Enhanced Wavelet Transform Dynamic Attention Transformer Model for Recycled Lithium-Ion Battery Anomaly Detection
Abstract
:1. Introduction
- (1)
- We propose a dynamic attention mechanism integrated with wavelet transform that can adapt to the non-stationarity and complex dynamics of battery data, facilitating precise feature extraction from battery charging and discharging data.
- (2)
- We propose the use of a convolutional feed-forward neural network as a replacement for the traditional feed-forward neural network in the Transformer architecture, aimed at modeling temporal relationships within battery charging and discharging sequences.
- (3)
- We propose the WACformer model, which is built upon the WADT and a convolutional feed-forward neural network, to achieve accurate anomaly detection in EV Li batteries.
2. Related Work
2.1. Battery Fault Detection
2.2. Traditional Battery Fault Detection Methods
2.3. Deep Learning-Based Battery Fault Detection Method
3. Dynamic Attention Mechanism Based on Wavelet Transform
3.1. Feature Extraction
- is the wavelet basis function, generated from the mother wavelet by scaling and translation: .
- j and k are integers that control the scale and translation of the wavelet, respectively.
- denotes the inner product of with , giving the wavelet coefficient at scale j and position k.
- is the complex conjugate of , assuming and can be complex-valued functions.
3.2. Dynamic Attention Scoring
3.2.1. Spectral Energy Calculation
3.2.2. Scoring Function
3.2.3. Dynamic Attention Weights
3.3. Attention-Weighted Feature Fusion
4. WACformer Model for Battery State Anomaly Detection
4.1. WACformer Overview
4.2. Encoder Layer
4.3. Decoder Layer
4.4. Convolutional Feed-Forward Network (CFFN)
Anomaly Detection Output Layer
5. Experiments
5.1. Dataset
5.2. Baselines and Evaluation Metrics
- GDN (graph deviation network): Introduces graph-based anomaly detection, well suited for relational data and capable of uncovering intricate patterns of deviations.
- AE (autoencoder): Serves as a baseline in many anomaly detection tasks, with its capacity to model normal behavior and identify outliers based on reconstruction errors.
- SVDD (support vector data description): Represents classical boundary-based anomaly detection, offering a strong comparison point for evaluating the sensitivity of WACformer in distinguishing outliers.
- GP (Gaussian process): Brings a probabilistic perspective to time-series modeling, valuable for assessing WACformer’s performance in capturing uncertainty and variability in battery data.
- Data-driven variant: Provides a domain-specific benchmark, reflecting the practical challenges and nuances of battery fault detection.
5.3. Experimental Setup
5.4. Experimental Result
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Romero, C.; Liu, Z.; Gordon, K.; Lei, X.; Joseph, K.; Broussard, E.; Gang, D.; Wei, Z.; Fei, L. FeS 2 deposited on 3D-printed carbon microlattices as free-standing electrodes for lithium-ion batteries. Chem. Commun. 2024, 60, 9085–9088. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, T.; Chang, C.; Yang, C.; Liao, L. Fault diagnosis method for lithium-ion batteries in electric vehicles based on isolated forest algorithm. J. Energy Storage 2022, 50, 104177. [Google Scholar] [CrossRef]
- Wang, Y.; Shang, Y.; Gu, X.; Li, J.; Zhang, C. An Incipient Multi-Fault Diagnosis Method for Lithium-Ion Battery Pack Based on Data-Driven with Incremental-Scale. IEEE Trans. Transp. Electrif. 2024; early access. [Google Scholar] [CrossRef]
- Sepasiahooyi, S.; Abdollahi, F. Fault Detection of New and Aged Lithium-ion Battery Cells in Electric Vehicles. Green Energy Intell. Transp. 2024, 3, 100165. [Google Scholar] [CrossRef]
- Li, Q.; Luo, H.; Cheng, H.; Deng, Y.; Sun, W.; Li, W.; Liu, Z. Incipient Fault Detection in Power Distribution System: A Time–Frequency Embedded Deep-Learning-Based Approach. IEEE Trans. Instrum. Meas. 2023, 72, 2507914. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, S.; Wang, H.; Zhang, X. A novel dual time-scale voltage sensor fault detection and isolation method for series-connected lithium-ion battery pack. Appl. Energy 2022, 322, 119541. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, Z.; Ding, S.X.; Gao, Z.; Wang, Y.; Zuo, Z. Fault Diagnosis for Parallel Lithium-Ion Battery Packs with Main Current Sensor Fault and Internal Resistance Fault. IEEE Trans. Instrum. Meas. 2024, 73, 3521210. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, Z.; Lin, T. Lithium-Ion Battery Cell Open Circuit Fault Diagnostics: Methods, Analysis, and Comparison. IEEE Trans. Power Electron. 2023, 38, 2493–2505. [Google Scholar] [CrossRef]
- Gan, N.; Sun, Z.; Zhang, Z.; Xu, S.; Liu, P.; Qin, Z. Data-Driven Fault Diagnosis of Lithium-Ion Battery Overdischarge in Electric Vehicles. IEEE Trans. Power Electron. 2022, 37, 4575–4588. [Google Scholar] [CrossRef]
- Shen, D.; Lyu, C.; Yang, D.; Hinds, G.; Ma, K.; Xu, S.; Bai, M. Concurrent multi-fault diagnosis of lithium-ion battery packs using random convolution kernel transformation and Gaussian process classifier. Energy 2024, 306, 132467. [Google Scholar] [CrossRef]
- Firoozi, R.; Sattarzadeh, S.; Dey, S. Cylindrical Battery Fault Detection under Extreme Fast Charging: A Physics-Based Learning Approach. IEEE Trans. Energy Convers. 2022, 37, 1241–1250. [Google Scholar] [CrossRef]
- Ma, M.; Li, X.; Gao, W.; Sun, J.; Wang, Q.; Mi, C. Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA. Appl. Energy 2022, 324, 119678. [Google Scholar] [CrossRef]
- Zhang, K.; Jiang, L.; Deng, Z.; Xie, Y.; Couture, J.; Lin, X.; Zhou, J.; Hu, X. An Early Soft Internal Short-Circuit Fault Diagnosis Method for Lithium-Ion Battery Packs in Electric Vehicles. IEEE/ASME Trans. Mechatron. 2023, 28, 644–655. [Google Scholar] [CrossRef]
- Wang, G.; Yang, J.; Jiao, J. Voltage Correlation-Based Principal Component Analysis Method for Short Circuit Fault Diagnosis of Series Battery Pack. IEEE Trans. Ind. Electron. 2023, 70, 9025–9034. [Google Scholar] [CrossRef]
- Jiang, J.; Cong, X.; Li, S.; Zhang, C.; Zhang, W.; Jiang, Y. A Hybrid Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles. IEEE Access 2021, 9, 19175–19186. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, S.; Yang, Z.; He, Y. A multi-fault diagnosis method for lithium-ion battery pack using curvilinear Manhattan distance evaluation and voltage difference analysis. J. Energy Storage 2023, 67, 107575. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, S.; Tang, N.; Fu, Y.; Wang, K. Research progress in fault detection of battery systems: A review. J. Energy Storage 2024, 98, 113079. [Google Scholar] [CrossRef]
- Jin, H.; Gao, Z.; Zuo, Z.; Zhang, Z.; Wang, Y.; Zhang, A. A Combined Model-Based and Data-Driven Fault Diagnosis Scheme for Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2024, 71, 6274–6284. [Google Scholar] [CrossRef]
- Gu, X.; Shang, Y.; Kang, Y.; Li, J.; Mao, Z.; Zhang, C. An Early Minor-Fault Diagnosis Method for Lithium-Ion Battery Packs Based on Unsupervised Learning. IEEECAA J. Autom. Sin. 2023, 10, 810–812. [Google Scholar] [CrossRef]
- Hardy, J.; Steggall, J.; Hardy, P. Rethinking lithium-ion battery management: Eliminating routine cell balancing enhances hazardous fault detection. J. Energy Storage 2023, 63, 106931. [Google Scholar] [CrossRef]
- Chatterjee, S.; Kumar Gatla, R.; Sinha, P.; Jena, C.; Kundu, S.; Panda, B.; Nanda, L.; Pradhan, A. Fault detection of a Li-ion battery using SVM based machine learning and unscented Kalman filter. Mater. Today Proc. 2023, 74, 703–707. [Google Scholar] [CrossRef]
- Ma, G.; Xu, S.; Cheng, C. Fault detection of lithium-ion battery packs with a graph-based method. J. Energy Storage 2021, 43, 103209. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Cao, R.; Lyu, M.; Zhang, C.; Li, S.; Guo, B.; Zhang, L.; Zhang, Z.; Gao, X.; et al. Review of abnormality detection and fault diagnosis methods for lithium-ion batteries. Automot. Innov. 2023, 6, 256–267. [Google Scholar] [CrossRef]
- Christensen, G.; Younes, H.; Hong, H.; Widener, C.; Hrabe, R.H.; Wu, J.J. Nanofluids as Media for High Capacity Anodes of Lithium-Ion Battery—A Review. J. Nanofluids 2019, 8, 657–670. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Li, R.; Zhang, X. Voltage sensor fault detection, isolation and estimation for lithium-ion battery used in electric vehicles via a simple and practical method. J. Energy Storage 2022, 55, 105555. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, C.; Li, J.; Xiong, R.; Pecht, M. Challenges and outlook for lithium-ion battery fault diagnosis methods from the laboratory to real world applications. eTransportation 2023, 17, 100254. [Google Scholar] [CrossRef]
- Sattarzadeh, S.; Roy, T.; Dey, S. Thermal fault detection and localization framework for large format batteries. J. Power Sources 2021, 512, 230400. [Google Scholar] [CrossRef]
- Qiu, Y.; Dong, T.; Lin, D.; Zhao, B.; Cao, W.; Jiang, F. Fault diagnosis for lithium-ion battery energy storage systems based on local outlier factor. J. Energy Storage 2022, 55, 105470. [Google Scholar] [CrossRef]
- Xue, Q.; Li, G.; Zhang, Y.; Shen, S.; Chen, Z.; Liu, Y. Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution. J. Power Sources 2021, 482, 228964. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, A.; Han, X.; Ouyang, M. Quantitative short circuit identification for single lithium-ion cell applications based on charge and discharge capacity estimation. J. Power Sources 2022, 517, 230716. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Z.; Su, H. Fuzzy-kalman-filter-based short-circuit fault diagnosis design for lithium-ion battery. IEEE Trans. Ind. Electron. 2023, 71, 2883–2892. [Google Scholar] [CrossRef]
- Song, Y.; Yu, J.; Zhou, J.; Zhang, J.; Tang, D.; Yu, Z. Detection of Voltage Fault in Lithium-Ion Battery Based on Equivalent Circuit Model-Informed Neural Network. IEEE Trans. Instrum. Meas. 2024, 73, 1–10. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, X.; Shen, W.; Yang, R. A Soft Short-Circuit Diagnosis Method for Lithium-Ion Battery Packs in Electric Vehicles. IEEE Trans. Power Electron. 2022, 37, 8572–8581. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Model architecture | Transformer |
Encoder layers | 4 |
Decoder layers | 4 |
Attention mechanism | WADT |
Wavelet transform | Daubechies-4 (db4) |
Activation function | GELU/Sigmoid |
Optimizer | Adam |
Initial learning rate | 3 |
Learning sate schedule | Cosine annealing with warm restarts |
Batch size | 48 |
Training epochs | 200 |
Regularization | Dropout (0.15), weight decay (0.02) |
Weight initialization | Xavier uniform with gain set to 1.2 |
Models/Metrics | AUC Score | TPR | FPR | Accuracy |
---|---|---|---|---|
WACformer | 0.88 | 0.85 | 0.08 | 0.89 |
GDN | 0.70 | 0.75 | 0.25 | 0.68 |
AE | 0.72 | 0.77 | 0.22 | 0.73 |
SVDD | 0.51 | 0.60 | 0.40 | 0.55 |
GP | 0.66 | 0.70 | 0.30 | 0.67 |
VE | 0.55 | 0.65 | 0.35 | 0.62 |
Models/Metrics | AUC Score | TPR | FPR | Accuracy |
---|---|---|---|---|
WACformer | 0.88 | 0.85 | 0.08 | 0.89 |
w/o WADT | 0.82 | 0.80 | 0.15 | 0.83 |
w/o CFFN | 0.84 | 0.83 | 0.12 | 0.85 |
Transformer | 0.80 | 0.78 | 0.17 | 0.81 |
Wavelet Transform | AUC Score | TPR | FPR | Accuracy |
---|---|---|---|---|
Daubechies | 0.88 | 0.85 | 0.08 | 0.89 |
Haar | 0.85 | 0.82 | 0.10 | 0.86 |
Symlet | 0.86 | 0.83 | 0.09 | 0.87 |
Coiflet | 0.84 | 0.81 | 0.11 | 0.85 |
Biorthogonal | 0.82 | 0.79 | 0.14 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Huang, H.; Chang, W.; Cao, Y.; Wang, Y. Enhanced Wavelet Transform Dynamic Attention Transformer Model for Recycled Lithium-Ion Battery Anomaly Detection. Energies 2024, 17, 5139. https://doi.org/10.3390/en17205139
Liu X, Huang H, Chang W, Cao Y, Wang Y. Enhanced Wavelet Transform Dynamic Attention Transformer Model for Recycled Lithium-Ion Battery Anomaly Detection. Energies. 2024; 17(20):5139. https://doi.org/10.3390/en17205139
Chicago/Turabian StyleLiu, Xin, Haihong Huang, Wenjing Chang, Yongqi Cao, and Yuhang Wang. 2024. "Enhanced Wavelet Transform Dynamic Attention Transformer Model for Recycled Lithium-Ion Battery Anomaly Detection" Energies 17, no. 20: 5139. https://doi.org/10.3390/en17205139
APA StyleLiu, X., Huang, H., Chang, W., Cao, Y., & Wang, Y. (2024). Enhanced Wavelet Transform Dynamic Attention Transformer Model for Recycled Lithium-Ion Battery Anomaly Detection. Energies, 17(20), 5139. https://doi.org/10.3390/en17205139