The Green Economy in the Energy Transformation Process—Comparative Analysis of the European Union Member States
Abstract
:1. Introduction
2. Literature Review
2.1. The Concept of Green Economy
- In a narrower sense, these are areas directly related to the protection of the natural environment,
- In a broader sense, it also covers sectors that have an indirect impact on the natural environment.
- Consistency with the principles of sustainable development,
- An appreciation of natural and social capital,
- Sustainable and efficient resource use, consumption, and production.
- Improving social well-being, striving for equality in society, reducing shortages, and reducing environmental risks,
- Efficient use of resources, reduction of carbon dioxide emissions, and social responsibility,
- Increasing public funds allocated to combating carbon dioxide emissions, as well as creating green jobs,
- Strong commitment to energy efficiency and biodiversity.
2.2. The Measurement of the Green Economy
- Policy relevance—the indicator should take into account issues that are of public interest and are important for policy-making,
- Analytical validity—ensuring that the indicator is based on the best available knowledge,
- Measurability—indicators must enable seasonal comparison both in time and space (in the countries or regions under study),
- Usefulness in communication—the ability to provide understandable, easily interpretable signals to target recipients.
- Environmental and resource productivity—describe the connections between the natural environment and the economy,
- Natural asset base—is related to the state of the natural environment,
- Environmental dimension of quality of life—describe the connections between the natural environment and society,
- Economic opportunities and policy responses—is related to the instruments of impact on the economy and society,
- Socio-economic context.
- Global Green Economy Index™ (GGEI)—is published by Dual Citizen LLC, a private U.S.-based consultancy; measures the green economy performance of 160 countries across 18 indicators; is defined by four key dimensions: climate change and social equity, sector decarbonization, markets and ESG investment, and environmental health; was the first green economy index, launched in 2010 [87],
- Green Economy Index (GEI)—prepared by A. Nahman, B. Mahumani, and W. de Lange; is based on a number of indicators reflecting green economic principles and criteria across the economic, social, and environmental dimensions, of relevance to both developed and developing countries [85],
- Green Economy Progress Index (GEPI)—developed as part of Partnership for Action on Green Economy (PAGE); captures multi-dimensions of an Inclusive Green Economy; includes measurements of accumulation of capital—natural, low carbon, and resource-efficient, human or social—which serves as input for producing goods and services in an environmentally friendly manner [84,88,89],
- Green Growth Index (GGI)—prepared by Global Green Growth Institute; is a composite index combining green growth indicators from four dimensions—efficient and sustainable resource use, natural capital protection, green economic opportunities, and social inclusion; the green growth indicators are benchmarked against sustainability targets, including Sustainable Development Goals (SDGs), Paris Climate Agreement, and Aichi Biodiversity Targets [90],
- Green Economy Index—by B. Ryszawska; was calculated for the first time in 2013 and illustrates the positions of individual countries in the process of transition to the green economy based on data for 27 EU member states [12].
- The indicators related to the green economy and green growth are also collected and published by the European Environmental Agency (EEA). The EEA is one of the largest research institutions in the world that sets standards for diagnosing and measuring environmental problems. According to the EEA, the broadly understood concept of a green economy recognises that ecosystems, the economy, and human well-being are intrinsically linked [95]. In the process of selecting indicators, the EEA relies on its own developed method for measuring environmental problems, which includes a set of indicators abbreviated as DPSIR. The name of the DPSIR model is an acronym of the words: driving forces, pressures, state, impact, and responses [95]:
- D—Driving force indicators—describe socio-economic development, related changes in lifestyles and levels of consumption and production; the main driving forces are demographic changes and economic activity (energy consumption and transport development),
- P—Pressure indicators—describe emissions of greenhouse gases and other pollutants into air and water, resource use, and land use; indicate a change in environmental conditions and a reduction in the quantity and quality of environmental resources,
- S—State indicators—provide a comprehensive assessment of the state of the environment, describe quantitative and qualitative phenomena (e.g., temperature, concentrations of pollutants in the air or water), biological phenomena (species and habitats),
- I—Impact indicators—describe the importance of changes in the natural environment and their impact on ecosystems, the economy, human well-being, and health,
- R—Response indicators—describe the reaction of society and politicians to environmental problems and actions leading to limiting or eliminating negative pressure on the environment, stopping degradation, or adapting to the state of the environment (equipping vehicles with catalytic converters, taxes, and environmental fees).
3. Materials and Research Methods
- Conceptualization of the research—defining the subject and purpose of the study,
- Identification and selection of indicators,
- Normalization of indicators and weighting of indicators,
- Construction of the synthetic measures of development level for each distinguished group of indicators,
- Linear ordering of examined objects according to the level of measures achieved.
- The starting point was a set of green economy indicators published by OECD and Eurostat,
- Importance from the perspective of the analyzed problem, representativeness, and coherence in covering individual aspects of the green economy—indicators correspond to the definitions of the green economy and the areas selected for study (indicators most fully reflect various aspects of the green economy, expressed in its definitions),
- Availability of statistical data for all surveyed countries, including time availability (completeness for all countries, reliable sources)—the data covered 2014 and 2021,
- Indicators are relatively independent (no deterministic cause-and-effect connections)—a number of variables were excluded due to mutual correlation.
- xij—denotes the values of the j-th variable for the i-th object, matrix of dnaych objects,
- i—object number (i = 1, 2, …, n),
- j—variable number (j = 1, 2, …, m).
- For stimulants, variables for which high values are most desirable takes the form:
- for destimulants, variables for which low values are most desirable takes the form:
- qi—resulting value of the synthetic variable,
- wj—weight of the j-th diagnostic variable,
- zij—normalized value of the j-th variable for the i-th object,
- i = 1, 2 …, n,
- m—number of diagnostic variables,
- n—number of objects.
- Development of the green economy,
- Environmental efficiency of production,
- Environmental quality of life of the population,
- Economic policies and their consequences.
- Group 1—The EU member states with a high level of development: qi ≥ d + s,
- Group 2—The EU member states with a medium-high level of development: d ≤ qi < d + s,
- Group 3—The EU member states with a medium–low level of development: d − s ≤ qi < d,
- Group 4—The EU member states with a low level of development: qi < d − s.
4. Research Results and Discussion
- High values of indicators that have a positive impact on this dimension (stimulants), such as:
- −
- x13 energy productivity—the highest values of indicator in Ireland and Malta,
- −
- x17 non-energy material productivity—the high value of the indicator in Malta,
- −
- x18 resource productivity—the high value of the indicator in Ireland,
- And low values of indicators that have a negative impact on this dimension (destimulants), such as:
- −
- x11 greenhouse gas emissions from production activities—the lowest value of indicator in Malta,
- −
- x16 primary energy consumption—the lowest value of the indicator in Malta.
- −
- x13 energy productivity—the low value of the indicator in Croatia and the relatively low value of the indicator in Italy,
- −
- x15 renewable electricity generation—the relatively low value of the indicator in Italy,
- −
- x17 non-energy material productivity—the relatively low value of the indicator in Croatia.
- −
- x21 population exposure to PM2.5—the relatively low value of the indicator in Latvia,
- −
- x22 population exposed to more than 10 micrograms/m3—the relatively low value of indicator in Latvia,
- −
- x23 mortality from exposure to lead (Pb)—the relatively low values of the indicator in Latvia and Hungary.
- High values of indicators that have a negative impact on this dimension (destimulants), such as:
- −
- x21 population exposure to PM2.5—the relatively high values of indicator in France and Spain,
- −
- x22 population exposed to more than 10 micrograms/m3—the relatively high values of indicator in France and Spain,
- −
- x26 population living in households considering that they suffer from noise—the relatively high values of indicator in France and Spain,
- And low values of indicators that have a positive impact on this dimension (stimulants), such as:
- −
- X25 population with access to improved sanitation—the relatively low value of the indicator in France.
- −
- x35 feed-in tariffs for solar photovoltaic—the highest value of the indicator in Hungary,
- −
- x37 organic agricultural area in % of total agricultural area—the relatively high value of the indicator in Malta.
- −
- x31 development of environment-related technologies—the relatively low values of indicator in Greece and Slovakia,
- −
- x32 relative technological advantage in environment-related technologies—the relatively low value of the indicator in Greece,
- −
- x35 feed-in tariffs for solar photovoltaic—the relatively low values of indicator in Luxembourg and Slovakia,
- −
- x36 feed-in tariffs for wind electricity generation—the relatively low values of indicator in Greece and Slovakia,
- −
- x37 organic agricultural area in % of total agricultural area—the relatively low value of the indicator in Luxembourg.
5. Conclusions
- The analysis of the literature and reports of the largest international organizations shows that the concept of the green economy is a development opportunity for the EU member states and is important for solving global threats related to climate change and the depletion of natural resources. Moreover, “greening” the economy supports the implementation of most sustainable development goals. It can contribute to increasing the prosperity and social equality of future generations and the right balance between the economy and ecosystems. The change of thinking in the direction of the green economy can be observed not only in highly developed countries but also in developing ones [4,128]. Increasingly diverse factors are currently being used in research on the green economy [129]. Their scope is not limited. Numerous factors that describe the social situation in individual countries are also increasingly gaining in importance [127].
- There are specific relationships between the elements of the green economy (environment, economy, and society), which were used to examine three areas of the green economy, i.e., the environmental and resource productivity of the economy—including indicators describing the connections between the natural environment and the economy, the environmental dimension of quality of life—presents indicators for assessing the connections between the natural environment and society and the economic opportunities and policy responses—contains indicators characterizing the instruments of impact on the economy and society, creating the desired directions of development aimed at “greening” the economy.
- An important element of the article is the linear ordering and classification of EU member states using the method of multidimensional statistical analysis. When comparing two fairly distant periods of research (2014 and 2021), it was possible to identify the direction in which green transformation is proceeding in the examined countries. On the basis of the analysis conducted, there is a large variation among the EU countries regarding green economy. Depending on the area of the green economy, the maximum differences in positions are from 6 to 14 (area three). There are no changes in the classification only in the case of one country in the first area and seven countries in the second area. A spectacular improvement of the ranking position, based on all of the analysed indicators, applies mostly to Hungary (eight positions up, from 25th position to 17th). This is a result of very significant changes in the third area under analysis—economic opportunities to policy responses (advance by 14 positions, from last position to 13th position). Similar changes were also noted for Portugal, which, during the first analysed year, gained 21 positions in the general ranking, and then improved it by seven positions (up to 14th) in the final year—also mainly due to the positive changes in the third area (11 positions up, from 25th to 14th).
- Despite differences in the linear ordering of the EU member states depending on the adopted green economy area, certain regularities are visible. The first places in the presented rankings, regardless of the analysed dimension of the green economy, are usually occupied by Scandinavian countries, especially Finland, which is most often in first place. These countries, for many years, have been implementing technological solutions aimed at combating the degradation of the natural environment. As was pointed out by many authors [78], these are actually the only countries in Europe that have managed to separate permanently their economic growth from the negative pressure exerted on the natural environment. These dependencies are also visible in the analyses conducted for this study. It is worth emphasizing that the Nordic model has not been widely copied by other EU countries. This model has many advantages, including the development of environment-friendly technologies and the appropriate organization of the tax system.
- The values of the synthetic measure of the green economy were also used to divide the set of surveyed countries into groups characterized by similar development. The use of a multi-criteria taxonomy allowed for the division of the EU member states into four groups according to the development level of the green economy. Despite the different number of EU member states qualified to the first (the best) typological group, both in 2014 and 2021, there were countries such as Finland, Sweden, Luxembourg, Denmark, and Austria. The countries located in Northern and Western Europe were most often classified into the highest typological groups in all areas describing the green economy.
- The evaluation of the processes marking countries’ transitions to a green economy is a complex issue that needs advanced methods of analysis. A multifaceted comparative analysis proved to be an adequate tool for designing the synthetic measure of the green economy and for the linear ordering of the EU member states. The added value of the study comprises developing a comprehensive evaluation method through designing the synthetic measure of the green economy, preceded by a thorough analysis of reference literature and the identification of 21 detailed indicators. The informative value of the synthetic measure of the green economy should improve monitoring, planning, and implementing the assumptions of the green economy in the EU member states.
- The empirical results obtained and findings on the green economy may help identify critical conclusions concerning the rules and ways of measurement of the green transformation, the comparison of the level and direction of this transformation, and the identification of the condition of this process. The information thus obtained can provide valuable guidance for taking specific, practical steps useful during the transformation of national economies into modern and competitive systems with minimal possible environmental impact. The growing pressure on the use of environmental resources, especially non-renewable ones, forces various official entities to take actions aimed at improving production efficiency in this area. It is recommended to use more tidal energy, solar energy, wind power, bioenergy, and hydropower instead of fossil fuels, for the sustainable attainment of higher economic growth, devoid of pollution [130]. The implementation of these activities should be monitored to assess their effectiveness. The conclusions from the conducted research are important for EU countries, especially for countries shaping the model of energy sector development. The results presented in the article constitute knowledge that facilitates a better understanding of the instruments used in the energy transformation processes in EU countries, which constitutes the innovative nature of the work.
- The research conducted has its limitations. A significant limitation of the research on green economy is the access to reliable and comparable statistical data. Public statistics databases do not always provide complete and up-to-date information. It is a typical limitation of research using data from official statistics. The final result is also the effect of the applied data-analysis method. For this reason, in this type of research, it is important to look for regularities, the confirmation of which can be found in the studies by other authors. This type of approach was used in this paper.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brzozowska, A. Zielony Ład jako implikacja sprawiedliwej czy ekologicznej transformacji Europy oraz innowacji celów zrównoważonego rozwoju. In Zrównoważony Rozwój i Europejski Zielony Ład Imperatywami Doskonalenia Warsztatu Naukowca; Buzek, J., Kretka, H.A., Staniszewski, M., Eds.; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2023; pp. 23–36. [Google Scholar]
- Jaźwiński, I. Kapitał Ludzki w Polityce Regionalnej; Wydawnictwo Naukowe Uniwersytetu Szczecińskiego: Szczecin, Poland, 2017. [Google Scholar]
- Sarkodie, S.A.; Owusu, P.A.; John, T. Green growth assessment across 203 economies: Trends and insights. Sustain. Horiz. 2024, 10, 100083. [Google Scholar] [CrossRef]
- Bąk, I.; Cheba, K. Zielona Gospodarka Jako Narzędzie Zrównoważonego Rozwoju; Wydawnictwo CeDeWu: Warszawa, Poland, 2022. [Google Scholar]
- Sarkodie, S.A.; Ahmed, M.Y.; Owusu, P.A. Global adaptation readiness and income mitigate sectoral climate change vulnerabilities. Humanit. Soc. Sci. Commun. 2022, 9, 113. [Google Scholar] [CrossRef]
- Arzova, S.B.; Şahin, B.Ş. Macroeconomic and financial determinants of green growth: An empirical investigation on BRICS-T countries. Manag. Environ. Qual. 2024, 35, 506–524. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; She, S.; Liu, W. Green growth, natural resources and sustainable development: Evidence from BRICS economies. Resour. Policy 2022, 79, 103032. [Google Scholar] [CrossRef]
- Szczepańska, M. Zrównoważony rozwój regionów węglowych w kontekście Europejskiego Zielonego Ładu. In Zrównoważony Rozwój i Europejski Zielony Ład Imperatywami Doskonalenia Warsztatu Naukowca; Buzek, J., Kretka, H.A., Staniszewski, M., Eds.; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2023; pp. 141–150. [Google Scholar]
- Ospanova, A.; Popovychenko, I.; Chuprina, E. Green Economy—Vector of Sustainable Development. Probl. Ekorozw.—Probl. Sustain. Dev. 2022, 17, 171–181. [Google Scholar] [CrossRef]
- Kongkuah, M. Impact of Belt and Road countries’ renewable and non-renewable energy consumption on ecological footprint. Environ. Dev. Sustain. 2024, 26, 8709–8734. [Google Scholar] [CrossRef]
- Güneş, H.; Simba, H.M.A.; Karadağ, H.; Şit, M. Global Energy Transformation and the Impacts of Systematic Energy Change Policy on Climate Change Mitigation. Sustainability 2023, 15, 14298. [Google Scholar] [CrossRef]
- Ryszawska, B. Zielona Gospodarka—Teoretyczne Podstawy Koncepcji i Pomiar jej Wdrażania w Unii Europejskiej; Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu: Wrocław, Poland, 2013. [Google Scholar]
- Telukdarie, A.; Katsumbe, T.; Mahure, H.; Murulane, K. Exploring the green economy—A systems thinking modelling approach. J. Clean. Prod. 2024, 436, 140611. [Google Scholar] [CrossRef]
- Babkin, A.; Shkarupeta, E.; Tashenova, L.; Malevskaia-Malevich, E.; Shchegoleva, T. Framework for assessing the sustainability of ESG performance in industrial cluster ecosystems in a circular economy. J. Open Innov. Technol. Mark. Complex. 2023, 9, 100071. [Google Scholar] [CrossRef]
- Szpilko, D.; Ejdys, J. European Green Deal—Research directions. A systematic literature review. Ekon. Śr. 2022, 2, 8–39. [Google Scholar]
- Chakraborty, S.K.; Mandel, A. Understanding EU regional macroeconomic tipping points using panel threshold technique. Econ. Change Restruct. 2024, 57, 132. [Google Scholar] [CrossRef]
- Hereu-Morales, J.; Segarra, A.; Valderrama, C. The European (Green?) Deal: A systematic analysis of environmental sustainability. Sustain. Dev. 2024, 32, 647–661. [Google Scholar] [CrossRef]
- Llorca, M.; Rodriguez-Alvarez, A. Economic, environmental, and energy equity convergence: Evidence of a multi-speed Europe? Ecol. Econ. 2024, 219, 108133. [Google Scholar] [CrossRef]
- Neagu, F.-Ș.; Bălan, L.L.; Ignat, I.; Tache, M. The Green Economy in the Context of Sustainable Development. Study Case: European Union. Proc. Int. Conf. Bus. Excell. 2024, 18, 2398–2950. [Google Scholar] [CrossRef]
- Paleari, S. The Role of Strategic Autonomy in the EU Green Transition. Sustainability 2024, 16, 2597. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Bartalucci, F. The green transition and its potential territorial discontents. Camb. J. Reg. Econ. Soc. 2024, 17, 339–358. [Google Scholar] [CrossRef]
- Taneja, S.; Bansal, N.; Ozen, E. What was, is and will be: A bibliometric analysis of European Green Deal (EGD). Int. J. Technol. Manag. Sustain. Dev. 2024, 23, 85–104. [Google Scholar] [CrossRef]
- Aisbett, E.; Raynal, W.; Steinhauser, R.; Jones, B. International green economy collaborations: Chasing mutual gains in the energy transition. Energy Res. Soc. Sci. 2023, 104, 103249. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Mohamed, I.M.A.; Chen, Z.; Chen, L.; Ihara, I.; Yap, P.-S.; Rooney, D.W. Strategies to save energy in the context of the energy crisis: A review. Environ. Chem. Lett. 2023, 21, 2003–2039. [Google Scholar] [CrossRef]
- Gunay, S.; Muhammed, S.; Elkanj, N. Risk transmissions between regional green economy indices: Evidence from the US, Europe and Asia. J. Clean. Prod. 2022, 379, 134752. [Google Scholar] [CrossRef]
- Cifuentes-Faura, J. European Union policies and their role in combating climate change over the years. Air Qual. Atmos. Health 2022, 15, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, R.V.; Antohi, V.M.; Zlati, M.L.; Georgescu, L.P.; Iticescu, C. To a Green Economy across the European Union. Int. J. Environ. Res. Public Health 2022, 19, 12427. [Google Scholar] [CrossRef] [PubMed]
- Rybalkin, O. Sustainable development goals progress in the European Union: Correlation with EEPSE green economy index. Access to science, business, innovation in digital economy. ACCESS Press 2022, 3, 121–135. [Google Scholar] [CrossRef]
- Schunz, S. The ‘European Green Deal’—A paradigm shift? Transformations in the European Union’s sustainability meta-discourse. Political Res. Exch. 2022, 4, 2085121. [Google Scholar] [CrossRef]
- Kasztelan, A. On the Road to a Green Economy: How Do European Union Countries ‘Do Their Homework’? Energies 2021, 14, 5941. [Google Scholar] [CrossRef]
- Godlewska, J.; Sidorczuk-Pietraszko, E. Taxonomic Assessment of Transition to the Green Economy in Polish Regions. Sustainability 2019, 11, 5098. [Google Scholar] [CrossRef]
- Communication from the Commission Europe 2020. A Strategy for Smart, Sustainable and Inclusive Growth; European Commission: Brussels, Belgium, 2010; Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A52010DC2020 (accessed on 22 April 2024).
- Adamowicz, M. Green Deal, Green Growth and Green Economy as a Means of Support for Attaining the Sustainable Development Goals. Sustainability 2022, 14, 5901. [Google Scholar] [CrossRef]
- Leth, N.E. The Complications of Measuring Green Growth: Current Pitfalls, Further Developments, and Impact On Cross-Country Longitudinal Analyses. Master’s Thesis, Lund University, Lund, Sweden, 2022. Available online: https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9091447&fileOId=9091456 (accessed on 22 April 2024).
- Kantor, A. Multidimensional Analysis of the Green Growth of the European Union Countries in 2019. Econometrics 2021, 25, 46–66. [Google Scholar] [CrossRef]
- Stoknes, P.E.; Rockström, J. Redefining green growth within planetary boundaries. Energy Res. Soc. Sci. 2018, 44, 41–49. [Google Scholar] [CrossRef]
- Pearce, D.; Markandya, A.; Barbier, E.B. Blueprint for a Green Economy; Earthscan: London, UK, 1989. [Google Scholar]
- Allen, C.; Clouth, S. A Guidebook to the Green Economy; UNDESA: New York, NY, USA, 2012; Available online: https://sustainabledevelopment.un.org/content/documents/GE%20Guidebook.pdf (accessed on 25 April 2024).
- Adamowicz, M. Zielona gospodarka, zielony wzrost i zazielenienie jako formy realizacji koncepcji zrównoważonego rozwoju. Wieś Rol. 2021, 2, 13–33. [Google Scholar] [CrossRef]
- Sidorczuk-Pietraszko, E. Wdrażanie Koncepcji Zielonej Gospodarki w Regionach Polski; Wydawnictwo Uniwersytetu w Białymstoku: Białystok, Poland, 2020. [Google Scholar]
- Barbier, E. A Global Green New Deal; Report Prepared for the Green Economy Initiative of UNEP. 2009. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/7903/A_Global_Green_New_Deal_Policy_Brief.pdf (accessed on 4 May 2024).
- Tutaj, J.; Rutkowska, M. Zielone Zarządzanie w Samorządzie: Wybrana Problematyka; Wydawnictwo CeDeWu: Warszawa, Poland, 2023. [Google Scholar]
- RIO+20 United Nations Conference on Sustainable Development. The Future We Want; RIO+20 United Nations Conference on Sustainable Development: Rio de Janeiro, Brazil, 2012; Available online: https://sustainabledevelopment.un.org/content/documents/733FutureWeWant.pdf (accessed on 24 April 2024).
- United Nations Conference on Sustainable Development. Rio+20. Available online: https://www.un.org/en/conferences/environment/rio2012 (accessed on 24 April 2024).
- Mazza, L.; ten Brink, P. Green Economy in the European Union; UNEP: Nairobi, Kenya, 2012; Available online: https://ieep.eu/wp-content/uploads/2022/12/KNOSSOS_Green_Economy_Supporting_Briefing.pdf (accessed on 2 May 2024).
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Rio+20: Towards the Green Economy and Better Governance; European Commission: Brussels, Belgium, 2011; Available online: https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:52011DC0363 (accessed on 2 May 2024).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Roadmap to a Resource Efficient Europe; European Commission: Brussels, Belgium, 2011; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011DC0571 (accessed on 2 May 2024).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and The Committee of the Regions, A Roadmap for Moving to a Competitive Low Carbon Economy in 2050; European Commission: Brussels, Belgium, 2011; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011DC0112 (accessed on 2 May 2024).
- Alsmadi, A.A.; Al-Okaily, M.; Alrawashdeh, N.; Al-Gasaymeh, A.; Moh’d Al-hazimeh, A.; Zakari, A. A Bibliometric Analysis of Green Bonds and Sustainable Green Energy: Evidence from the Last Fifteen Years (2007–2022). Sustainability 2023, 15, 5778. [Google Scholar] [CrossRef]
- Houssam, N.; Ibrahiem, D.M.; Sucharita, S.; El-Aasar, K.M.; Esily, R.R.; Sethi, N. Assessing the role of green economy on sustainable development in developing countries. Heliyon 2023, 9, e17306. [Google Scholar] [CrossRef] [PubMed]
- Huttmanová, E.; Steiner, M.J.F.; Ramharter, P.M.; Salabura, D.; Benko, M.; Kalistová, A. Green growth and green economy—Theoretical basis, starting points and new challenges. Stud. Ekonom. Gospod. Społecz. Sr. 2022, 10, 95–105. [Google Scholar]
- Daniek, K. Green Economy Indicators as a Method of Monitoring Development in the Economic, Social and Environmental Dimensions. Nierówności Społecz. Wzrost Gospod. 2020, 62, 150–173. [Google Scholar] [CrossRef]
- Jędrzejczak-Gas, J.; Wyrwa, J.; Barska, A. Sustainable Energy Development and Sustainable Economic Development in EU Countries. Energies 2024, 17, 1775. [Google Scholar] [CrossRef]
- UNEP. Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication—A Synthesis for Policy Makers; UNEP: Nairobi, Kenya, 2011; Available online: https://sustainabledevelopment.un.org/content/documents/126GER_synthesis_en.pdf (accessed on accessed on 4 May 2024).
- Barbier, E.B. The Green Economy Post Rio+20. Science 2012, 338, 887–888. [Google Scholar] [CrossRef]
- Berger, R. Green Growth, Green Profit. How Green Transformation Boosts Business; Palgrave Macmillan: London, UK, 2011. [Google Scholar] [CrossRef]
- OECD Green Growth Studies. In Towards Green Growth; OECD Publishing: Paris, France, 2011. [CrossRef]
- Georgeson, L.; Maslin, M.; Poessinouw, M. The global green economy: A review of concepts, definitions, measurement methodologies and their interactions. Geo Geogr. Environ. 2017, 4, e00036. [Google Scholar] [CrossRef]
- Dabyltayeva, N.; Rakhymzhan, G. The Green Economy Development Path: Overview of Economic Policy Priorities. J. Secur. Sustain. Issues 2019, 8, 643–651. [Google Scholar] [CrossRef]
- Khoshnava, S.M.; Rostami, R.; Zin, R.M.; Štreimikienė, D.; Yousefpour, A.; Strielkowski, W.; Mardani, A. Aligning the Criteria of Green Economy (GE) and Sustainable Development Goals (SDGs) to Implement Sustainable Development. Sustainability 2019, 11, 4615. [Google Scholar] [CrossRef]
- Europe’s Environment. An Assessment of Assessments; Publications Office of the European Union: Luxembourg, 2011; Available online: https://www.eea.europa.eu/publications/europes-environment-aoa (accessed on 5 May 2024).
- Loiseau, E.; Saikku, L.; Antikainen, R.; Droste, N.; Hansjürgens, B.; Pitkänen, K.; Leskinen, P.; Kuikman, P.; Thomsen, M. Green economy and related concepts: An overview. J. Clean. Prod. 2016, 139, 361–371. [Google Scholar] [CrossRef]
- Atkisson, K.; Atkisson, A. Green Economy 2013. A Strategic Briefing on the State of Play in the Global Transition; Atkisson Group’s Sustainability Intelligence Unit. 2013. Available online: https://www.fondazionesvilupposostenibile.org/f/MATERIALE/Green_Economy_2013_Atkisson_Seattle.pdf (accessed on 4 May 2024).
- UNEP. Working Towards a Balanced and Inclusive Green Economy: A United Nations System-Wide Perspective; UNEP: Nairobi, Kenya, 2011; Available online: https://stg-wedocs.unep.org/handle/20.500.11822/8065 (accessed on 4 May 2024).
- Inclusive Green Growth: The Pathway to Sustainable Development. World Bank: Washington, DC, USA, 2012; Available online: https://openknowledge.worldbank.org/server/api/core/bitstreams/8fd533cc-8dd2-5a0a-820b-2de519108f52/content (accessed on 10 May 2024).
- Nyangchak, N. Emerging green industry toward net-zero economy: A systematic review. J. Clean. Prod. 2022, 378, 134622. [Google Scholar] [CrossRef]
- Jänicke, M. “Green growth”: From a growing eco-industry to economic sustainability. Energy Policy 2012, 48, 13–21. [Google Scholar] [CrossRef]
- Acosta, L.A.; Balmes, C.O.; Mamiit, R.J.; Maharjan, P.; Hartman, K.; Anastasia, O.; Puyo, N.M. Assessment and Main Findings on the Green Growth Index; GGGI Insight Brief 3; Green Growth Performance Measurement, Global Green Growth Institute: Seoul, Republic of Korea, 2019; Available online: https://greengrowthindex.gggi.org/wp-content/uploads/2020/04/GGGI-Insight-Brief-No.-3_Final.pdf (accessed on 11 May 2024).
- Gunay, S.; Kurtishi-Kastrati, S.; Krsteska, K. Regional green economy and community impact on global sustainability. J. Enterprising Communities: People Places Glob. Econ. 2023, 17, 1118–1134. [Google Scholar] [CrossRef]
- Kuruvilla Pandikattu, S.J. Green Growth and Regrowth: Pleading for Progress With Sustainability and Responsibility. In Strategic Corporate Responsibility and Green Management (Critical Studies on Corporate Responsibility, Governance and Sustainability, Vol. 16); Gupta, A.D., Ed.; Emerald Publishing Limited: Leeds, UK, 2023; pp. 117–141. [Google Scholar] [CrossRef]
- Chou, J.-R. A Scoping Review of Ontologies Relevant to Design Strategies in Response to the UN Sustainable Development Goals (SDGs). Sustainability 2021, 13, 10012. [Google Scholar] [CrossRef]
- Fernandes, C.I.; Veiga, P.M.; Ferreira, J.J.; Hughes, M. Green growth versus economic growth: Do sustainable technology transfer and innovations lead to an imperfect choice? Bus. Strategy Environ. 2021, 30, 2021–2037. [Google Scholar] [CrossRef]
- Lavrinenko, O.; Ignatjeva, S.; Ohotina, A.; Rybalkin, O.; Lazdans, D. The Role of Green Economy in Sustainable Development (Case Study: The EU States). Entrep. Sustain. Issues 2019, 6, 1113–1126. [Google Scholar] [CrossRef]
- Stanković, S.; Ilić, B.; Rabrenović, M. Using the Composite EEPSE Green Economy Index to Assess the Progress of Emerging Economies in Achieving the Sustainable Development Goals. Probl. Ekorozw. 2024, 19, 78–88. [Google Scholar] [CrossRef]
- Babacan, A.; Polat, M.A.; Kızılkaya, O. Green Economy in Sustainable Development: An Analysis for OECD Countries. Istanb. J. Econ. 2023, 73, 231–260. [Google Scholar] [CrossRef]
- Madushika, U.G.D.; Lu, W. Green retrofitting application in developing economies: State of the art and future research directions. Energy Build. 2023, 301, 113712. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A.; Taden, J. Comprehensive green growth indicators across countries and territories. Sci. Data 2023, 10, 413. [Google Scholar] [CrossRef]
- Cheba, K.; Bąk, I.; Szopik-Depczyńska, K.; Ioppolo, G. Directions of green transformation of the European Union countries. Ecol. Indic. 2022, 136, 108601. [Google Scholar] [CrossRef]
- Lavrinenko, O.; Rybalkin, O.; Danileviča, A.; Sprūde, M. Green economy: Content and methodological approaches. Entrep. Sustain. Issues 2022, 10, 635–652. [Google Scholar] [CrossRef] [PubMed]
- Mealy, P.; Teytelboym, A. Economic complexity and the green economy. Res. Policy 2022, 51, 103948. [Google Scholar] [CrossRef]
- Koçak, D. Green growth dynamics in OECD countries: An application of grey relational analysis. Grey Syst. Theory Appl. 2020, 10, 545–563. [Google Scholar] [CrossRef]
- Stiglitz, J.E.; Sen, A.; Fitoussi, J.P. Report by the Commission on the Measurement of Economic Performance and Social Progress. 2009. Available online: https://ec.europa.eu/eurostat/documents/8131721/8131772/Stiglitz-Sen-Fitoussi-Commission-report.pdf (accessed on 12 May 2024).
- Borys, T. (Ed.) Wskaźniki Ekorozwoju; Wydawnictwo “Ekonomia i Środowisko: Białystok, Poland, 1999. [Google Scholar]
- UNEP. The Green Economy Progress Measurement Framework—Application (Second Edition); UNEP Technical Report: Evaluating National Progress towards Poverty Eradication and Shared Prosperity within Planetary Boundaries; PAGE: Geneva, Switzerland, 2021; Available online: https://www.greenpolicyplatform.org/sites/default/files/downloads/resource/GEP-Application%20Second%20Edition.pdf (accessed on 15 May 2024).
- Nahman, A.; Mahumani, B.K.; de Lange, W.J. Beyond GDP: Towards a Green Economy Index. Dev. South. Afr. 2016, 33, 215–233. [Google Scholar] [CrossRef]
- OECD. Towards Green Growth: Monitoring Progress: OECD Indicators; OECD Green Growth Studies; OECD Publishing: Paris, France, 2011. [Google Scholar] [CrossRef]
- Global Green Economy Index. Available online: https://dualcitizeninc.com/global-green-economy-index (accessed on 15 May 2024).
- UNEP. The Green Economy Progress Measurement Framework, 3rd ed.; UNEP: Nairobi, Kenya, 2024; Available online: https://www.un-page.org/static/394a6849cbcaf1b2b271a34f657e3101/green-economy-progress-measurement-final-1.pdf (accessed on 15 May 2024).
- PAGE. The Green Economy Progress Measurement Framework—Methodology; PAGE: Geneva, Switzerland, 2017; Available online: https://www.un-page.org/static/36c6bd8044635327e6e568b7709757b0/2017-the-green-economy-progress-gep-methodology.pdf (accessed on 15 May 2024).
- Acosta, L.A.; Nzimenyera, I.; Sabado, R.S., Jr.; Munezero, R.M.; Kone, N.; Fofana, M.; Jeon, Y.L.; Joveneau, J.; Todorov, V.; Luchtenbelt, H.G.H.; et al. Green Growth Index 2023—Measuring Performance in Achieving SDG Targets; GGGI Technical Report, 32, Green Growth Performance Measurement Program; Global Green Growth Institute (GGGI): Seoul, Republic of Korea, 2023; Available online: https://gggi.org/wp-content/uploads/2024/06/2023-Global-Green-Growth-Index-Technical-Report_FIN.pdf (accessed on 12 June 2024).
- Bielak, J.; Kowerski, M. Dynamics of Economic Development Measure: Fiftieth Anniversary of Publication of the Article by Prof. Zdzisław Hellwig. Barom. Reg. 2018, 16, 153–165. [Google Scholar] [CrossRef]
- Dziechciarz, J. Professor Zdzisław Hellwig (1925–2013) a Giant in the Renaissance Style. Acta Univ. Lodziensis. Folia Oecon. 2015, 3, 85–93. [Google Scholar] [CrossRef]
- Ostasiewicz, W. Professor Zdzisław Henryk Hellwig (26.05.1925–8.11.2013). Śląski Przegląd Stat. 2015, 13, 177–181. [Google Scholar] [CrossRef]
- UNEP. Measuring Progress towards an Inclusive Green Economy; UNEP: Nairobi, Kenya, 2012; Available online: https://www.greenpolicyplatform.org/sites/default/files/downloads/resource/Measuring_progress_towards_an_inclusive_GE_UNEP.pdf (accessed on 12 June 2024).
- Publications Office of the European Union. Environmental Indicator Report 2012. Ecosystem Resilience and Resource Efficiency in a Green Economy in Europe; Publications Office of the European Union: Luxembourg, 2012; Available online: https://www.eea.europa.eu/publications/environmental-indicator-report-2012 (accessed on 12 June 2024).
- Stec, M. Dokładność Danych Statystycznych w Badaniach Zjawisk Złożonych: Wpływ na Wyniki Oceny Zrównoważonego Rozwoju Województw Polski; Wydawnictwo CeDeWu: Warszawa, Poland, 2021. [Google Scholar]
- Panek, T.; Zwierzchowski, J. Statystyczne Metody Wielowymiarowej Analizy Porównawczej: Teoria i Zastosowania; Oficyna Wydawnicza Szkoły Głównej Handlowej: Warszawa, Poland, 2013. [Google Scholar]
- Panek, T. Statystyczne Metody Wielowymiarowej Analizy Porównawczej; Oficyna Wydawnicza Szkoły Głównej Handlowej: Warszawa, Poland, 2009. [Google Scholar]
- Krzyśko, M. Wielowymiarowa Analiza Statystyczna; Wydawnictwo Uniwersytetu im. A. Mickiewicza w Poznaniu: Poznań, Poland, 2000. [Google Scholar]
- Jajuga, K. Statystyczna Analiza Wielowymiarowa; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1993. [Google Scholar]
- Szulc, E.; Jankiewicz, M. Statystyczna i Ekonometryczna Analiza Przestrzennych Zjawisk Ekonomicznych: Metody i Zastosowania; Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2022. [Google Scholar]
- Kądziołka, K. The Problem of Assessment of Linear Ordering Methods. Econ. Reg. Stud. 2021, 14, 391–408. [Google Scholar] [CrossRef]
- Kądziołka, K. Propozycja miernika oceny poprawności metod porządkowania liniowego. Zesz. Nauk. Pol. Tow. Ekon. W Zielonej Górze 2021, 15, 19–33. [Google Scholar] [CrossRef]
- Sompolska-Rzechuła, A. Selection of the Optimal Way of Linear Ordering of Objects: Case of Sustainable Development in EU Countries. Stat. Stat. Econ. J. 2021, 101, 24–36. Available online: https://csu.gov.cz/docs/107508/a55ae043-0d4d-d790-98ea-56154cb410d0/32019721q1_sompolska_analyses.pdf?version=1.0 (accessed on 18 June 2024).
- Sompolska-Rzechuła, A. Selection of the Method of Linear Ordering Using the Example of Assessing the Level of Socio-economic Development of European Union countries. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2020, 7, 118–129. [Google Scholar] [CrossRef]
- Bąk, A. Analiza porównawcza wybranych metod porządkowania liniowego. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2018, 508, 19–28. [Google Scholar] [CrossRef]
- Młodak, A. Analiza Taksonomiczna w Statystyce Regionalnej; Wydawnictwo Difin: Warszawa, Poland, 2006. [Google Scholar]
- Hellwig, Z.; Siedlecka, U.; Siedlecki, J. Taksonometryczne Modele Zmian Struktury Gospodarczej Polski; Instytut Rozwoju i Studiów Strategicznych: Warszawa, Poland, 1995. [Google Scholar]
- Pluta, W. Wielowymiarowa Analiza Porównawcza w Badaniach Ekonomicznych. Metody Taksonomiczne i Analizy Czynnikowe; Państwowe Wydawnictwo Ekonomiczne: Warszawa, Poland, 1977. [Google Scholar]
- Hellwig, Z. Zastosowanie metody taksonomicznej do typologicznego podziału krajów ze względu na poziom rozwoju oraz zasoby i strukturę wykwalifikowanych kadr. Przegląd Stat. 1968, 4, 307–327. [Google Scholar]
- Bąk, A. Statystyczne metody doboru zmiennych w porządkowaniu liniowym. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2017, 468, 29–37. [Google Scholar] [CrossRef]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S.; Hoffmann, A.; Giovannini, E. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008. [Google Scholar] [CrossRef]
- Saisana, M.; Tarantola, S. State-of-the-Art Report on Current Methodologies and Practices for Composite Indicator Development; Report EUR 20408 EN; European Commission, Joint Research Centre: Ispra, Italy, 2002; Available online: https://op.europa.eu/en/publication-detail/-/publication/9253d939-b47b-4428-b792-619e6b6c8645 (accessed on 16 June 2024).
- Kądziołka, K. Porównanie wybranych metod normalizacji zmiennych pod kątem podobieństwa uzyskiwanych rankingów. Zesz. Nauk. Zachodniopom. Szkoły Biznesu Firma Rynek 2021, 2, 70–81. [Google Scholar]
- Kolenda, M. Taksonomia Numeryczna. Klasyfikacja, Porządkowanie i Analiza Obiektów Wielocechowych; Wydawnictwo Akademii Ekonomicznej im. Oskara Langego we Wrocławiu: Wrocław, Poland, 2006. [Google Scholar]
- Kukuła, K. Propozycja budowy rankingu obiektów z wykorzystaniem cech ilościowych oraz jakościowych. Metod. Ilościowe W Badaniach Ekon./Szkoła Główna Gospod. Wiej. 2012, 13, 5–16. [Google Scholar]
- Sokołowski, A.; Markowska, M. Iteracyjna metoda liniowego porządkowania obiektów wielocechowych. Przegląd Stat. 2017, 64, 153–162. [Google Scholar] [CrossRef]
- Malina, A. Wielowymiarowa Analiza Przestrzennego Zróżnicowania Struktury Gospodarki Polski Według Województw; Wydawnictwo Akademii Ekonomicznej w Krakowie: Kraków, Poland, 2004. [Google Scholar]
- Grabiński, T. Wielowymiarowa Analiza Porównawcza w Badaniach Dynamiki Zjawisk Ekonomicznych; Wydawnictwo Akademii Ekonomicznej w Krakowie: Kraków, Poland, 1984. [Google Scholar]
- Gan, X.; Fernandez, I.C.; Guo, J.; Wilson, M.; Zhao, Y.; Bingbing Zhou, B.; Wu, J. When to use what: Methods for weighting and aggregating sustainability indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar] [CrossRef]
- Bąk, A. Zagadnienie wyboru optymalnej procedury porządkowania liniowego w pakiecie pllord. Pr. Nauk. Uniw. Ekon. We Wrocławiu. Taksonomia (24) 2015, 384, 33–41. [Google Scholar] [CrossRef]
- Nowak, E. Metody Taksonomiczne w Klasyfikacji Obiektów Społeczno-Gospodarczych; Państwowe Wydawnictwo Ekonomiczne: Warszawa, Poland, 1990. [Google Scholar]
- Zeliaś, A. (Ed.) Poziom Życia w Polsce i Krajach Unii Europejskiej; Polskie Wydawnictwo Ekonomiczne: Warszawa, Poland, 2004. [Google Scholar]
- Zeliaś, A.; Lipieta, A. (Eds.) Taksonomiczna Analiza Przestrzennego Zróżnicowania Poziomu Życia w Polsce w Ujęciu Dynamicznym; Wydawnictwo Akademii Ekonomicznej w Krakowie: Kraków, Poland, 2000. [Google Scholar]
- Dziekański, P.; Popławski, Ł.; Wyszkowski, A.; Wrońska, M. Assessment of the Spatial Disparities of the Green Economy in the Voivodeships of Poland in 2010-2020. Ekon. Sr. 2023, 87, 699. [Google Scholar] [CrossRef]
- Pceļina, V.; Lavrinenko, O.; Danileviča, A. Disproportions of the green economy in the selected countries. Entrep. Sustain. Issues 2023, 11, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Cheba, K.; Bąk, I.; Pietrzak, M.B. Conditions of the green transformation. The case of the European Union. Technol. Econ. Dev. Econ. 2023, 29, 438–467. [Google Scholar] [CrossRef]
- Cheba, K.; Bąk, I. Environmental Production Efficiency in the European Union Countries as a Tool for the Implementation of Goal 7 of the 2030 Agenda. Energies 2021, 14, 4593. [Google Scholar] [CrossRef]
- Manisha, K.; Singh, I. Investigating Green Economy Studies Using a Bibliometric Analysis. J. Knowl. Econ. 2024. [Google Scholar] [CrossRef]
- Kongkuah, M. Impact of economic variables on CO2 emissions in belt and road and OECD countries. Environ. Monit. Assess. 2023, 195, 835. [Google Scholar] [CrossRef]
Symbol | Indicator Name | Source |
---|---|---|
Indicators in the field of environmental efficiency of production describe the efficiency of the use of natural resources in economic processes | ||
CO2 Productivity | ||
x11S | Production-based CO2 productivity, GDP per unit of energy-related CO2 emissions | OECD |
x12D | Greenhouse gas emissions from production activities, kilograms per capita | Eurostat |
Energy productivity | ||
x13S | Energy productivity, GDP per unit of TES | OECD |
x14S | Energy intensity, TES per capita | OECD |
x15S | Renewable electricity generation, % of electricity generation | OECD |
x16D | Primary energy consumption, tonnes of oil equivalent (TOE) per capita | Eurostat |
Non-energy material productivity | ||
x17S | Non-energy material productivity, GDP per unit of DMC | OECD |
x18S | Resource productivity (GDP/DMC), Euro per kilogram | Eurostat |
Indicators related to the environmental quality of life refer to population access to basic water and wastewater management services (that also serve to protect the environment and population). These indicators point out how environmental conditions affect the quality of life and well-being of the population | ||
Exposure to environmental risks | ||
x21D | Population exposure to PM2.5, micrograms/m3 (μg/m3) | OECD |
x22D | Population exposed to more than 10 micrograms/m3, % of population | OECD |
x23D | Mortality from exposure to lead, deaths per 1,000,000 inhabitants | OECD |
Access to drinking water and sewage treatment | ||
x24S | Population with access to improved drinking water sources, % of population | OECD |
x25S | Population with access to improved sanitation, % of population | OECD |
Noise | ||
x26D | Population living in households considering that they suffer from noise, % of population | Eurostat |
Indicators in the area of economic policies and their consequences describe the instruments of influence on the economy and society, which are used to achieve the desired directions of development aimed at greening the economy. These indicators relate to the effectiveness of policies in ensuring green growth and social reactions to the conditions for conducting business and maintaining employment | ||
Technology and innovation. Patents | ||
x31S | Development of environment-related technologies, inventions per 1,000,000 inhabitants | OECD |
x32S | Relative technological advantage in environment-related technologies, index | OECD |
x33S | Patents in environment-related technologies granted in % of total patents granted by the European Patent Office per capita | OECD |
x34S | Eco-innovation index | Eurostat |
Environmental taxes and transfers | ||
x35S | Feed-in tariffs for solar photovoltaic, US dollars per kilowatt hour | OECD |
x36S | Feed-in tariffs for wind electricity generation, US dollars per kilowatt hour | OECD |
Ecological farms | ||
x37S | Organic agricultural area in % of total agricultural area | Eurostat |
EU Member States | Value of the Indicator | Increase (+)/Decrease (−) | Ranking Position | Position Change in 2021 in Relation to 2014 | ||
---|---|---|---|---|---|---|
2014 | 2021 | 2014 | 2021 | |||
Austria | 0.5482 | 0.5624 | + | 5 | 4 | 1 |
Belgium | 0.4137 | 0.4153 | + | 17 | 16 | 1 |
Bulgaria | 0.3659 | 0.3897 | + | 24 | 21 | 3 |
Croatia | 0.4520 | 0.3916 | − | 11 | 19 | −8 |
Cyprus | 0.3784 | 0.3652 | − | 22 | 25 | −3 |
Czechia | 0.3764 | 0.3809 | + | 23 | 23 | 0 |
Denmark | 0.5576 | 0.5477 | − | 4 | 6 | −2 |
Estonia | 0.4309 | 0.5371 | + | 13 | 7 | 6 |
Finland | 0.6059 | 0.6447 | + | 1 | 1 | 0 |
France | 0.4834 | 0.4409 | − | 9 | 11 | −2 |
Germany | 0.4958 | 0.5296 | + | 8 | 8 | 0 |
Greece | 0.4200 | 0.3738 | − | 14 | 24 | −10 |
Hungary | 0.3558 | 0.4053 | + | 25 | 17 | 8 |
Ireland | 0.4497 | 0.4751 | + | 12 | 10 | 2 |
Italy | 0.4994 | 0.4816 | − | 6 | 9 | −3 |
Latvia | 0.4145 | 0.4256 | + | 16 | 15 | 1 |
Lithuania | 0.4199 | 0.4038 | − | 15 | 18 | −3 |
Luxembourg | 0.5915 | 0.5603 | − | 3 | 5 | −2 |
Malta | 0.4042 | 0.4302 | + | 19 | 13 | 6 |
Netherlands | 0.4960 | 0.5633 | + | 7 | 3 | 4 |
Poland | 0.3422 | 0.3242 | − | 27 | 27 | 0 |
Portugal | 0.4004 | 0.4297 | + | 21 | 14 | 7 |
Romania | 0.3423 | 0.3391 | − | 26 | 26 | 0 |
Slovakia | 0.4021 | 0.3849 | − | 20 | 22 | −2 |
Slovenia | 0.4108 | 0.3906 | − | 18 | 20 | −2 |
Spain | 0.4632 | 0.4354 | − | 10 | 12 | −2 |
Sweden | 0.5996 | 0.6029 | + | 2 | 2 | 0 |
Descriptive statistics | ||||||
Arithmetic mean | 0.448885 | 0.452996 | ||||
Median | 0.420000 | 0.429700 | ||||
Coefficient of variation (%) | 17.40384 | 18.94631 | ||||
Minimum | 0.342200 | 0.324200 | ||||
Maximum | 0.605900 | 0.644700 | ||||
Asymmetry | 0.680145 | 0.636627 | ||||
Range | 0.263700 | 0.320500 | ||||
Standard deviation | 0.078123 | 0.085826 |
EU Member States | Environmental and Resource Productivity of the Economy | Environmental Quality of Life | Economic Opportunities and Policy Responses | |||
---|---|---|---|---|---|---|
2014 | 2021 | 2014 | 2021 | 2014 | 2021 | |
Austria | 0.5912 | 0.5245 | 0.5432 | 0.5338 | 0.5103 | 0.6288 |
Belgium | 0.4926 | 0.4716 | 0.4926 | 0.4949 | 0.2558 | 0.2793 |
Bulgaria | 0.3246 | 0.2977 | 0.4485 | 0.4918 | 0.3245 | 0.3796 |
Croatia | 0.5936 | 0.4940 | 0.5414 | 0.5214 | 0.2210 | 0.1596 |
Cyprus | 0.4064 | 0.3604 | 0.4707 | 0.4850 | 0.2581 | 0.2502 |
Czechia | 0.3597 | 0.3468 | 0.5038 | 0.4983 | 0.2659 | 0.2977 |
Denmark | 0.5268 | 0.5220 | 0.5808 | 0.5637 | 0.5653 | 0.5572 |
Estonia | 0.2812 | 0.3633 | 0.6503 | 0.8683 | 0.3611 | 0.3797 |
Finland | 0.4028 | 0.4205 | 0.9208 | 0.9012 | 0.4940 | 0.6123 |
France | 0.5494 | 0.5069 | 0.5156 | 0.4793 | 0.3853 | 0.3363 |
Germany | 0.4844 | 0.4850 | 0.5198 | 0.5148 | 0.4831 | 0.5891 |
Greece | 0.4352 | 0.4482 | 0.4772 | 0.4715 | 0.3477 | 0.2015 |
Hungary | 0.4464 | 0.3973 | 0.4871 | 0.5286 | 0.1339 | 0.2900 |
Ireland | 0.5201 | 0.6077 | 0.6348 | 0.6066 | 0.1943 | 0.2109 |
Italy | 0.6411 | 0.5446 | 0.4939 | 0.4976 | 0.3631 | 0.4027 |
Latvia | 0.5198 | 0.4759 | 0.4770 | 0.5217 | 0.2467 | 0.2793 |
Lithuania | 0.4963 | 0.4532 | 0.5379 | 0.5486 | 0.2257 | 0.2096 |
Luxembourg | 0.6112 | 0.6388 | 0.5821 | 0.5683 | 0.5813 | 0.4738 |
Malta | 0.5398 | 0.6132 | 0.4579 | 0.4465 | 0.2148 | 0.2309 |
Netherlands | 0.5641 | 0.5904 | 0.5432 | 0.5238 | 0.3807 | 0.5757 |
Poland | 0.3554 | 0.3222 | 0.4867 | 0.4873 | 0.1846 | 0.1631 |
Portugal | 0.5486 | 0.5222 | 0.4895 | 0.4836 | 0.1631 | 0.2834 |
Romania | 0.4983 | 0.4346 | 0.3941 | 0.4332 | 0.1345 | 0.1495 |
Slovakia | 0.4314 | 0.3932 | 0.4962 | 0.5202 | 0.2786 | 0.2412 |
Slovenia | 0.4671 | 0.4309 | 0.4806 | 0.4759 | 0.2847 | 0.2649 |
Spain | 0.5878 | 0.5263 | 0.5550 | 0.5099 | 0.2467 | 0.2699 |
Sweden | 0.6039 | 0.5885 | 0.6844 | 0.6554 | 0.5105 | 0.5648 |
Descriptive statistics | ||||||
Arithmetic mean | 0.491822 | 0.473330 | 0.535744 | 0.541896 | 0.319085 | 0.343741 |
Median | 0.498300 | 0.475900 | 0.503800 | 0.514800 | 0.278600 | 0.283400 |
Coefficient of variation (%) | 19.06848 | 19.55787 | 18.65305 | 20.14671 | 41.33214 | 44.39951 |
Minimum | 0.281200 | 0.297700 | 0.394100 | 0.433200 | 0.133900 | 0.149500 |
Maximum | 0.641100 | 0.638800 | 0.920800 | 0.901200 | 0.581300 | 0.628800 |
Asymmetry | −0.523738 | −0.061626 | 2.398902 | 2.517241 | 0.583647 | 0.706630 |
Range | 0.359900 | 0.341100 | 0.526700 | 0.468000 | 0.447400 | 0.479300 |
Standard deviation | 0.093783 | 0.092573 | 0.099933 | 0.109174 | 0.131885 | 0.152619 |
EU Member States | Environmental and Resource Productivity of the Economy | Environmental Quality of Life | Economic Opportunities and Policy Responses | |||
---|---|---|---|---|---|---|
2014 | 2021 | 2014 | 2021 | 2014 | 2021 | |
Austria | 5 | 8 | 8 | 8 | 3 | 1 |
Belgium | 16 | 15 | 17 | 18 | 17 | 15 |
Bulgaria | 26 | 27 | 26 | 19 | 12 | 10 |
Croatia | 3 | 12 | 10 | 12 | 21 | 26 |
Cyprus | 22 | 24 | 24 | 21 | 16 | 19 |
Czechia | 24 | 25 | 14 | 16 | 15 | 12 |
Denmark | 11 | 10 | 6 | 6 | 2 | 6 |
Estonia | 27 | 23 | 3 | 2 | 10 | 9 |
Finland | 23 | 20 | 1 | 1 | 5 | 2 |
France | 8 | 11 | 13 | 23 | 7 | 11 |
Germany | 17 | 13 | 12 | 14 | 6 | 3 |
Greece | 20 | 17 | 22 | 25 | 11 | 24 |
Hungary | 19 | 21 | 19 | 9 | 27 | 13 |
Ireland | 12 | 3 | 3 | 3 | 23 | 22 |
Italy | 1 | 6 | 16 | 17 | 9 | 8 |
Latvia | 13 | 14 | 23 | 11 | 18 | 16 |
Lithuania | 15 | 16 | 11 | 7 | 20 | 23 |
Luxembourg | 2 | 1 | 5 | 5 | 1 | 7 |
Malta | 10 | 2 | 25 | 26 | 22 | 21 |
Netherlands | 7 | 3 | 9 | 10 | 8 | 3 |
Poland | 25 | 26 | 20 | 20 | 24 | 25 |
Portugal | 9 | 9 | 18 | 22 | 25 | 14 |
Romania | 14 | 18 | 27 | 27 | 26 | 27 |
Slovakia | 21 | 22 | 15 | 13 | 14 | 20 |
Slovenia | 18 | 19 | 21 | 24 | 13 | 18 |
Spain | 6 | 7 | 7 | 15 | 19 | 17 |
Sweden | 3 | 5 | 2 | 3 | 3 | 5 |
Area | Year | Group 1. | Group 2. | Group 3. | Group 4. |
---|---|---|---|---|---|
Environmental and resource productivity of the economy | 2014 | Italy, Luxembourg, Sweden, Croatia, Austria, Spain | Netherlands, France, Portugal, Malta, Denmark, Ireland, Latvia, Romania, Lithuania, Belgium | Germany, Slovenia, Hungary, Greece, Slovakia, Cyprus, Finland | Czechia, Poland, Bulgaria, Estonia |
2021 | Luxembourg, Malta, Ireland, Netherlands, Sweden | Italy, Spain, Austria, Portugal, Denmark, France, Croatia, Germany, Latvia | Belgium, Lithuania, Greece, Romania, Slovenia, Finland, Hungary, Slovakia | Estonia, Cyprus, Czechia, Poland, Bulgaria | |
Environmental quality of life | 2014 | Finland, Sweden, Estonia | Ireland, Luxembourg, Denmark, Spain, Austria, Netherlands, Croatia, Lithuania | Germany, France, Czechia, Slovakia, Italy, Belgium, Portugal, Hungary, Poland, Slovenia, Greece, Latvia, Cyprus, Malta, Bulgaria | Romania |
2021 | Finland, Estonia, Sweden | Ireland, Luxembourg, Denmark, Lithuania | Austria, Hungary, Netherlands, Latvia, Croatia, Slovakia, Germany, Spain, Czechia, Italy, Belgium, Bulgaria, Poland, Cyprus, Portugal, France, Slovenia, Greece, Malta | Romania | |
Economic opportunities and policy responses | 2014 | Luxembourg, Denmark, Sweden, Austria, Finland, Germany | France, Netherlands, Italy, Estonia, Greece, Bulgaria | Slovenia, Slovakia, Czechia, Cyprus, Belgium, Latvia, Spain, Lithuania, Croatia, Malta, Ireland | Poland, Portugal, Romania, Hungary |
2021 | Austria, Finland, Germany, Netherlands, Sweden, Denmark | Luxembourg, Italy, Estonia, Bulgaria | France, Czechia, Hungary, Portugal, Belgium, Latvia, Spain, Slovenia, Cyprus, Slovakia, Malta, Ireland, Lithuania, Greece | Poland, Croatia, Romania |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyrwa, J.; Jaźwiński, I. The Green Economy in the Energy Transformation Process—Comparative Analysis of the European Union Member States. Energies 2024, 17, 5194. https://doi.org/10.3390/en17205194
Wyrwa J, Jaźwiński I. The Green Economy in the Energy Transformation Process—Comparative Analysis of the European Union Member States. Energies. 2024; 17(20):5194. https://doi.org/10.3390/en17205194
Chicago/Turabian StyleWyrwa, Joanna, and Ireneusz Jaźwiński. 2024. "The Green Economy in the Energy Transformation Process—Comparative Analysis of the European Union Member States" Energies 17, no. 20: 5194. https://doi.org/10.3390/en17205194
APA StyleWyrwa, J., & Jaźwiński, I. (2024). The Green Economy in the Energy Transformation Process—Comparative Analysis of the European Union Member States. Energies, 17(20), 5194. https://doi.org/10.3390/en17205194