Innovations for Holistic and Sustainable Transitions
Abstract
:1. Introduction
2. Bridging Transdisciplinary Science with Society
2.1. Towards Transdisciplinarity: From Engineering Works to Integrated Modelling
2.2. Towards Resilience and Sustainability
2.2.1. Integrating Environmental Modelling, Flexible Solutions and Energy Portfolios
2.2.2. Integrating Socio-Economic Considerations
2.3. The Human Angle
3. The Approach of the Global Climate Hub as a Response
- I.
- Development of advanced cross-sectoral system dynamics models
- II.
- Support through an AI-driven digital infrastructure
- III.
- Bridging holistic scientific approaches with civil society
- IV.
- Transformative participatory frameworks for stakeholder engagement
- V.
- Open science and open access principles for sustainable pathways
4. The GCH Concept Example for Analyzing Energy Systems
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, S.; Matisoff, D.C.; Kingsley, G.A.; Brown, M.A. Understanding Renewable Energy Policy Adoption and Evolution in Europe: The Impact of Coercion, Normative Emulation, Competition, and Learning. Energy Res. Soc. Sci. 2019, 51, 1–11. [Google Scholar] [CrossRef]
- Parag, Y. From Energy Security to the Security of Energy Services: Shortcomings of Traditional Supply-Oriented Approaches and the Contribution of a Socio-Technical and User-Oriented Perspectives. Sci. Technol. Stud. 2014, 27, 97–108. [Google Scholar] [CrossRef]
- Terrapon-Pfaff, J.; Fink, T.; Viebahn, P.; Jamea, E.M. Social Impacts of Large-Scale Solar Thermal Power Plants: Assessment Results for the NOORO I Power Plant in Morocco. Renew. Sustain. Energy Rev. 2019, 113, 109259. [Google Scholar] [CrossRef]
- Ma, Y.; Gopal, S.; Ma, X.; Gallagher, K.; Koch, M.; Kaufman, L. The Deforestation and Biodiversity Risks of Power Plant Projects in Southeast Asia: A Big Data Spatial Analytical Framework. Sustainability 2023, 15, 14461. [Google Scholar] [CrossRef]
- Grodsky, S.M.; Hernandez, R.R. Reduced Ecosystem Services of Desert Plants from Ground-Mounted Solar Energy Development. Nat. Sustain. 2020, 3, 1036–1043. [Google Scholar] [CrossRef]
- Sovacool, B.K. The Avian and Wildlife Costs of Fossil Fuels and Nuclear Power. J. Integr. Environ. Sci. 2012, 9, 255–278. [Google Scholar] [CrossRef]
- Dai, D.; Alamanos, A.; Cai, W.; Sun, Q.; Ren, L. Assessing Water Sustainability in Northwest China: Analysis of Water Quantity, Water Quality, Socio-Economic Development and Policy Impacts. Sustainability 2023, 15, 11017. [Google Scholar] [CrossRef]
- Alamanos, A. Job–Environment Feedbacks. Nat. Sustain. 2024, 7, 525–526. [Google Scholar] [CrossRef]
- UNEP. GOAL 7: Affordable and Clean Energy; UNEP—UN Environment Programme: Nairobi, Kenya, 2017. [Google Scholar]
- Chipangamate, N.S.; Nwaila, G.T. Assessment of Challenges and Strategies for Driving Energy Transitions in Emerging Markets: A Socio-Technological Systems Perspective. Energy Geosci. 2024, 5, 100257. [Google Scholar] [CrossRef]
- Koundouri, P.; Alamanos, A.; Plataniotis, A.; Stavridis, C.; Perifanos, K.; Devves, S. Assessing the Sustainability of the European Green Deal and Its Interlin Kages with the SDGs. npj Clim. Action 2024, 3, 23. [Google Scholar] [CrossRef]
- Kamali Saraji, M.; Streimikiene, D. Challenges to the Low Carbon Energy Transition: A Systematic Literature Review and Research Agenda. Energy Strategy Rev. 2023, 49, 101163. [Google Scholar] [CrossRef]
- Kahia, M.; Ben Jebli, M. Industrial Growth, Clean Energy Generation, and Pollution: Evidence from Top Ten Industrial Countries. Environ. Sci. Pollut. Res. 2021, 28, 68407–68416. [Google Scholar] [CrossRef] [PubMed]
- Simionescu, M.; Strielkowski, W.; Tvaronavičienė, M. Renewable Energy in Final Energy Consumption and Income in the EU-28 Countries. Energies 2020, 13, 2280. [Google Scholar] [CrossRef]
- Lund, H.; Thellufsen, J.Z.; Sorknæs, P.; Mathiesen, B.V.; Chang, M.; Madsen, P.T.; Kany, M.S.; Skov, I.R. Smart Energy Denmark. A Consistent and Detailed Strategy for a Fully Decarbonized Society. Renew. Sustain. Energy Rev. 2022, 168, 112777. [Google Scholar] [CrossRef]
- Dyrhauge, H. Energy Governance in Denmark. In Handbook of Energy Governance in Europe; Knodt, M., Kemmerzell, J., Eds.; Springer International Publishing: Cham, Germany, 2022; pp. 593–617. ISBN 978-3-030-43250-8. [Google Scholar]
- Bues, A. Social Movements against Wind Power in Canada and Germany: Energy Policy and Contention; Routledge: London, UK, 2020; ISBN 978-1-00-300670-1. [Google Scholar]
- Maltby, T.; Mišík, M. Energy Transitions in Central and Eastern Europe: The Political Economy of Climate and Energy Policy; Cambridge Studies on Environment, Energy and Natural Resources Governance; Cambridge University Press: Cambridge, UK, 2024; ISBN 978-1-108-47713-0. [Google Scholar]
- Bhushan, C.; Banerjee, S. A Just Energy Transition: Considerations for India’s Coal Sector. In India’s Energy Revolution; Routledge India: Delhi, India, 2024; ISBN 978-1-00-328181-8. [Google Scholar]
- Skjærseth, J.B. Towards a European Green Deal: The Evolution of EU Climate and Energy Policy Mixes. Int. Environ. Agreem. Politics Law Econ. 2021, 21, 25–41. [Google Scholar] [CrossRef]
- Ottenburger, S.S.; Cox, R.; Chowdhury, B.H.; Trybushnyi, D.; Omar, E.A.; Kaloti, S.A.; Ufer, U.; Poganietz, W.-R.; Liu, W.; Deines, E.; et al. Sustainable Urban Transformations Based on Integrated Microgrid Designs. Nat. Sustain. 2024, 7, 1067–1079. [Google Scholar] [CrossRef]
- Alamanos, A.; Linnane, S. Systems Resilience to Floods: A Categorisation of Approaches. In Proceedings of the 24th EGU General Assembly, Vienna, Austria, 23–27 May 2022. [Google Scholar]
- Sadler, A.; Ranger, N.; Fankhauser, S.; Marotta, F.; O’Callaghan, B. The Impact of COVID-19 Fiscal Spending on Climate Change Adaptation and Resilience. Nat. Sustain. 2024, 7, 270–281. [Google Scholar] [CrossRef]
- Rhodes, E.; Hoyle, A.; McPherson, M.; Craig, K. Understanding Climate Policy Projections: A Scoping Review of Energy-Economy Models in Canada. Renew. Sustain. Energy Rev. 2022, 153, 111739. [Google Scholar] [CrossRef]
- Alamanos, A. Public Policy to Support Environmental Sustainability and Circular Economy: Efforts towards Integrated Approaches. In Proceedings of the 2nd Symposium on on Circular Economy and Sustainability, Alexandroupolis, Greece, 14–16 July 2021. [Google Scholar]
- Yang, D.; Liu, D.; Huang, A.; Lin, J.; Xu, L. Critical Transformation Pathways and Socio-Environmental Benefits of Energy Substitution Using a LEAP Scenario Modeling. Renew. Sustain. Energy Rev. 2021, 135, 110116. [Google Scholar] [CrossRef]
- Liu, G.; Hu, J.; Chen, C.; Xu, L.; Wang, N.; Meng, F.; Giannetti, B.F.; Agostinho, F.; Almeida, C.M.V.B.; Casazza, M. LEAP-WEAP Analysis of Urban Energy-Water Dynamic Nexus in Beijing (China). Renew. Sustain. Energy Rev. 2021, 136, 110369. [Google Scholar] [CrossRef]
- Rivera-González, L.; Bolonio, D.; Mazadiego, L.F.; Naranjo-Silva, S.; Escobar-Segovia, K. Long-Term Forecast of Energy and Fuels Demand Towards a Sustainable Road Transport Sector in Ecuador (2016–2035): A LEAP Model Application. Sustainability 2020, 12, 472. [Google Scholar] [CrossRef]
- Cai, L.; Luo, J.; Wang, M.; Guo, J.; Duan, J.; Li, J.; Li, S.; Liu, L.; Ren, D. Pathways for Municipalities to Achieve Carbon Emission Peak and Carbon Neutrality: A Study Based on the LEAP Model. Energy 2023, 262, 125435. [Google Scholar] [CrossRef]
- Kirkerud, J.G.; Nagel, N.O.; Bolkesjø, T.F. The Role of Demand Response in the Future Renewable Northern European Energy System. Energy 2021, 235, 121336. [Google Scholar] [CrossRef]
- Nagel, N.O.; Kirkerud, J.G.; Bolkesjø, T.F. The Economic Competitiveness of Flexibility Options: A Model Study of the European Energy Transition. J. Clean. Prod. 2022, 350, 131534. [Google Scholar] [CrossRef]
- Candas, S.; Muschner, C.; Buchholz, S.; Bramstoft, R.; van Ouwerkerk, J.; Hainsch, K.; Löffler, K.; Günther, S.; Berendes, S.; Nguyen, S.; et al. Code Exposed: Review of Five Open-Source Frameworks for Modeling Renewable Energy Systems. Renew. Sustain. Energy Rev. 2022, 161, 112272. [Google Scholar] [CrossRef]
- PRIMES model PRIMES—E3 Modelling 2022. Available online: https://e3modelling.com/modelling-tools/primes/ (accessed on 9 October 2024).
- European Commission Model PRIMES—Price-Induced Market Equilibrium System|Modelling Inventory and Knowledge Management System of the European Commission (MIDAS). Available online: https://web.jrc.ec.europa.eu/policy-model-inventory/explore/models/model-primes/ (accessed on 9 September 2024).
- Turco, E.; Bazzana, D.; Rizzati, M.; Ciola, E.; Vergalli, S. Energy Price Shocks and Stabilization Policies in the MATRIX Model. Energy Policy 2023, 177, 113567. [Google Scholar] [CrossRef]
- Ciola, E.; Turco, E.; Gurgone, A.; Bazzana, D.; Vergalli, S.; Menoncin, F. Enter the MATRIX Model:A Multi-Agent Model for Transition Risks with Application to Energy Shocks. J. Econ. Dyn. Control 2023, 146, 104589. [Google Scholar] [CrossRef]
- EMMA model The European Electricity Market Model 2020. Available online: https://emma-model.com/#:~:text=EMMA%20is%20a%20techno%2Deconomic,large%20set%20of%20technical%20constraints (accessed on 9 October 2024).
- Heider, A.; Reibsch, R.; Blechinger, P.; Linke, A.; Hug, G. Flexibility Options and Their Representation in Open Energy Modelling Tools. Energy Strategy Rev. 2021, 38, 100737. [Google Scholar] [CrossRef]
- Ozsoy, C.M.; Mengüç, M.P. A Transdisciplinary Approach and Design Thinking Methodology: For Applications to Complex Problems and Energy Transition. World 2024, 5, 119–135. [Google Scholar] [CrossRef]
- Sibilla, M.; Kurul, E. Transdisciplinarity in Energy Retrofit. A Conceptual Framework. J. Clean. Prod. 2020, 250, 119461. [Google Scholar] [CrossRef]
- Heaslip, E.; Fahy, F. Developing Transdisciplinary Approaches to Community Energy Transitions: An Island Case Study. Energy Res. Soc. Sci. 2018, 45, 153–163. [Google Scholar] [CrossRef]
- Pinkse, J. Green and Greening Jobs. Nat. Sustain. 2024, 7, 510–511. [Google Scholar] [CrossRef]
- Lehr, U. Improving Uptake of Evidence on Jobs from Greening. Nat. Sustain. 2024, 7, 514–515. [Google Scholar] [CrossRef]
- Gasser, P.; Lustenberger, P.; Cinelli, M.; Kim, W.; Spada, M.; Burgherr, P.; Hirschberg, S.; Stojadinovic, B.; Sun, T.Y. A Review on Resilience Assessment of Energy Systems. Sustain. Resilient Infrastruct. 2021, 6, 273–299. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Nik, V.M.; Chen, D.; Scartezzini, J.-L.; Hong, T. Quantifying the Impacts of Climate Change and Extreme Climate Events on Energy Systems. Nat. Energy 2020, 5, 150–159. [Google Scholar] [CrossRef]
- Jasiūnas, J.; Lund, P.D.; Mikkola, J. Energy System Resilience—A Review. Renew. Sustain. Energy Rev. 2021, 150, 111476. [Google Scholar] [CrossRef]
- Yazdanie, M. Resilient Energy System Analysis and Planning Using Optimization Models. Energy Clim. Chang. 2023, 4, 100097. [Google Scholar] [CrossRef]
- Javanroodi, K.; Perera, A.T.D.; Hong, T.; Nik, V.M. Designing Climate Resilient Energy Systems in Complex Urban Areas Considering Urban Morphology: A Technical Review. Adv. Appl. Energy 2023, 12, 100155. [Google Scholar] [CrossRef]
- Mikulčić, H.; Baleta, J.; Klemeš, J.J.; Wang, X. Energy Transition and the Role of System Integration of the Energy, Water and Environmental Systems. J. Clean. Prod. 2021, 292, 126027. [Google Scholar] [CrossRef]
- Özcan, Z.; Willaarts, B.; Klessova, S.; Caucci, S.; Prista, L.; Adamos, G.; Laspidou, C. From Nexus Thinking to Nexus Implementation in South Europe and beyond: Mutual Learning between Practitioners and Policymakers. SNF 2024, 32, 6. [Google Scholar] [CrossRef]
- Angeli, A.; Karkani, E.; Alamanos, A.; Xenarios, S.; Mylopoulos, N. Hydrological, Socioeconomic, Engineering and Water Quality Modeling Aspects for Evaluating Water Security: Experience from Greek Rural Watersheds. In Proceedings of the EGU General Assembly; EGU: Vienna, Austria, 2020. [Google Scholar]
- Alamanos, A.; Koundouri, P.; Papadaki, L.; Pliakou, T. A System Innovation Approach for Science-Stakeholder Interface: Theory and Application to Water-Land-Food-Energy Nexus. Front. Water 2022, 3, 744773. [Google Scholar] [CrossRef]
- Ioannou, A.E.; Laspidou, C.S. Cross-Mapping Important Interactions between Water-Energy-Food Nexus Indices and the SDGs. Sustainability 2023, 15, 8045. [Google Scholar] [CrossRef]
- Alamanos, A.; Linnane, S. Drought Monitoring, Precipitation Statistics, and Water Balance with Freely Available Remote Sensing Data: Examples, Advances, and Limitations. In Proceedings of the Irish National Hydrology Conference 2021, Athlone, Ireland, 16 November 2021; pp. 1–13. [Google Scholar]
- Gonzalez, J.M.; Tomlinson, J.E.; Martínez Ceseña, E.A.; Basheer, M.; Obuobie, E.; Padi, P.T.; Addo, S.; Baisie, R.; Etichia, M.; Hurford, A.; et al. Designing Diversified Renewable Energy Systems to Balance Multisector Performance. Nat. Sustain. 2023, 6, 415–427. [Google Scholar] [CrossRef]
- Sterl, S.; Vanderkelen, I.; Chawanda, C.J.; Russo, D.; Brecha, R.J.; van Griensven, A.; van Lipzig, N.P.M.; Thiery, W. Smart Renewable Electricity Portfolios in West Africa. Nat. Sustain. 2020, 3, 710–719. [Google Scholar] [CrossRef]
- Hirth, L. The Benefits of Flexibility: The Value of Wind Energy with Hydropower. Appl. Energy 2016, 181, 210–223. [Google Scholar] [CrossRef]
- Jesse, B.-J.; Heinrichs, H.U.; Kuckshinrichs, W. Adapting the Theory of Resilience to Energy Systems: A Review and Outlook. Energy Sustain. Soc. 2019, 9, 27. [Google Scholar] [CrossRef]
- Koundouri, P.; Alamanos, A.; Dellis, K.; Landis, C.; Stratopoulou, A. Ecosystem Services into Water Resource Planning and Management. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2024; ISBN 978-0-19-938941-4. [Google Scholar]
- Fuentes-Cortés, L.F.; Ma, Y.; Ponce-Ortega, J.M.; Ruiz-Mercado, G.; Zavala, V.M. Valuation of Water and Emissions in Energy Systems. Appl. Energy 2018, 210, 518–528. [Google Scholar] [CrossRef]
- Casady, C.B.; Cepparulo, A.; Giuriato, L. Public-Private Partnerships for Low-Carbon, Climate-Resilient Infrastructure: Insights from the Literature. J. Clean. Prod. 2024, 470, 143338. [Google Scholar] [CrossRef]
- Schub, J. Green Banks: Growing Clean Energy Markets by Leveraging Private Investment with Public Financing. JSF 2015, 21, 26–35. [Google Scholar] [CrossRef]
- Wolff, P. Mapping the Necessary Policy Instruments to Unlock the Potentials of Private Finance for a Modern Renewable Energy Sector. In Financing for Low-Carbon Energy Transition: Unlocking the Potential of Private Capital; Anbumozhi, V., Kalirajan, K., Kimura, F., Eds.; Springer: Singapore, 2018; pp. 65–81. ISBN 978-981-10-8582-6. [Google Scholar]
- Ahmad, T.; Zhang, D. Using the Internet of Things in Smart Energy Systems and Networks. Sustain. Cities Soc. 2021, 68, 102783. [Google Scholar] [CrossRef]
- Chu, W.; Calise, F.; Duić, N.; Østergaard, P.A.; Vicidomini, M.; Wang, Q. Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems. Energies 2020, 13, 5229. [Google Scholar] [CrossRef]
- Dutt, V.; Sharma, S. 9—Artificial Intelligence and Technology in Weather Forecasting and Renewable Energy Systems: Emerging Techniques and Worldwide Studies. In Artificial Intelligence for Renewable Energy Systems; Dubey, A.K., Narang, S.K., Srivastav, A.L., Kumar, A., García-Díaz, V., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2022; pp. 189–207. ISBN 978-0-323-90396-7. [Google Scholar]
- Hazrati, M. Social Acceptance for Renewable Energy Technologies: The Role of the Energy Justice Framework. In The Power of Energy Justice & the Social Contract; Heffron, R.J., de Fontenelle, L., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 83–91. ISBN 978-3-031-46282-5. [Google Scholar]
- Baur, D.; Emmerich, P.; Baumann, M.J.; Weil, M. Assessing the Social Acceptance of Key Technologies for the German Energy Transition. Energy Sustain. Soc. 2022, 12, 4. [Google Scholar] [CrossRef]
- Owens, S.; Driffill, L. How to Change Attitudes and Behaviours in the Context of Energy. Energy Policy 2008, 36, 4412–4418. [Google Scholar] [CrossRef]
- Asensio, O.I.; Churkina, O.; Rafter, B.D.; O’Hare, K.E. Housing Policies and Energy Efficiency Spillovers in Low and Moderate Income Communities. Nat. Sustain. 2024, 7, 590–601. [Google Scholar] [CrossRef]
- Johansson, B. Security Aspects of Future Renewable Energy Systems–A Short Overview. Energy 2013, 61, 598–605. [Google Scholar] [CrossRef]
- Kester, J. Energy Security and Human Security in a Dutch Gasquake Context: A Case of Localized Performative Politics. Energy Res. Soc. Sci. 2017, 24, 12–20. [Google Scholar] [CrossRef]
- Steg, L.; Perlaviciute, G.; van der Werff, E. Understanding the Human Dimensions of a Sustainable Energy Transition. Front. Psychol. 2015, 6, 805. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Griffiths, S. Culture and Low-Carbon Energy Transitions. Nat. Sustain. 2020, 3, 685–693. [Google Scholar] [CrossRef]
- Rao, N.D.; Wilson, C. Advancing Energy and Well-Being Research. Nat. Sustain. 2022, 5, 98–103. [Google Scholar] [CrossRef]
- Goggins, G.; Rau, H.; Moran, P.; Fahy, F.; Goggins, J. The Role of Culture in Advancing Sustainable Energy Policy and Practice. Energy Policy 2022, 167, 113055. [Google Scholar] [CrossRef]
- Koundouri, P.; Dellis, K. Human Security: Concepts and Measurement. Cadmus 2023, 5, 28. [Google Scholar]
- Zhang, S.; Chen, W.; Zhang, Q.; Krey, V.; Byers, E.; Rafaj, P.; Nguyen, B.; Awais, M.; Riahi, K. Targeting Net-Zero Emissions While Advancing Other Sustainable Development Goals in China. Nat. Sustain. 2024, 7, 1107–1119. [Google Scholar] [CrossRef]
- Mazzone, A.; De Cian, E.; Falchetta, G.; Jani, A.; Mistry, M.; Khosla, R. Understanding Systemic Cooling Poverty. Nat. Sustain. 2023, 6, 1533–1541. [Google Scholar] [CrossRef]
- Owen, J.R.; Kemp, D.; Lechner, A.M.; Harris, J.; Zhang, R.; Lèbre, É. Energy Transition Minerals and Their Intersection with Land-Connected Peoples. Nat. Sustain. 2023, 6, 203–211. [Google Scholar] [CrossRef]
- Proskuryakova, L. Updating Energy Security and Environmental Policy: Energy Security Theories Revisited. J. Environ. Manag. 2018, 223, 203–214. [Google Scholar] [CrossRef]
- Ghofrani, A.; Zaidan, E.; Jafari, M. Reshaping Energy Policy Based on Social and Human Dimensions: An Analysis of Human-Building Interactions among Societies in Transition in GCC Countries. Humanit. Soc. Sci. Commun. 2021, 8, 246. [Google Scholar] [CrossRef]
- Alamanos, A. The Global Climate Hub. Nat. Sustain. 2024, 7, 375–376. [Google Scholar] [CrossRef]
- Koundouri, P.; Alamanos, A.; Sachs, J.D. Innovating for Sustainability: The Global Climate Hub; DEOS Working Papers 2403; Athens University of Economics and Business: Athens, Greece, 2024. [Google Scholar]
- SDSN Home—Sustainable Development Solutions Network. Available online: https://www.unsdsn.org (accessed on 9 September 2024).
- Koundouri, P.; Alamanos, A.; Sachs, J.D. A Global Climate Hub to Bridge Science and Society. In Proceedings of the International Conference on Sustainable Development (ICSD), Online, 19 July 2024. [Google Scholar]
- Elnagar, E.; Gendebien, S.; Georges, E.; Berardi, U.; Doutreloup, S.; Lemort, V. Framework to Assess Climate Change Impact on Heating and Cooling Energy Demands in Building Stock: A Case Study of Belgium in 2050 and 2100. Energy Build. 2023, 298, 113547. [Google Scholar] [CrossRef]
- Suo, C.; Li, Y.P.; Mei, H.; Lv, J.; Sun, J.; Nie, S. Towards Sustainability for China’s Energy System through Developing an Energy-Climate-Water Nexus Model. Renew. Sustain. Energy Rev. 2021, 135, 110394. [Google Scholar] [CrossRef]
- Gündüz, N.; Küfeoğlu, S.; Lehtonen, M. Impacts of Natural Disasters on Swedish Electric Power Policy: A Case Study. Sustainability 2017, 9, 230. [Google Scholar] [CrossRef]
- Alamanos, A.; Linnane, S. Estimating SDG Indicators in Data-Scarce Areas: The Transition to the Use of New Technologies and Multidisciplinary Studies. Earth 2021, 2, 635–652. [Google Scholar] [CrossRef]
- Alamanos, A. Exploring the Impact of Future Land Uses on Flood Risks and Ecosystem Services, With Limited Data: Coupling a Cellular Automata Markov (CAM) Model, With Hydraulic and Spatial Valuation Models. Qeios 2024. [Google Scholar] [CrossRef]
- Pathways to Sustainable Land-Use and Food Systems. Available online: https://resources.unsdsn.org/pathways-to-sustainable-land-use-and-food-systems (accessed on 31 January 2024).
- Alamanos, A. Sustainable Water Resources Management under Water-Scarce and Limited-Data Conditions. Cent. Asian J. Water Res. 2021, 7, 1–19. [Google Scholar] [CrossRef]
- Wiese, F.; Bramstoft, R.; Koduvere, H.; Pizarro Alonso, A.; Balyk, O.; Kirkerud, J.G.; Tveten, Å.G.; Bolkesjø, T.F.; Münster, M.; Ravn, H. Balmorel Open Source Energy System Model. Energy Strategy Rev. 2018, 20, 26–34. [Google Scholar] [CrossRef]
- Kountouris, I.; Bramstoft, R.; Madsen, T.; Gea-Bermúdez, J.; Münster, M.; Keles, D. A Unified European Hydrogen Infrastructure Planning to Support the Rapid Scale-up of Hydrogen Production. Nat. Commun. 2024, 15, 5517. [Google Scholar] [CrossRef] [PubMed]
- Alamanos, A.; Nisiforou, O.; Garcia, J.A.; Papadaki, L.; Koundouri, P. Integrated Fleet Optimization under Techno-Economic Shipping and Environmental Constraints: The MaritimeGCH Model. 2024. Available online: https://github.com/Alamanos11/MaritimeGCH (accessed on 4 October 2024). [CrossRef]
- Koundouri, P.; Ker Rault, P.; Pergamalis, V.; Skianis, V.; Souliotis, I. Development of an Integrated Methodology for the Sustainable Environmental and Socio-Economic Management of River Ecosystems. Sci. Total Environ. 2016, 540, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Koundouri, P.; Halkos, G.; Landis, C.F.M.; Alamanos, A. Ecosystem Services Valuation for Supporting Sustainable Life below Water. Sustain. Earth Rev. 2023, 6, 19. [Google Scholar] [CrossRef]
- Raviv, O.; Palatnik, R.R.; Castellini, M.; Gusperti, C.; Vergalli, S.; Sirota, J.; Shechter, M. Synergies of CGE and IAM Modelling for Climate Change Implications on WEFE Nexus in the Mediterranean. Clim. Risk Manag. 2024, 44, 100608. [Google Scholar] [CrossRef]
- Martínez-Martínez, Y.; Dewulf, J.; Aguayo, M.; Casas-Ledón, Y. Sustainable Wind Energy Planning through Ecosystem Service Impact Valuation and Exergy: A Study Case in South-Central Chile. Renew. Sustain. Energy Rev. 2023, 178, 113252. [Google Scholar] [CrossRef]
- Dunn, J.B.; Greene, K.; Vasquez-Arroyo, E.; Awais, M.; Gomez-Sanabria, A.; Kyle, P.; Palatnik, R.R.; Schaeffer, R.; Zhou, P.; Aissaoui, B.; et al. Toward Enhancing Wastewater Treatment with Resource Recovery in Integrated Assessment and Computable General Equilibrium Models. Environ. Sci. Technol. Lett. 2024, 11, 654–663. [Google Scholar] [CrossRef]
- Boaz, D.; Palatnik, R.R.; Ayalon, O. Not All about the Money: The Role of Financial Information in Promoting Residential Rooftop Photovoltaics. Energies 2024, 17, 2043. [Google Scholar] [CrossRef]
- Stangl, J.; Borsos, A.; Diem, C.; Reisch, T.; Thurner, S. Firm-Level Supply Chains to Minimize Unemployment and Economic Losses in Rapid Decarbonization Scenarios. Nat. Sustain. 2024, 7, 581–589. [Google Scholar] [CrossRef]
- Hekkert, M. Jobs Lost and Found in Sustainability Transitions. Nat. Sustain. 2024, 7, 512–513. [Google Scholar] [CrossRef]
- Living Lab Modeler: Living Lab Modeler: A Tool to Leverage the Activities and Impact of Your Living Lab. Available online: https://32520579.isolation.zscaler.com/profile/f1651b6c-5a7a-4e25-a61a-66f8cd23da60/zia-session/?controls_id=b63914ff-a385-4710-ab57-2e743bc25db7®ion=fra&tenant=2c2f6c39ed9e&user=834d4a7bae43b4509739f9c9805308b06228807b6d93e0506f308945488948d5&original_url=https%3A%2F%2Fwww.livinglabmodeler.eu%2Fllm%2F%23%2Fllm%2F&key=sh-1&hmac=5247a42f125181ae504ddf79eb3c1c3ff409139e60b4b67565f9da90bd30c1bb (accessed on 9 September 2024).
- MIRO Stakeholder Analysis Template for Teams|Miro. Available online: https://miro.com/templates/stakeholder-analysis/ (accessed on 9 September 2024).
- Alamanos, A.; Koundouri, P.; Papadaki, L.; Pliakou, T.; Toli, E. Water for Tomorrow: A Living Lab on the Creation of the Science-Policy-Stakeholder Interface. Water 2022, 14, 2879. [Google Scholar] [CrossRef]
- Guittard, A.; Kastanidi, E.; Akinsete, E.; Berg, H.; Carter, C.; Maneas, G.; Martínez-López, J.; Martínez-Fernandez, J.; Papadatos, D.; de Vente, J.; et al. Using Multi-Actor Labs as a Tool to Drive Sustainability Transitions in Coastal-Rural Territories: Application in Three European Regions. GAIA Ecol. Perspect. Sci. Soc. 2024, 33, 57–63. [Google Scholar] [CrossRef]
- Stergiopoulou, L.; Akinsete, E.; El-Said, N.; Koundouri, P. Developing Policy Recommendations to Support Innovation in Soilless Agriculture within the Nile River Basin: A Participatory Approach Using Multi-Actor Working Groups. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2023; p. EGU-15642. [Google Scholar] [CrossRef]
- Datta, A.; Coates, S.; Rossiter, A.; Krishnamoorti, R. Reskilling and Upskilling for Decarbonization: Analyzing Micro-Credential Programs for Energy Workforce Development. J. Contin. High. Educ. 2024, 1–20. [Google Scholar] [CrossRef]
- De Rosa, M.; Glumac, O.; Bianco, V.; Pallonetto, F. A Micro-Credential Approach for Life-Long Learning in the Urban Renewable Energy Sector. Renew. Energy 2024, 228, 120660. [Google Scholar] [CrossRef]
Existing/Prevailing Approaches | Future Research and Policy Directions |
---|---|
Engineering works mainly focused on energy supply | Integrated modelling, considering different energy sources, flexible portfolios, environmental and social implications. |
Building resilient energy infrastructure | Resilience to various and diverse hazards and systems disturbances, including climate and extreme phenomena, altered demand patterns and economic shocks. Sustainability is also an increasing factor, as energy planning includes the management of environmental and socio-economic factors. |
Predominantly technocratic solutions | Combination of environmental modelling, socio-economic assessments, including environmental valuation and human perspective for just and equitable decarbonization pathways. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koundouri, P.; Alamanos, A.; Devves, S.; Landis, C.; Dellis, K. Innovations for Holistic and Sustainable Transitions. Energies 2024, 17, 5184. https://doi.org/10.3390/en17205184
Koundouri P, Alamanos A, Devves S, Landis C, Dellis K. Innovations for Holistic and Sustainable Transitions. Energies. 2024; 17(20):5184. https://doi.org/10.3390/en17205184
Chicago/Turabian StyleKoundouri, Phoebe, Angelos Alamanos, Stathis Devves, Conrad Landis, and Kostantinos Dellis. 2024. "Innovations for Holistic and Sustainable Transitions" Energies 17, no. 20: 5184. https://doi.org/10.3390/en17205184
APA StyleKoundouri, P., Alamanos, A., Devves, S., Landis, C., & Dellis, K. (2024). Innovations for Holistic and Sustainable Transitions. Energies, 17(20), 5184. https://doi.org/10.3390/en17205184