Model Order Reduction Methods for Rotating Electrical Machines: A Review
Abstract
:1. Introduction
2. The Quasistatic Finite Element Problem
3. Model Order Reduction Methods
3.1. Truncated Balanced Realization and Hankel-Norm Reduction
3.2. Proper Orthogonal Decomposition
3.3. SVD-Supported Interpolation
3.4. Proper Generalized Decomposition
3.5. Moment-Matching Methods
3.6. Cauer Ladder Networks
Algorithm 1 The CLN algorithm for a linear system. |
4. Handling Nonlinearity and Linearization Methods
4.1. Piecewise Linearization
4.2. Discrete Empirical Interpolation Method
4.3. Energy Conserving Sampling and Weighting
5. Handling Position Dependence
5.1. Mesh Regeneration
5.2. Permutation
5.3. Algebraic Connection
6. Discussion
- 1.
- Scalability—is the reduced-order model accuracy adequate when the resource consumption is limited by real-time use?
- 2.
- Speedup ratio—given an error limit, how well does the method speed up the calculation?
- 3.
- Functionality—how many tools are available for or based on the method, how broad are their use cases, and how well does a method fulfill the stated goals of the paper?
- 4.
- Accessibility—how simple is it to integrate them into an existing framework, or how well are they already integrated?
6.1. On Accessibility
6.2. On Scalability
6.3. On Functionality
6.4. On Speedup
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ASM | Asynchronous Machine |
AWE | Asymptotic Waveform Evaluation |
BEM | Boundary Element Method |
CLN | Cauer Ladder Network |
DEIM | Discrete Empirical Interpolation Method |
DoF | Degree of Freedom |
ECSW | Energy-Conserving Sampling and Weighting |
EM | Electromagnetic |
FEM | Finite Element Method |
FOM | Full-Order Model |
LUT | Lookup Table |
MQS | Magneto-Quasi-Static |
MOR | Model-Order Reduction |
NL | Nonlinear |
NVH | Noise, Vibration, Harshness |
PC | Personal Computer |
PGD | Proper Generalized Decomposition |
PMSM | Permanent Magnet Synchronous Motor |
POD | Proper Orthogonal Decomposition |
PWL | Piecewise Linearization |
RC | Resistor–Capacitor |
RLC | Resistor–Inductor–Capacitor |
ROM | Reduced-Order Model |
SRM | Switched Reluctance Machine |
SVD | Singular Value Decomposition |
TPWL | Trajectory Piecewise Linearization |
References
- Rind, S.J.; Ren, Y.; Hu, Y.; Wang, J.; Jiang, L. Configurations and control of traction motors for electric vehicles: A review. Hin. J. Electr. Eng. 2017, 3, 1–17. [Google Scholar] [CrossRef]
- Merabet, A. Advanced control for electric drives: Current challenges and future perspectives. Electronics 2020, 9, 1762. [Google Scholar] [CrossRef]
- Bermúdez, M.; Martín, C.; González-Prieto, I.; Durán, M.J.; Arahal, M.R.; Barrero, F. Predictive current control in electrical drives: An illustrated review with case examples using a five-phase induction motor drive with distributed windings. IET Electr. Power Appl. 2020, 14, 1327–1338. [Google Scholar] [CrossRef]
- Zhong, Z.; Shao, Z.; Bao, Y. Real-Time Simulation of Permanent Magnet Synchronous Motor Considering Harmonic Currents Based on FPGA. J. Electr. Eng. Technol. 2021, 16, 3125–3134. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Z. Low complexity model predictive current control for dual three-phase permanent magnet synchronous motor with extended control set and duty cycle modulation. Electr. Eng. 2024, in press. [CrossRef]
- Hu, D. Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis Technical Report. 2017. Available online: https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/mac2017/deriving-fast-accurate-pmsm-motor-model-from-finite-element-analysis.pdf (accessed on 11 October 2024).
- Liu, C.; Luo, Y. Overview of advanced control strategies for electric machines. Chin. J. Electr. Eng. 2017, 3, 53–61. [Google Scholar] [CrossRef]
- Wallscheid, O. A Contribution to the Thermal Utilisation of Permanently Excited Synchronous Machines in Automotive Traction Applications—in German. Ph.D. Thesis, Universität Paderborn, Paderborn, Germany, 2017. [Google Scholar]
- United Nations Economic Commission for Europe (UNECE). UN/ECE Regulation No. 85: Uniform Provisions Concerning the Approval of Internal Combustion Engines or Electric Drive Trains Intended for the Propulsion of Motor Vehicles of Categories M and N with Regard to the Measurement of the Net Power and the Maximum 30 Minute Power of Electric Drive Trains; United Nations Economic Commission for Europe (UNECE): Geneva, Switzerland, 2023. [Google Scholar]
- Orosz, T.; Rassõlkin, A.; Kallaste, A.; Arsénio, P.; Pánek, D.; Kaska, J.; Karban, P. Robust Design Optimization and Emerging Technologies for Electrical Machines: Challenges and Open Problems. Appl. Sci. 2020, 10, 6653. [Google Scholar] [CrossRef]
- Katona, M.; Orosz, T. Circular Economy Aspects of Permanent Magnet Synchronous Reluctance Machine Design for Electric Vehicle Applications: A Review. Energies 2024, 17, 1408. [Google Scholar] [CrossRef]
- Zebari, R.; Abdulazeez, A.; Zeebaree, D.; Zebari, D.; Saeed, J. A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [Google Scholar] [CrossRef]
- Suman, S.K.; Kumar, A. Investigation and Implementation of Model Order Reduction Technique for Large Scale Dynamical Systems. Arch. Comput. Methods Eng. 2022, 29, 3087–3108. [Google Scholar] [CrossRef]
- Benagri, I.; Haidi, T.; Derri, M.; Elmariami, F.; Mellouli, E.M.; Bouabdallaoui, D. Electric Motor Control Methods and Improvements Applied to Electric Vehicles: A State of the Art. In Proceedings of the 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET 2024, Fez, Morocco, 16–17 May 2024. [Google Scholar] [CrossRef]
- Texas Instruments C2000 Real-Time Microcontrollers. Available online: https://www.ti.com/microcontrollers-mcus-processors/c2000-real-time-control-mcus/products.html (accessed on 11 October 2024).
- Costin, M.; Lazar, C. Field-Oriented Predictive Control Structure for Synchronous Reluctance Motors. Machines 2023, 11, 682. [Google Scholar] [CrossRef]
- AUTOSAR. AUTOSAR CP Standard: Specification of Interpolation Functions Library, 2023. Available online: https://www.autosar.org/fileadmin/standards/R23-11/CP/AUTOSAR_CP_SWS_IFLLibrary.pdf (accessed on 11 October 2024).
- Veeser, F.; Braun, T.; Kiltz, L.; Reuter, J. Nonlinear modelling, flatness-based current control, and torque ripple compensation for interior permanent magnet synchronous machines. Energies 2021, 14, 1590. [Google Scholar] [CrossRef]
- Di Tommaso, A.O.; Miceli, R.; Nevoloso, C.; Scaglione, G.; Schettino, G. Improved High-Fidelity IPMSM mathematical model Including Saturation, Cross-Coupling, Torque Ripple and Iron Loss effects. In Proceedings of the 2022 International Conference on Electrical Machines, ICEM 2022, Valencia, Spain, 5–8 September 2022; pp. 21–27. [Google Scholar] [CrossRef]
- Tavana, N.R.; Dinavahi, V. Real-Time Nonlinear Magnetic Equivalent Circuit Model of Induction Machine on FPGA for Hardware-in-the-Loop Simulation. IEEE Trans. Energy Convers. 2016, 31, 520–530. [Google Scholar] [CrossRef]
- Asghari, B.; Dinavahi, V. Experimental validation of a geometrical nonlinear permeance network based real-time induction machine model. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–15. [Google Scholar] [CrossRef]
- Hemeida, A.; Lehikoinen, A.; Rasilo, P.; Vansompel, H.; Belahcen, A.; Arkkio, A.; Sergeant, P. A Simple and Efficient Quasi-3D Magnetic Equivalent Circuit for Surface Axial Flux Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2019, 66, 8318–8333. [Google Scholar] [CrossRef]
- Liu, J.; Dinavahi, V. Detailed Magnetic Equivalent Circuit Based Real-Time Nonlinear Power Transformer Model on FPGA for Electromagnetic Transient Studies. IEEE Trans. Ind. Electron. 2016, 63, 1191–1202. [Google Scholar] [CrossRef]
- Seilmeier, M.; Piepenbreier, B. Modeling of PMSM with multiple saliencies using a stator-oriented magnetic circuit approach. In Proceedings of the 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, 15–18 May 2011; pp. 131–136. [Google Scholar] [CrossRef]
- Faustner, D.; Kemmetmüller, W.; Kugi, A. Magnetic equivalent circuit modeling of a saturated surface-mounted permanent magnet synchronous machine. IFAC-PapersOnLine 2015, 48, 360–365. [Google Scholar] [CrossRef]
- Forstner, G.; Kugi, A.; Kemmetmuller, W. A Magnetic Equivalent Circuit Based Modeling Framework for Electric Motors Applied to a PMSM with Winding Short Circuit. IEEE Trans. Power Electron. 2020, 35, 12285–12295. [Google Scholar] [CrossRef]
- Forstner, G.; Kugi, A.; Kemmetmüller, W. Fault-tolerant torque control of a three-phase permanent magnet synchronous motor with inter-turn winding short circuit. Control Eng. Pract. 2021, 113, 104846. [Google Scholar] [CrossRef]
- Shimotani, T.; Sato, Y.; Igarashi, H. Direct synthesis of equivalent circuits from reduced FE models using proper orthogonal decomposition. COMPE-Int. J. Comput. Math. Electr. Electron. Eng. 2016, 35, 2035–2044. [Google Scholar] [CrossRef]
- Bossavit, A. Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements; Academic Press: Cambridge, MA, USA, 1998; p. 352. [Google Scholar]
- Schilders, W. Introduction to Model Order Reduction. In Model Order Reduction: Theory, Research Aspects and Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–32. [Google Scholar] [CrossRef]
- Antoulas, A.C.; Sorensen, D.C.; Gugercin, S. A Survey of Model Reduction Methods for Large-Scale Systems. Contemp. Math. 2001, 280, 193–220. [Google Scholar] [CrossRef]
- Ammar, A.; Mokdad, B.; Chinesta, F.; Keunings, R.; Ammar, A.; Mokdad, B.; Chinesta, F.; Keunings, R. A New Family of Solvers for Some Classes of Multidimensional Partial Differential Equations Encountered in Kinetic Theory Modeling of Complex Fluids A New Family of Solvers for Some Classes of Multidimensional Partial Differential Equations Encountered in Kinetic Theory Modeling of Complex Fluids A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newton. Fluid Mech. 2006, 139, 153–176. [Google Scholar] [CrossRef]
- Sato, Y.; Shimotani, T.; Igarashi, H. Synthesis of Cauer-Equivalent Circuit Based on Model Order Reduction Considering Nonlinear Magnetic Property. IEEE Trans. Magn. 2017, 53, 1100204. [Google Scholar] [CrossRef]
- Moore, B.C. Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction. IEEE Trans. Autom. Control 1981, 26, 17–32. [Google Scholar] [CrossRef]
- Fujimoto, K.; Scherpen, J.M.A. Singular Value Analysis and Balanced Realizations for Nonlinear Systems. In Model Order Reduction: Theory, Research Aspects and Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 251–272. [Google Scholar] [CrossRef]
- Glover, K. All optimal Hankel-norm approximations of linear multivariable systems and their L∞ -error bounds. Int. J. Control 1984, 39, 1115–1193. [Google Scholar] [CrossRef]
- Scherpen, J.M.A. Balancing for nonlinear systems. Syst. Control Lett. 1993, 21, 143–153. [Google Scholar] [CrossRef]
- Kerler-Back, J.; Stykel, T. Balanced truncation model reduction for 3D linear magneto-quasistatic field problems. In Realization and Model Reduction of Dynamical Systems: A Festschrift in Honor of the 70th Birthday of Thanos Antoulas; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Liang, Y.C.; Lee, H.P.; Lim, S.P.; Lin, W.Z.; Lee, K.H.; Wu, C.G. Proper orthogonal decomposition and its applications-Part I: Theory. J. Sound Vib. 2002, 252, 527–544. [Google Scholar] [CrossRef]
- Chatterjee, A. An introduction to the proper orthogonal decomposition. Curr. Sci. 2000, 78, 808–817. [Google Scholar]
- Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering Machine Learning, Dynamical Systems, and Control; Technical Report; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Boumesbah, A.E.; Martin, F.; Krebs, G.; Belahcen, A.; Marchand, C. Comparison of Model Order Reduction Methods for a Switched Reluctance Machine Characterization. IEEE Trans. Magn. 2021, 57, 7400906. [Google Scholar] [CrossRef]
- Henneron, T.; Clenet, S. Model order reduction of non-linear magnetostatic problems based on POD and DEI methods. IEEE Trans. Magn. 2014, 50, 33–36. [Google Scholar] [CrossRef]
- Montier, L.; Pierquin, A.; Henneron, T.; Clenet, S. Structure Preserving Model Reduction of Low-Frequency Electromagnetic Problem Based on POD and DEIM. IEEE Trans. Magn. 2017, 53, 7205204. [Google Scholar] [CrossRef]
- Henneron, T.; Clenet, S. Model-Order Reduction of Multiple-Input Non-Linear Systems Based on POD and DEI Methods. IEEE Trans. Magn. 2015, 51, 7207104. [Google Scholar] [CrossRef]
- Farzamfar, M.; Belahcen, A.; Rasilo, P.; Clenet, S.; Pierquin, A. Model Order Reduction of Electrical Machines With Multiple Inputs. IEEE Trans. Ind. Appl. 2017, 53, 3355–3360. [Google Scholar] [CrossRef]
- Paul, S.; Chang, J. Fast numerical analysis of electric motor using nonlinear model order reduction. IEEE Trans. Magn. 2018, 54, 8101404. [Google Scholar] [CrossRef]
- Hollaus, K.; Schöberl, J.; Schöbinger, M. MSFEM and MOR to Minimize the Computational Costs of Nonlinear Eddy-Current Problems in Laminated Iron Cores. IEEE Trans. Magn. 2020, 56, 7508104. [Google Scholar] [CrossRef]
- Henneron, T.; Mac, H.; Clénet, S. Error estimation of a proper orthogonal decomposition reduced model of a permanent magnet synchronous machine. IET Sci. Meas. Technol. 2015, 9, 172–177. [Google Scholar] [CrossRef]
- Farzam Far, M.; Martin, F.; Belahcen, A.; Montier, L.; Henneron, T. Orthogonal Interpolation Method for Order Reduction of a Synchronous Machine Model. IEEE Trans. Magn. 2018, 54, 8100506. [Google Scholar] [CrossRef]
- Far, M.F.; Martin, F.; Belahcen, A.; Rasilo, P.; Awan, H.A.A. Real-Time Control of an IPMSM Using Model Order Reduction. IEEE Trans. Ind. Electron. 2021, 68, 2005–2014. [Google Scholar] [CrossRef]
- Okamoto, K.; Sakamoto, H.; Igarashi, H. Implementation of Simplified Model Order Reduction Based on POD for Dynamic Simulation of Electric Motors. In Proceedings of the 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG), Paris, France, 15–19 July 2019; Volume 56, pp. 1–4. [Google Scholar] [CrossRef]
- Sakamoto, H.; Okamoto, K.; Igarashi, H. Fast Analysis of Rotating Machine Using Simplified Model-Order Reduction Based on POD. IEEE Trans. Magn. 2020, 56, 7506104. [Google Scholar] [CrossRef]
- Croft, T.L.D. Proper Generalised Decompositions: Theory and Applications. Doctoral Dissertation, Cardiff University, Cardiff, UK, 2015. [Google Scholar]
- Nouy, A. A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 2010, 199, 1603–1626. [Google Scholar] [CrossRef]
- Henneron, T.; Clenet, S. Model order reduction of quasi-static problems based on POD and PGD approaches. Eur. Phys. J. Appl. Phys. 2013, 64, 24514. [Google Scholar] [CrossRef]
- Henneron, T.; Clenet, S. Application of the PGD and DEIM to Solve a 3-D Non-Linear Magnetostatic Problem Coupled With the Circuit Equations. IEEE Trans. Magn. 2016, 52, 7202104. [Google Scholar] [CrossRef]
- Montier, L.; Henneron, T.; Clenet, S.; Goursaud, B. Proper Generalized Decomposition Applied on a Rotating Electrical Machine. IEEE Trans. Magn. 2018, 54, 7202604. [Google Scholar] [CrossRef]
- Sancarlos, A.; Ghnatios, C.; Duval, J.L.; Zerbib, N.; Cueto, E.; Chinesta, F. Fast Computation of Multi-Parametric Electromagnetic Fields in Synchronous Machines by Using PGD-Based Fully Separated Representations. Energies 2021, 14, 1454. [Google Scholar] [CrossRef]
- Muller, F.; Crampen, L.; Henneron, T.; Clenet, S.; Hameyer, K. Model Order Reduction Techniques applied to Magnetodynamic Scalar Potential Formulation. In Proceedings of the 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), Nancy, France, 29–31 August 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Müller, F.; Baumanns, P.; Nell, M.M.; Hameyer, K. Nonlinear parametric simulation by proper generalized decomposition on the example of a synchronous machine. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2022, 41, 1171–1180. [Google Scholar] [CrossRef]
- Muller, F.; Hameyer, K. Consideration of Rotational Motion in the Proper Generalized Decomposition by a Sliding Interface Technique. IEEE Trans. Magn. 2022, 58, 7400904. [Google Scholar] [CrossRef]
- Prokhorov, A.V. Moment Encyclopedia of Mathematics. Available online: https://encyclopediaofmath.org/index.php?title=Moment&oldid=55270 (accessed on 11 October 2024).
- Pillage, L.; Rohrer, R. Asymptotic waveform evaluation for timing analysis. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 1990, 9, 352–366. [Google Scholar] [CrossRef]
- Bai, Z.; Li, R.C.; Su, Y. A Unified Krylov Projection Framework for Structure-Preserving Model Reduction. In Model Order Reduction: Theory, Research Aspects and Applications; Schilders, W., van der Vorst, H., Rommes, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 13, pp. 75–93. [Google Scholar] [CrossRef]
- Feldmann, P.; Freund, R. Efficient linear circuit analysis by Pade approximation via the Lanczos process. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 1995, 14, 639–649. [Google Scholar] [CrossRef]
- Pierquin, A.; Henneron, T.; Clénet, S.; Brisset, S. Model order reduction of magnetoquasi-static problems based on pod and Arnoldi-based Krylov methods. IEEE Trans. Magn. 2015, 51, 7206204. [Google Scholar] [CrossRef]
- Benner, P.; Feng, L. Model order reduction based on moment-matching. In System- and Data-Driven Methods and Algorithms; De Gruyter: Berlin, Germany, 2021; pp. 57–96. [Google Scholar] [CrossRef]
- Rafiq, D.; Bazaz, M.A. Model Order Reduction via Moment-Matching: A State of the Art Review. Arch. Comput. Methods Eng. 2022, 29, 1463–1483. [Google Scholar] [CrossRef]
- Kameari, A.; Ebrahimi, H.; Sugahara, K.; Shindo, Y.; Matsuo, T. Cauer Ladder Network Representation of Eddy-Current Fields for Model Order Reduction Using Finite-Element Method. IEEE Trans. Magn. 2018, 54, 7201804. [Google Scholar] [CrossRef]
- Shindo, Y.; Sugahara, K.; Kameari, A.; Matsuo, T. Dynamical model of an electromagnet using cauer ladder network representation of eddy-current fields. IEEJ J. Ind. Appl. 2018, 7, 305–313. [Google Scholar] [CrossRef]
- Sankaran, K. Beyond DIV, CURL and GRAD: Modelling electromagnetic problems using algebraic topology. J. Electromagn. Waves Appl. 2017, 31, 121–149. [Google Scholar] [CrossRef]
- Matsuo, T.; Kameari, A.; Sugahara, K.; Shindo, Y. Matrix Formulation of the Cauer Ladder Network Method for Efficient Eddy-Current Analysis. IEEE Trans. Magn. 2018, 54, 7205805. [Google Scholar] [CrossRef]
- Shindo, Y.; Yamamoto, R.; Sugahara, K.; Matsuo, T.; Kameari, A. Equivalent Circuit in Cauer Form for Eddy Current Field including a Translational Mover. IEEE Trans. Magn. 2020, 56, 8101807. [Google Scholar] [CrossRef]
- Matsuo, T.; Fujiwara, T.; Kuriyama, K.; Sugahara, K.; Kameari, A.; Tokumasu, T.; Shindo, Y. Multi-Port Model Order Reduction Using a Matrix Cauer Ladder Network. IEEE Trans. Magn. 2020, 56, 7506905. [Google Scholar] [CrossRef]
- Matsuo, T.; Sugahara, K.; Kameari, A.; Shindo, Y. Model Order Reduction of an Induction Motor Using a Cauer Ladder Network. IEEE Trans. Magn. 2020, 56, 7514704. [Google Scholar] [CrossRef]
- Eskandari, H.; Gyselinck, J.; Matsuo, T. Eddy-Current Field Analysis in Laminated Iron Cores Using Multi-Scale Model Order Reduction. IEEE Trans. Magn. 2021, 57, 6301004. [Google Scholar] [CrossRef]
- Eskandari, H.; Matsuo, T. Comparison Study of First-Order Approximations of Nonlinear Eddy-Current Field Using Cauer Ladder Network Method. IEEE Trans. Magn. 2021, 57, 6300704. [Google Scholar] [CrossRef]
- Eskandari, H.; Gyselinck, J.; Matsuo, T. Nonlinear Multi-Scale Model Order Reduction of Eddy-Current Problems. IEEE Trans. Magn. 2022, 58, 6300305. [Google Scholar] [CrossRef]
- Tobita, M.; Matsuo, T. Nonlinear Model Order Reduction of Induction Motors Using Parameterized Cauer Ladder Network Method. IEEE Trans. Magn. 2022, 58, 8205504. [Google Scholar] [CrossRef]
- Tobita, M.; Matsuo, T. A model order reduction of hysteretic eddy-current fields in electric machines using Cauer ladder network method. AIP Adv. 2023, 13, 025208. [Google Scholar] [CrossRef]
- Hiruma, S.; Clenet, S.; Igarashi, H.; Henneron, T.; Henneron Error Estimator for Cauer, T.; Clénet, S. Ladder Network Representation. IEEE Trans. Magn. 2022, 58, 7500904. [Google Scholar] [CrossRef]
- Koster, N.; Konig, O.; Biro, O. Proper Generalized Decomposition with Cauer Ladder Network Applied to Eddy Current Problems. IEEE Trans. Magn. 2021, 57, 6300904. [Google Scholar] [CrossRef]
- Ghnatios, C.; Rodriguez, S.; Tomezyk, J.; Dupuis, Y.; Mouterde, J.; Da Silva, J.; Chinesta, F. A hybrid twin based on machine learning enhanced reduced order model for real-time simulation of magnetic bearings. Adv. Model. Simul. Eng. Sci. 2024, 11, 3. [Google Scholar] [CrossRef]
- Comsol, A.B. Model Reduction in Comsol Multiphysics 6.0, 2021. Available online: https://doc.comsol.com/6.0/doc/com.comsol.help.comsol/comsol_ref_solver.32.009.html#1614687 (accessed on 11 October 2024).
- Pereira, S. How to Build Reduced Order Models of Computational Fluid Dynamics Simulations, Ansys blog. 2019. Available online: https://www.ansys.com/blog/how-to-build-reduced-order-model-cfd-simulations (accessed on 11 October 2024).
- Rewieński, M.; White, J. A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2003, 22, 155–170. [Google Scholar] [CrossRef]
- Qu, L.; Chapman, P. Extraction of low-order non-linear inductor models from a high-order physics-based representation. IEEE Trans. Power Electron. 2006, 21, 813–817. [Google Scholar] [CrossRef]
- Albunni, M.N.; Rischmuller, V.; Fritzsche, T.; Lohmann, B. Model order reduction of moving nonlinear electromagnetic devices. IEEE Trans. Magn. 2008, 44, 1822–1829. [Google Scholar] [CrossRef]
- Albunni, M.N. Model Order Reduction of Moving Nonlinear Electromagnetic Devices. Ph.D. Thesis, Technische Universitat München, Munchen, Germany, 2010. [Google Scholar]
- Nahvi, S.A.; Mashuq-un-Nabi; Janardhanan, S. Trajectory based methods for nonlinear MOR: Review and perspectives. In Proceedings of the 2012 IEEE International Conference on Signal Processing, Computing and Control, Solan, India, 15–17 March 2012; 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Kalra, S.; Nabi, M. TPWL Simulation of Large Nonlinear Circuits Using Subspace Angle-Based Adaptive Sampling. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 575–579. [Google Scholar] [CrossRef]
- Wang, C.; Yang, D.; Chen, Q. EI-MOR: A Hybrid Exponential Integrator and Model Order Reduction Approach for Transient Power/Ground Network Analysis. In Proceedings of the 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD), San Diego, CA, USA, 30 October–3 November 2022; pp. 1–8. [Google Scholar]
- Chaturantabut, S.; Sorensen, D.C. Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 2010, 32, 2737–2764. [Google Scholar] [CrossRef]
- Chiampi, M.; Chiarabaglio, D.; Repetto, M. A Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis. IEEE Trans. Magn. 1995, 31, 4306–4311. [Google Scholar] [CrossRef]
- Shimotani, T.; Sato, Y.; Sato, T.; Igarashi, H. Fast Finite-Element Analysis of Motors Using Block Model Order Reduction. IEEE Trans. Magn. 2016, 52, 7207004. [Google Scholar] [CrossRef]
- Yamazaki, K.; Fukushima, N. Torque and loss calculation of rotating machines considering laminated cores using post 1-D analysis. In Proceedings of the Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation, Chicago, IL, USA, 9–12 May 2010; p. 1. [Google Scholar] [CrossRef]
- Sato, Y.; Clemens, M.; Igarashi, H. Adaptive Subdomain Model Order Reduction With Discrete Empirical Interpolation Method for Nonlinear Magneto-Quasi-Static Problems. IEEE Trans. Magn. 2016, 52, 1100204. [Google Scholar] [CrossRef]
- Montier, L.; Henneron, T.; Clénet, S.; Goursaud, B. Transient simulation of an electrical rotating machine achieved through model order reduction. Adv. Model. Simul. Eng. Sci. 2016, 3, 10. [Google Scholar] [CrossRef]
- Petrov, S. Model Order Reduction Algorithms in the Design of Electric Machines. In Large-Scale Scientific Computing; Lirkov, I., Margenov, S., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 11958. [Google Scholar] [CrossRef]
- Maierhofer, J.; Rixen, D.J. Model order reduction using hyperreduction methods (DEIM, ECSW) for magnetodynamic FEM problems. Finite Elem. Anal. Des. 2022, 209, 103793. [Google Scholar] [CrossRef]
- Farhat, C.; Chapman, T.; Avery, P. Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Methods Eng. 2015, 102, 1077–1110. [Google Scholar] [CrossRef]
- Maierhofer, J.; Dietz, C.; Zobel, O.M.; Rixen, D.J. Multiphysical Simulation, Model Order Reduction (ECSW) and Experimental Validation of an Active Magnetic Bearing. Actuators 2022, 11, 169. [Google Scholar] [CrossRef]
- Maierhofer, J.; Rixen, D.J. Computing Forces by ECSW-Hyperreduction in Nonlinear Magnetodynamic FEM Problems. IEEE Trans. Magn. 2024, 60, 7400113. [Google Scholar] [CrossRef]
- Delagnes, T.; Henneron, T.; Clenet, S.; Fratila, M.; Ducreux, J.P. Comparison of Hyper-Reduction Methods Combined with POD: Model Order Reduction of a Squirrel Cage Induction Machine in Nonlinear Case. IEEE Trans. Magn. 2024, 60, 7402010. [Google Scholar] [CrossRef]
- Marcsa, Z. Parallelized Finite Element Methods for Solving Coupled Electrodynamic Problems (in Hungarian). Ph.D. Thesis, Széchenyi István Egyetem, Győr, Hungary, 2018. [Google Scholar]
- Davat, B.; Ren, Z.; Lajoie-Mazenc, M. The Movement in Field Modeling. IEEE Trans. Magn. 1985, 21, 2296–2298. [Google Scholar] [CrossRef]
- Preston, T.W.; Reece, A.B.J.; Sangha, P.S. Induction Motor Analysis by Time-Stepping Techniques. IEEE Trans. Magn. 1988, 24, 471–474. [Google Scholar] [CrossRef]
- Muller, F.; Siokos, A.; Kolb, J.; Nell, M.; Hameyer, K. Efficient Estimation of Electrical Machine Behavior by Model Order Reduction. IEEE Trans. Magn. 2021, 57, 8105804. [Google Scholar] [CrossRef]
- Bontinck, Z.; Lass, O.; Rain, O.; Schöps, S. Model order reduction for rotating electrical machines. In Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing; Springer International Publishing: Cham, Switzerland, 2018; pp. 121–140. [Google Scholar] [CrossRef]
- Kurz, S.; Fetzer, J.; Lehner, G. Threedimensional transient BEM-FEM coupled analysis of electrodynamic levitation problems. IEEE Trans. Magn. 1996, 32, 1062–1065. [Google Scholar] [CrossRef]
- Montier, L.; Henneron, T.; Clenet, S.; Goursaud, B. Model Order Reduction Applied to a Linear Finite Element Model of a Squirrel Cage Induction Machine Based on POD Approach. IEEE Trans. Magn. 2021, 57, 8105204. [Google Scholar] [CrossRef]
- Tsukerman, I. Overlapping finite elements for problems with movement. In Proceedings of the 1992. Digests of Intermag. International Magnetics Conference, St. Louis, MO, USA, 13–16 April 1992; p. 70. [Google Scholar] [CrossRef]
- Krebs, G.; Henneron, T.; Clénet, S.; Le Bihan, Y. Overlapping finite elements used to connect non-conforming meshes in 3-D with a vector potential formulation. IEEE Trans. Magn. 2011, 47, 1218–1221. [Google Scholar] [CrossRef]
- Lange, E.; Henrotte, F.; Hameyer, K. A variational formulation for nonconforming sliding interfaces in finite element analysis of electric machines. IEEE Trans. Magn. 2010, 46, 2755–2758. [Google Scholar] [CrossRef]
- MORLab. sssMOR Toolbox. 2024. Available online: https://www.mathworks.com/matlabcentral/fileexchange/59169-sssmor-toolbox (accessed on 11 October 2024).
- MathWorks. Model Simplification. 2024. Available online: https://www.mathworks.com/help/control/model-simplification-1.html?s{_}tid=CRUX{_}lftnav (accessed on 11 October 2024).
- Milk, R.; Rave, S.; Schindler, F. pyMOR—Generic Algorithms and Interfaces for Model Order Reduction. SIAM J. Sci. Comput. 2016, 38, S194–S216. [Google Scholar]
- Zou, X.; Conti, M.; Díez, P.; Auricchio, F. A nonintrusive proper generalized decomposition scheme with application in biomechanics. Int. J. Numer. Methods Eng. 2018, 113, 230–251. [Google Scholar] [CrossRef]
Method | First Applied for MQS | Nonlinearity Handled with | Position Dependence Handled with | Force Calculation | Extra Losses |
---|---|---|---|---|---|
TBR | 2019 [38] | ||||
POD | 2008 [89] | TPWL [89], DEIM [109], ECSW [103] | BEM–FEM [90] Locked step [100] | ||
PGD | 2015 [57] | DEIM [57] | Overlapping [58] | ||
OIM | 2018 [50] | Interpolation [51] | Interpolation [51] | [53] | |
CLN | 2017 [33] | First mode [33] | Rotation operator [76] | [71] | Hyst [81] PWM [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiss, K.L.; Orosz, T. Model Order Reduction Methods for Rotating Electrical Machines: A Review. Energies 2024, 17, 5145. https://doi.org/10.3390/en17205145
Kiss KL, Orosz T. Model Order Reduction Methods for Rotating Electrical Machines: A Review. Energies. 2024; 17(20):5145. https://doi.org/10.3390/en17205145
Chicago/Turabian StyleKiss, Kristóf Levente, and Tamás Orosz. 2024. "Model Order Reduction Methods for Rotating Electrical Machines: A Review" Energies 17, no. 20: 5145. https://doi.org/10.3390/en17205145
APA StyleKiss, K. L., & Orosz, T. (2024). Model Order Reduction Methods for Rotating Electrical Machines: A Review. Energies, 17(20), 5145. https://doi.org/10.3390/en17205145