Multi-Agent Reinforcement Learning for Smart Community Energy Management
Abstract
:1. Introduction
2. Smart Community EMS Modeling
2.1. Building Electric Vehicle Charging Modeling
2.2. Building HVAC System Modeling
3. Markov Game Formulation of the Community EMS
4. Proposed LSD-MADDPG Algorithm
Algorithm 1 Offline training phase of LSD-MADDPG |
1. Initialize Networks and Replay Buffer: - Initialize actor network µn and critic network Qn for each agent, n - Initialize target networks and with weights: and . - Initialize experience replay buffer Ɗ 2. Training Loop - For each episode e - Initialize the environment and get - For each timestep t until terminal state: A. Observe current state and strategies B. Select action using actor network C. Execute action bserve reward , next state and next strategies D. Store transition in Ɗ E. If episode e is divisible by δ: i. Sample minibatch of ρ transitions from Ɗ ii. Update Critic Network: - Compute target action using target actor network: - Compute target Q-value: - Compute current Q-value - Compute critic loss: . - Perform gradient descent on to update iii. Update Actor Network - Compute policy gradient: = . - Perform gradient ascent on to update iv. Update Target Networks - For each agent n 3. End Training |
5. Case Study
- (1)
- Naïve controller (NC): Represents the common practice in building energy management, involving setting the thermostat at a constant 72℉ and using a simple plug-in and charge-at-full-capacity charger. This approach does not optimize the community objective or energy consumption, hence the term ‘naïve’.
- (2)
- DDPG controller: A centralized single-agent RL controller for the entire community EMS operating within the environment and state-action space described in Section 3.
- (3)
- I-MADDPG controller: Independent Learning MADDPG with decentralized training and decentralized execution.
- (4)
- CTDE-MADDPG controller: MADDPG with centralized critic training and decentralized execution, with the agent’s critic network accessing the entire global state.
5.1. Simulation Parameters
5.2. Performance Analysis with Three Identical Buildings
5.3. Scalability Performance Analysis on the Proposed LSD-MADDPG
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rathor, S.K.; Saxena, D. Energy management system for smart grid: An overview and key issues. Int. J. Energy Res. 2020, 44, 4067–4109. [Google Scholar] [CrossRef]
- Fernandez, E.; Hossain, M.; Nizami, M. Game-theoretic approach to demand-side energy management for a smart neighbourhood in Sydney incorporating renewable resources. Appl. Energy 2018, 232, 245–257. [Google Scholar] [CrossRef]
- Benítez, I.; Díez, J.-L. Automated Detection of Electric Energy Consumption Load Profile Patterns. Energies 2022, 15, 2176. [Google Scholar] [CrossRef]
- “California Moves toward Phasing Out Sale of Gas-Powered Vehicles by 2035” in NewsHour: Nation. 25 August 2022. Available online: https://www.pbs.org/newshour/nation/california-moves-toward-phasing-out-sale-of-gas-powered-vehicles-by-2035 (accessed on 26 May 2024).
- Albeck-Ripka, L. “Amid Heat Wave, California Asks Electric Vehicle Owners to Limit Charging”. The New York Times. Available online: https://www.nytimes.com/2022/09/01/us/california-heat-wave-flex-alert-ac-ev-charging.html (accessed on 2 July 2023).
- Cecati, C.; Citro, C.; Siano, P. Combined Operations of Renewable Energy Systems and Responsive Demand in a Smart Grid. IEEE Trans. Sustain. Energy 2011, 2, 468–476. [Google Scholar] [CrossRef]
- Khan, H.W.; Usman, M.; Hafeez, G.; Albogamy, F.R.; Khan, I.; Shafiq, Z.; Khan, M.U.A.; Alkhammash, H.I. Intelligent Optimization Framework for Efficient Demand-Side Management in Renewable Energy Integrated Smart Grid. IEEE Access 2021, 9, 124235–124252. [Google Scholar] [CrossRef]
- Liu, H.; Gegov, A.; Cocea, M. Rule Based Networks: An Efficient and Interpretable Representation of Computational Models. J. Artif. Intell. Soft Comput. Res. 2017, 7, 111–123. [Google Scholar] [CrossRef]
- Babonneau, F.; Caramanis, M.; Haurie, A. A linear programming model for power distribution with demand response and variable renewable energy. Appl. Energy 2016, 181, 83–95. [Google Scholar] [CrossRef]
- Loganathan, N.; Lakshmi, K. Demand Side Energy Management for Linear Programming Method. Indones. J. Electr. Eng. Comput. Sci. 2015, 14, 72–79. [Google Scholar] [CrossRef]
- Nejad, B.M.; Vahedi, M.; Hoseina, M.; Moghaddam, M.S. Economic Mixed-Integer Model for Coordinating Large-Scale Energy Storage Power Plant with Demand Response Management Options in Smart Grid Energy Management. IEEE Access 2022, 11, 16483–16492. [Google Scholar] [CrossRef]
- Omu, A.; Choudhary, R.; Boies, A. Distributed energy resource system optimisation using mixed integer linear programming. Energy Policy 2013, 61, 249–266. [Google Scholar] [CrossRef]
- Shakouri, G.H.; Kazemi, A. Multi-objective cost-load optimization for demand side management of a residential area in smart grids. Sustain. Cities Soc. 2017, 32, 171–180. [Google Scholar] [CrossRef]
- Wouters, C.; Fraga, E.S.; James, A.M. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning—A South Australian case-study. Energy 2015, 85, 30–44. [Google Scholar] [CrossRef]
- Foroozandeh, Z.; Ramos, S.; Soares, J.; Lezama, F.; Vale, Z.; Gomes, A.; Joench, R.L. A Mixed Binary Linear Programming Model for Optimal Energy Management of Smart Buildings. Energies 2020, 13, 1719. [Google Scholar] [CrossRef]
- Li, Z.; Wu, L.; Xu, Y.; Zheng, X. Stochastic-Weighted Robust Optimization Based Bilayer Operation of a Multi-Energy Building Microgrid Considering Practical Thermal Loads and Battery Degradation. IEEE Trans. Sustain. Energy 2021, 13, 668–682. [Google Scholar] [CrossRef]
- Saghezchi, F.; Saghezchi, F.; Nascimento, A.; Rodriguez, J. Quadratic Programming for Demand-Side Management in the Smart Grid. In Proceedings of the 8th International Conference, WICON 2014, Lisbon, Portugal, 13–14 November 2014; pp. 97–104. [Google Scholar] [CrossRef]
- Batista, A.C.; Batista, L.S. Demand Side Management using a multi-criteria ϵ-constraint based exact approach. Expert Syst. Appl. 2018, 99, 180–192. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Carli, R.; Dotoli, M. Robust Optimal Energy Management of a Residential Microgrid Under Uncertainties on Demand and Renewable Power Generation. IEEE Trans. Autom. Sci. Eng. 2021, 18, 618–637. [Google Scholar] [CrossRef]
- Aghajani, G.R.; Shayanfar, H.A.; Shayeghi, H. Presenting a multi-objective generation scheduling model for pricing demand response rate in micro-grid energy management. Energy Convers. Manag. 2015, 106, 308–321. [Google Scholar] [CrossRef]
- Viani, F.; Salucci, M. A User Perspective Optimization Scheme for Demand-Side Energy Management. IEEE Syst. J. 2018, 12, 3857–3860. [Google Scholar] [CrossRef]
- Kumar, R.; Raghav, L.; Raju, D.; Singh, A. Intelligent demand side management for optimal energy scheduling of grid connected microgrids. Appl. Energy 2021, 285, 116435. [Google Scholar] [CrossRef]
- Rahim, S.; Javaid, N.; Ahmad, A.; Khan, S.A.; Khan, Z.A.; Alrajeh, N.; Qasim, U. Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 2016, 129, 452–470. [Google Scholar] [CrossRef]
- Jiang, X.; Xiao, C. Household Energy Demand Management Strategy Based on Operating Power by Genetic Algorithm. IEEE Access 2019, 7, 96414–96423. [Google Scholar] [CrossRef]
- Eisenmann, A.; Streubel, T.; Rudion, K. Power Quality Mitigation via Smart Demand-Side Management Based on a Genetic Algorithm. Energies 2022, 15, 1492. [Google Scholar] [CrossRef]
- Ouammi, A. Optimal Power Scheduling for a Cooperative Network of Smart Residential Buildings. IEEE Trans. Sustain. Energy 2016, 7, 1317–1326. [Google Scholar] [CrossRef]
- Gbadega, P.A.; Saha, A.K. Predictive Control of Adaptive Micro-Grid Energy Management System Considering Electric Vehicles Integration. Int. J. Eng. Res. Afr. 2022, 59, 175–204. [Google Scholar] [CrossRef]
- Arroyo, J.; Manna, C.; Spiessens, F.; Helsen, L. Reinforced model predictive control (RL-MPC) for building energy management. Appl. Energy 2022, 309, 118346. [Google Scholar] [CrossRef]
- Vamvakas, D.; Michailidis, P.; Korkas, C.; Kosmatopoulos, E. Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications. Energies 2023, 16, 5326. [Google Scholar] [CrossRef]
- Chen, S.-J.; Chiu, W.-Y.; Liu, W.-J. User Preference-Based Demand Response for Smart Home Energy Management Using Multiobjective Reinforcement Learning. IEEE Access 2021, 9, 161627–161637. [Google Scholar] [CrossRef]
- Zhou, S.; Hu, Z.; Gu, W.; Jiang, M.; Zhang, X.-P. Artificial intelligence based smart energy community management: A reinforcement learning approach. CSEE J. Power Energy Syst. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Alfaverh, F.; Denai, M.; Sun, Y. Demand Response Strategy Based on Reinforcement Learning and Fuzzy Reasoning for Home Energy Management. IEEE Access 2020, 8, 39310–39321. [Google Scholar] [CrossRef]
- Mathew, A.; Roy, A.; Mathew, J. Intelligent Residential Energy Management System Using Deep Reinforcement Learning. IEEE Syst. J. 2020, 14, 5362–5372. [Google Scholar] [CrossRef]
- Forootani, A.; Rastegar, M.; Jooshaki, M. An Advanced Satisfaction-Based Home Energy Management System Using Deep Reinforcement Learning. IEEE Access 2022, 10, 47896–47905. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.; Gooi, H.B. Optimization strategy based on deep reinforcement learning for home energy management. CSEE J. Power Energy Syst. 2020, 6, 572–582. [Google Scholar] [CrossRef]
- Yu, L.; Xie, W.; Xie, D.; Zou, Y.; Zhang, D.; Sun, Z.; Zhang, L.; Zhang, Y.; Jiang, T. Deep Reinforcement Learning for Smart Home Energy Management. IEEE Internet Things J. 2019, 7, 2751–2762. [Google Scholar] [CrossRef]
- Zenginis, I.; Vardakas, J.; Koltsaklis, N.E.; Verikoukis, C. Smart Home’s Energy Management Through a Clustering-Based Reinforcement Learning Approach. IEEE Internet Things J. 2022, 9, 16363–16371. [Google Scholar] [CrossRef]
- Kodama, N.; Harada, T.; Miyazaki, K. Home Energy Management Algorithm Based on Deep Reinforcement Learning Using Multistep Prediction. IEEE Access 2021, 9, 153108–153115. [Google Scholar] [CrossRef]
- Ye, Y.; Qiu, D.; Wu, X.; Strbac, G.; Ward, J. Model-Free Real-Time Autonomous Control for a Residential Multi-Energy System Using Deep Reinforcement Learning. IEEE Trans. Smart Grid 2020, 11, 3068–3082. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, H.; Wang, L.; Luo, X.; Song, Y. Mixed Deep Reinforcement Learning Considering Discrete-continuous Hybrid Action Space for Smart Home Energy Management. J. Mod. Power Syst. Clean Energy 2022, 10, 743–754. [Google Scholar] [CrossRef]
- Härtel, F.; Bocklisch, T. Minimizing Energy Cost in PV Battery Storage Systems Using Reinforcement Learning. IEEE Access 2023, 11, 39855–39865. [Google Scholar] [CrossRef]
- Parvini, M.; Javan, M.; Mokari, N.; Arand, B.; Jorswieck, E. AoI Aware Radio Resource Management of Autonomous Platoons via Multi Agent Reinforcement Learning. In Proceedings of the 2021 17th International Symposium on Wireless Communication Systems (ISWCS), Berlin, Germany, 6–9 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Jendoubi, I.; Bouffard, F. Multi-agent hierarchical reinforcement learning for energy management. Appl. Energy 2022, 332, 120500. [Google Scholar] [CrossRef]
- Arora, A.; Jain, A.; Yadav, D.; Hassija, V.; Chamola, V.; Sikdar, B. Next Generation of Multi-Agent Driven Smart City Applications and Research Paradigms. IEEE Open J. Commun. Soc. 2023, 4, 2104–2121. [Google Scholar] [CrossRef]
- Xu, X.; Jia, Y.; Xu, Y.; Xu, Z.; Chai, S.; Lai, C.S. A Multi-Agent Reinforcement Learning-Based Data-Driven Method for Home Energy Management. IEEE Trans. Smart Grid 2020, 11, 3201–3211. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Lee, D.; Jang, I. Avoiding collaborative paradox in multi-agent reinforcement learning. ETRI J. 2021, 43, 1004–1012. [Google Scholar] [CrossRef]
- Ahrarinouri, M.; Rastegar, M.; Seifi, A.R. Multiagent Reinforcement Learning for Energy Management in Residential Buildings. IEEE Trans. Ind. Inform. 2020, 17, 659–666. [Google Scholar] [CrossRef]
- Lu, R.; Bai, R.; Luo, Z.; Jiang, J.; Sun, M.; Zhang, H.-T. Deep Reinforcement Learning-Based Demand Response for Smart Facilities Energy Management. IEEE Trans. Ind. Electron. 2021, 69, 8554–8565. [Google Scholar] [CrossRef]
- Lu, R.; Li, Y.-C.; Li, Y.; Jiang, J.; Ding, Y. Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management. Appl. Energy 2020, 276, 115473. [Google Scholar] [CrossRef]
- Guo, G.; Gong, Y. Multi-Microgrid Energy Management Strategy Based on Multi-Agent Deep Reinforcement Learning with Prioritized Experience Replay. Appl. Sci. 2023, 13, 2865. [Google Scholar] [CrossRef]
- Ye, Y.; Tang, Y.; Wang, H.; Zhang, X.-P.; Strbac, G. A Scalable Privacy-Preserving Multi-Agent Deep Reinforcement Learning Approach for Large-Scale Peer-to-Peer Transactive Energy Trading. IEEE Trans. Smart Grid 2021, 12, 5185–5200. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, Y.; Feng, X. Hierarchical Coordination of Networked-Microgrids Toward Decentralized Operation: A Safe Deep Reinforcement Learning Method. IEEE Trans. Sustain. Energy 2024, 15, 1981–1993. [Google Scholar] [CrossRef]
- Lee, S.; Choi, D.-H. Federated Reinforcement Learning for Energy Management of Multiple Smart Homes With Distributed Energy Resources. IEEE Trans. Ind. Inform. 2022, 18, 488–497. [Google Scholar] [CrossRef]
- Deshpande, K.; Möhl, P.; Hämmerle, A.; Weichhart, G.; Zörrer, H.; Pichler, A.; Deshpande, K.; Möhl, P.; Hämmerle, A.; Weichhart, G.; et al. Energy Management Simulation with Multi-Agent Reinforcement Learning: An Approach to Achieve Reliability and Resilience. Energies 2022, 15, 7381. [Google Scholar] [CrossRef]
- Hossain, M.; Enyioha, C. Multi-Agent Energy Management Strategy for Multi-Microgrids Using Reinforcement Learning. In Proceedings of the 2023 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 13–14 February 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Pigott, A.; Crozier, C.; Baker, K.; Nagy, Z. GridLearn: Multiagent Reinforcement Learning for Grid-Aware Building Energy Management. Electr. Power Syst. Res. 2021, 213, 108521. [Google Scholar] [CrossRef]
- Chen, T.; Bu, S.; Liu, X.; Kang, J.; Yu, F.R.; Han, Z. Peer-to-Peer Energy Trading and Energy Conversion in Interconnected Multi-Energy Microgrids Using Multi-Agent Deep Reinforcement Learning. IEEE Trans. Smart Grid 2021, 13, 715–727. [Google Scholar] [CrossRef]
- Samadi, E.; Badri, A.; Ebrahimpour, R. Decentralized multi-agent based energy management of microgrid using reinforcement learning. Int. J. Electr. Power Energy Syst. 2020, 122, 106211. [Google Scholar] [CrossRef]
- Fang, X.; Zhao, Q.; Wang, J.; Han, Y.; Li, Y. Multi-agent Deep Reinforcement Learning for Distributed Energy Management and Strategy Optimization of Microgrid Market. Sustain. Cities Soc. 2021, 74, 103163. [Google Scholar] [CrossRef]
- Lai, B.-C.; Chiu, W.-Y.; Tsai, Y.-P. Multiagent Reinforcement Learning for Community Energy Management to Mitigate Peak Rebounds Under Renewable Energy Uncertainty. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 6, 568–579. [Google Scholar] [CrossRef]
- Tesla Motors Club. ‘Charging Efficiency,’ Tesla Motors Club Forum. 2018. Available online: https://teslamotorsclub.com/tmc/threads/charging-efficiency.122072/ (accessed on 4 January 2024).
- MathWorks. “Model a House Heating System” MathWorks. 2024. Available online: https://www.mathworks.com/help/simulink/ug/model-a-house-heating-system.html#responsive_offcanvas (accessed on 3 June 2022).
- Gillespie, D.T. Continuous Markov processes. In Markov Processes; Gillespie, D.T., Ed.; Academic Press: Cambridge, MA, USA, 1992; pp. 111–219. [Google Scholar] [CrossRef]
- Jiang, J.-J.; He, P.; Fang, K.-T. An interesting property of the arcsine distribution and its applications. Stat. Probab. Lett. 2015, 105, 88–95. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703. [Google Scholar]
- Nweye, K.; Sankaranarayanan, S.; Nagy, G.Z. The CityLearn Challenge 2022. Texas Data Repository, V1. 2023. Available online: https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/0YLJ6Q (accessed on 11 September 2023).
- Hasell, J. Measuring inequality: What Is the Gini Coefficient? 2023. Published Online at OurWorldInData.org. Available online: https://ourworldindata.org/what-is-the-gini-coefficient’ (accessed on 6 July 2024).
- Pritchard, E.; Borlaug, B.; Yang, F.; Gonder, J. Evaluating Electric Vehicle Public Charging Utilization in the United States using the EV WATTS Dataset. In Proceedings of the 36th Electric Vehicle Symposium and Exposition (EVS36), Sacramento, CA, USA, 11–14 June 2023; Preprint, NREL, National Renewable Energy Laboratory. Available online: https://www.nrel.gov/docs/fy24osti/85902.pdf (accessed on 14 October 2023).
- Nagy, G.Z. The CityLearn Challenge 2021. Texas Data Repository, V1. 2021. Available online: https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/Q2EIQC (accessed on 11 September 2023). [CrossRef]
Variable | MARL | |
---|---|---|
1 | Total Timesteps | 260,000 |
2 | Episode Length | 48 |
3 | Learning Rate Actor | 1 × 10−4 |
4 | Learning Rate Critic | 1 × 10−3 |
5 | Noise-rate | 0.1 |
6 | Gamma | 0.95 |
7 | Tau | 0.01 |
8 | Buffer-size | 5 × 105 |
9 | Batch-size | 256 |
Building Attributes | Value |
---|---|
0.0001 min·°/joule | |
1005.4 joule/kg·° | |
50 °C, | |
1778.4 kg | |
60 kg/min | |
1.5 kW,17 kW | |
100 kW | |
600 kWm | |
5 |
NC | DDPG | CTDE | I-MADDPG | LSD-MADDPG | |
---|---|---|---|---|---|
Average Peak (kW) | 51.28 | ● 3 43.20 | ● 1 27.30 | 31.96 | ● 2 31.03 |
Total Cost ($) | 191.92 | ● 79.59 | ● 82.40 | 83.23 | ● 84.48 |
Charge (%) | 100 | ● 89.00 | 90.00 | ● 92.00 | ● 91.00 |
Peak Contribution | 31.35 | ● 36.67 | ● 43.17 | 41.68 | ● 43.46 |
Total Reward | 6.63 | ● 34.36 | ● 38.72 | 38.06 | ● 38.69 |
Gini Coeff | 0.0 | ● 0.0372 | 0.0293 | ● 0.0264 | ● 0.0125 |
Buildings | Thermal Characteristics | Charger Characteristics | ||||||
---|---|---|---|---|---|---|---|---|
Attributes | ||||||||
Building 1 | 1 × 10−4 | 50 | 14 | 4.8 | 1778 | 300 | 10 | 50 |
Building 2 | 8.33 × 10−5 | 55 | 14 | 60 | 2500 | 420 | 15 | 75 |
Building 3 | 6.66 × 10−4 | 60 | 15 | 90 | 3200 | 600 | 20 | 100 |
Building 4 | 5.83 × 10−5 | 65 | 15 | 120 | 4500 | 900 | 25 | 120 |
Building 5 | 5 × 10−4 | 70 | 16 | 150 | 5500 | 1200 | 30 | 150 |
Building 6 | 4.16 × 10−4 | 75 | 16 | 180 | 6500 | 1500 | 35 | 200 |
Building 7 | 3.33 × 10−5 | 80 | 14 | 210 | 7500 | 1800 | 40 | 250 |
Building 8 | 6.66 × 10−5 | 65 | 15 | 72 | 2800 | 720 | 18 | 85 |
Building 9 | 5.83 × 10−5 | 55 | 15 | 108 | 4000 | 1080 | 22 | 125 |
Time of Day | Hours | $/kWh | Day Type |
---|---|---|---|
Winter (November–February) | |||
Off-Peak | 22:00–05:59 | $0.09 | Every day |
On-Peak | 17:00–19:59 | $0.20 | Monday–Friday |
On-Peak | 06:00–08:59 | $0.20 | Monday–Friday |
Mid-Peak | Other hours | $0.12 | Monday–Friday |
Mid-Peak | All hours | $0.12 | Saturday–Sunday |
Summer (May–August) | |||
Off-Peak | 22:00–05:59 | $0.09 | Every day |
On-Peak | 12:00–17:59 | $0.20 | Monday–Friday |
Mid-Peak | Other hours | $0.12 | Monday–Friday |
Mid-Peak | All hours | $0.12 | Saturday–Sunday |
Transitional (March, April, September, October) | |||
Off-Peak | 22:00–05:59 | $0.09 | Every day |
Mid-Peak | Other hours | $0.12 | Every day |
Day | Building 1 | Building 2 | Building 3 | Building 4 | Building 5 | Building 6 | Building 7 | Building 8 | Building 9 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hour | % | Hour | % | Hour | % | Hour | % | Hour | % | Hour | % | Hour | % | Hour | % | Hour | % | |
Weekday | 0–6 | 95 | 0–6 | 92 | 0–6 | 85 | 0–8 | 10 | 0–8 | 5 | 0–8 | 5 | 0–23 | 80 | 0–8 | 20 | 0–6 | 90 |
7–16 | 10 | 7–16 | 20 | 7–16 | 30 | 9–16 | 80 | 9–16 | 85 | 9–16 | 90 | 0–23 | 80 | 9–16 | 80 | 7–16 | 15 | |
17–23 | 90 | 17–23 | 95 | 17–23 | 95 | 17–23 | 10 | 17–23 | 10 | 17–23 | 5 | 0–23 | 80 | 17–23 | 20 | 17–23 | 95 | |
Weekend | 0–23 | 95 | 0–23 | 95 | 0–23 | 90 | 0–23 | 100 | 0–23 | 5 | 0–23 | 20 | 0–23 | 80 | 0–23 | 10 | 0–23 | 95 |
Holiday | 0–23 | 95 | 0–23 | 100 | 0–23 | 100 | 0–23 | 100 | 0–23 | 5 | 0–23 | 20 | 0–23 | 80 | 0–23 | 10 | 0–23 | 100 |
Controller | Mean Reward | Standard Deviation |
---|---|---|
LSD-MADDPG | 0.203 | 0.0184 |
I-MADDPG | 0.188 | 0.0102 |
CTDE-MADDPG | 0.187 | 0.0341 |
DDPG | 0.0291 | 0.308 |
NC | DDPG | CTDE | I-MADDPG | LSD-MADDPG | |
---|---|---|---|---|---|
Total Community Charge | 100% | 0% | 50% | 57% | 83% |
Reward | −101.65 | 66.31 | 277.22 | 340.89 | 438.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilk, P.; Wang, N.; Li, J. Multi-Agent Reinforcement Learning for Smart Community Energy Management. Energies 2024, 17, 5211. https://doi.org/10.3390/en17205211
Wilk P, Wang N, Li J. Multi-Agent Reinforcement Learning for Smart Community Energy Management. Energies. 2024; 17(20):5211. https://doi.org/10.3390/en17205211
Chicago/Turabian StyleWilk, Patrick, Ning Wang, and Jie Li. 2024. "Multi-Agent Reinforcement Learning for Smart Community Energy Management" Energies 17, no. 20: 5211. https://doi.org/10.3390/en17205211
APA StyleWilk, P., Wang, N., & Li, J. (2024). Multi-Agent Reinforcement Learning for Smart Community Energy Management. Energies, 17(20), 5211. https://doi.org/10.3390/en17205211