-H, Lee D-S. Proposal of Three Methods for Deriving Representative Mean Radiant Temperatures Considering Zone Spatial Distributions. Energies. 2024; 17(20):5221. https://doi.org/10.3390/en17205221
Chicago/Turabian StyleKwon, Sung-Jin, Jae-Hun Jo, and Dong-Seok Lee. 2024. "Proposal of Three Methods for Deriving Representative Mean Radiant Temperatures Considering Zone Spatial Distributions" Energies 17, no. 20: 5221. https://doi.org/10.3390/en17205221
APA StyleKwon, S. -J., Jo, J. -H., & Lee, D. -S. (2024). Proposal of Three Methods for Deriving Representative Mean Radiant Temperatures Considering Zone Spatial Distributions. Energies, 17(20), 5221. https://doi.org/10.3390/en17205221