Interactive Cycles between Energy Education and Energy Preferences: A Literature Review on Empirical Evidence
Abstract
:1. Introduction
2. Energy Education Policy Formulation
2.1. The Role of Energy Policy
2.2. The Importance of Energy Education
2.3. The Impact of Education on Energy Policy
3. Energy Education System Operation
3.1. Foundational Education—Student Education
3.2. Training Education Professionals—School Teachers and Relevant Education Staff
3.3. Training Education Professionals—Energy Professionals
3.4. The Importance of Energy Education Systems
- Systematic energy education helps individuals recognize their responsibility toward the global environment. By gaining a deeper understanding of energy sources, usage, and environmental impacts, individuals can better grasp their roles and responsibilities within the global energy system.
- Energy education fosters a closer connection between society and energy. Energy education enables society to engage more intimately with energy issues, helping people comprehend the current state of energy and its future developments. This understanding supports a well-rounded view of energy and encourages sensible energy use and policy advocacy.
- Energy education can drive behavioral changes and enhance energy literacy. Energy education encourages individuals to alter their energy use behaviors, promoting energy-saving and environmentally friendly lifestyles. These changes extend beyond the individual level to households, communities, and society.
- It increases familiarity with emerging energy sources and challenges. Through education, the public can learn about the potential and challenges of emerging energy technologies and explore ways to overcome these obstacles. Such knowledge helps society adapt to and embrace new technologies, improving energy efficiency.
- It cultivates engagement and problem-solving abilities. Energy education equips individuals with the skills and knowledge necessary to participate in solving energy and environmental issues. This includes understanding energy problems, engaging in relevant discussions, and developing solutions.
- Energy education enhances societal awareness, knowledge, attitudes, and confidence.
4. Creating an Innovative Environment for the Energy Industry
4.1. The Concept Framework of Innovative Energy Industry Environment
4.2. The Importance of Innovative Energy Industry Environment
5. Strategies for Public Participation
5.1. The Importance of Public Participation
5.2. The Impact of Public Participation on Energy Sector—Community Energy
5.3. The Impact of Public Participation on the Energy Sector—Smart Meters
5.4. The Impact of Public Participation on the Energy Sector—The Concept of Prosumer
6. Education-Shaped Energy Preference and Culture-Shaped Energy Policy
6.1. The Concept of Energy Literacy
6.2. The Relationship between Energy Literacy and Energy Education
6.3. The Theory of Reasoned Action on Energy Preferences
6.4. The Impact of Education on Energy Preference (Education-Shaped Energy Preference)
6.5. The Impact of Culture on Energy Policy (Culture-Shaped Energy Policy)
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Impacts, adaptation, and vulnerability. In Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- IPCC. Summary for policymakers. In Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Friedman, T.L. Hot, Flat, and Crowded: Why the World Needs a Green Revolution—And How We Can Renew Our Global Future; Penguin: London, UK, 2009. [Google Scholar]
- Holechek, J.L.; Geli, H.M.; Sawalhah, M.N.; Valdez, R. A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Pidgeon, N.F.; Lorenzoni, I.; Poortinga, W. Climate change or nuclear power—No thanks! A quantitative study of public perceptions and risk framing in Britain. Glob. Environ. Chang. 2008, 18, 69–85. [Google Scholar] [CrossRef]
- Van Rijnsoever, F.J.; Farla, J.C. Identifying and explaining public preferences for the attributes of energy technologies. Renew. Sustain. Energy Rev. 2014, 31, 71–82. [Google Scholar] [CrossRef]
- Cherp, A.; Adenikinju, A.; Goldthau, A.; Hernandez, F.; Hughes, L.; Jewell, J.; Olshanskaya, M.; Jansen, J.; Soares, R.; Vakulenko, S. Energy and security. In Global Energy Assessment: Toward a Sustainable Future; Cambridge University Press: Cambridge, UK, 2012; pp. 325–383. [Google Scholar]
- Karduri, R.K. Integrating renewable energy into existing power systems: Challenges and opportunities. Int. J. Adv. Res. Manag. Archit. Technol. Eng. 2018, 4, 213–220. [Google Scholar]
- Burke, M.J.; Stephens, J.C. Energy democracy: Goals and policy instruments for sociotechnical transitions. Energy Res. Soc. Sci. 2017, 33, 35–48. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, C.; Lu, X. Energy Conversion from Fossil Fuel to Renewable Energy. In Handbook of Air Quality and Climate Change; Springer Nature: Singapore, 2023; pp. 1–44. [Google Scholar]
- Kandpal, T.C.; Broman, L. Renewable energy education: A global status review. Renew. Sustain. Energy Rev. 2014, 34, 300–324. [Google Scholar] [CrossRef]
- Mahalik, M.K.; Mallick, H.; Padhan, H. Do educational levels influence the environmental quality? The role of renewable and non-renewable energy demand in selected BRICS countries with a new policy perspective. Renew. Energy 2021, 164, 419–432. [Google Scholar] [CrossRef]
- McBeth, W.; Volk, T.L. The national environmental literacy project: A baseline study of middle grade students in the United States. J. Environ. Educ. 2009, 41, 55–67. [Google Scholar] [CrossRef]
- Biancardi, A.; Colasante, A.; D’Adamo, I. Sustainable education and youth confidence as pillars of future civil society. Sci. Rep. 2023, 13, 955. [Google Scholar] [CrossRef]
- Brown, K. The effects of a university research reactor’s outreach program on students’ attitudes and knowledge about nuclear radiation. Res. Sci. Technol. Educ. 2018, 36, 484–498. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, J.M.; Han, E.O. Effects of education concerning radiation and nuclear safety and regulation on elementary, middle, and high school students in Korea. J. Radiat. Prot. Res. 2020, 45, 108–116. [Google Scholar] [CrossRef]
- Hayashi, M.; Hughes, L. The Fukushima nuclear accident and its effect on global energy security. Energy Policy 2013, 59, 102–111. [Google Scholar] [CrossRef]
- Metcalf, G.E. The economics of energy security. Annu. Rev. Resour. Econ. 2014, 6, 155–174. [Google Scholar] [CrossRef]
- Vivoda, V. Japan’s energy security predicament post-Fukushima. Energy Policy 2012, 46, 135–143. [Google Scholar] [CrossRef]
- Commission of the European Communities. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Strategy for ICT R&D and Innovation in Europe: Raising the Game; Office for Official Publications of the European Communities: Luxembourg, 2009; Volume 116. [Google Scholar]
- Filippini, M.; Hunt, L.C.; Zorić, J. Impact of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector. Energy Policy 2014, 69, 73–81. [Google Scholar] [CrossRef]
- Jennings, P.J. Renewable energy education: An essential foundation for market development. In Proceedings of the Solar’97: 35th ANZSES Conference. Australian and New Zealand Solar Energy Society, Canberra, Australia, 1–3 December 1997. [Google Scholar]
- Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability 2020, 12, 5078. [Google Scholar] [CrossRef]
- Roeder, J.L. What we learned from the oil crisis of 1973: A 30-year retrospective. Bull. Sci. Technol. Soc. 2005, 25, 166–169. [Google Scholar] [CrossRef]
- Waring, D.S. From Abundance to Stewardship: OSU’s Response to the 1970s Energy Crisis. Bachelor’s Thesis, Oregon State University, Corvallis, OR, USA, 2024. [Google Scholar]
- Carvalho, A.; Riquito, M.; Ferreira, V. Sociotechnical imaginaries of energy transition: The case of the Portuguese Roadmap for Carbon Neutrality 2050. Energy Rep. 2022, 8, 2413–2423. [Google Scholar] [CrossRef]
- Geels, F.W.; Schot, J. Typology of sociotechnical transition pathways. Res. Policy 2007, 36, 399–417. [Google Scholar] [CrossRef]
- Pesch, U.; Spekkink, W.; Quist, J. Local sustainability initiatives: Innovation and civic engagement in societal experiments. Eur. Plan. Stud. 2019, 27, 300–317. [Google Scholar] [CrossRef]
- Hood, C.C.; Margetts, H.Z. The Tools of Government in the Digital Age; Palgrave Macmillan: Basingstoke, UK, 2007. [Google Scholar]
- Zaval, L.; Cornwell, J.F. Effective education and communication strategies to promote environmental engagement. Eur. J. Educ. 2017, 52, 477–486. [Google Scholar] [CrossRef]
- Moncure, S.; Francis, C. Foundations of experiential education as applied to agroecology. NACTA J. 2011, 55, 75–91. [Google Scholar]
- Dias, R.A.; Mattos, C.R.; Balestieri, J.A. Energy education: Breaking up the rational energy use barriers. Energy Policy 2004, 32, 1339–1347. [Google Scholar] [CrossRef]
- Darby, S. Awareness, Action and Feedback in Domestic Energy Use. Ph.D. Thesis, Environmental Change Institute, University of Oxford, Oxford, UK, 2003. [Google Scholar]
- Wi, A. Citizen participation as a key enabler for successful public education policies in climate change mitigation in Singapore. Int. Res. Geogr. Environ. Educ. 2019, 28, 53–69. [Google Scholar] [CrossRef]
- Jho, H.; Yoon, H.G.; Kim, M. The relationship of science knowledge, attitude and decision making on socio-scientific issues: The case study of students’ debates on a nuclear power plant in Korea. Sci. Educ. 2014, 23, 1131–1151. [Google Scholar] [CrossRef]
- Houston, J.E. Thesaurus of ERIC Descriptors, 12th ed.; Oryx Press: Phoenix, AZ, USA, 1990. [Google Scholar]
- Yildirim, E.G.; Önder, A.N. Energy Resources and Energy Conservation. In Different Perspectives on Environmental Education; The International Society for Research in Education and Science (ISRES): Konya, Turkey, 2021; pp. 339–371. [Google Scholar]
- Goggins, G.; Rau, H.; Moran, P.; Fahy, F.; Goggins, J. The role of culture in advancing sustainable energy policy and practice. Energy Policy 2022, 167, 113055. [Google Scholar] [CrossRef]
- Lukkarinen, J.P.; Salo, M.; Faehnle, M.; Saarikoski, H.; Hyysalo, S.; Auvinen, K.; Lähteenoja, S.; Marttila, T. Citizen energy lost in sustainability transitions: Knowledge co-production in a complex governance context. Energy Res. Soc. Sci. 2023, 96, 102932. [Google Scholar] [CrossRef]
- Kolstø, S.D. ‘To trust or not to trust’…’-pupils’ ways of judging information encountered in a socio-scientific issue. Int. J. Sci. Educ. 2001, 23, 877–901. [Google Scholar] [CrossRef]
- Lewis, J.; Leach, J. Discussion of socio-scientific issues: The role of science knowledge. Int. J. Sci. Educ. 2006, 28, 1267–1287. [Google Scholar] [CrossRef]
- Venville, G.; Rennie, L.; Wallace, J. Decision making and sources of knowledge: How students tackle integrated tasks in science, technology and mathematics. Res. Sci. Educ. 2004, 34, 115–135. [Google Scholar] [CrossRef]
- Middleton, P. Sustainable living education: Techniques to help advance the renewable energy transformation. Sol. Energy 2018, 174, 1016–1018. [Google Scholar] [CrossRef]
- Langford, I.H. An existential approach to risk perception. Risk Anal. 2002, 22, 101–120. [Google Scholar] [CrossRef] [PubMed]
- Stadelmann-Steffen, I.; Eder, C. Public opinion in policy contexts. A comparative analysis of domestic energy policies and individual policy pref-erences in Europe. Int. Political Sci. Rev. 2021, 42, 78–94. [Google Scholar] [CrossRef]
- Yim, M.S.; Vaganov, P.A. Effects of education on nuclear risk perception and attitude: Theory. Prog. Nucl. Energy 2003, 42, 221–235. [Google Scholar] [CrossRef]
- Jorgenson, S.N.; Stephens, J.C.; White, B. Environmental education in transition: A critical review of recent research on climate change and energy education. J. Environ. Educ. 2019, 50, 160–171. [Google Scholar] [CrossRef]
- Meinzen-Dick, R.; DiGregorio, M.; McCarthy, N. Methods for studying collective action in rural development. Agric. Syst. 2004, 82, 197–214. [Google Scholar] [CrossRef]
- Fischer-Kowalski, M.; Rotmans, J. Conceptualizing, observing, and influencing social–ecological transitions. Ecol. Soc. 2009, 14, 3. [Google Scholar] [CrossRef]
- Tainter, J.A. Energy, complexity, and sustainability: A historical perspective. Environ. Innov. Soc. Trans. 2011, 1, 89–95. [Google Scholar] [CrossRef]
- Kolb, D.A. Experience as the Source of Learning and Development; Prentice Hall: Upper Sadle River, NJ, USA, 1984. [Google Scholar]
- Bakkensen, L.; Schuler, P. A preference for power: Willingness to pay for energy reliability versus fuel type in Vietnam. Energy Policy 2020, 144, 111696. [Google Scholar] [CrossRef]
- Hanus, N.; Wong-Parodi, G.; Hoyos, L.; Rauch, M. Framing clean energy campaigns to promote civic engagement among parents. Environ. Res. Lett. 2018, 13, 034021. [Google Scholar] [CrossRef]
- Hentschel, V. Empowering Civic Engagement in Energy Concepts Design Implications for Citizen Participation. Available online: http://www.diva-portal.org/smash/get/diva2:1454412/FULLTEXT01.pdf (accessed on 1 August 2024).
- Chomać-Pierzecka, E. Investment in Offshore Wind Energy in Poland and Its Impact on Public Opinion. Energies 2024, 17, 3912. [Google Scholar] [CrossRef]
- Gifford, R.; Nilsson, A. Personal and social factors that influence pro-environmental concern and behaviour: A review. Int. J. Psychol. 2014, 49, 141–157. [Google Scholar] [CrossRef]
- Martins Gonçalves, H.; Viegas, A. Explaining consumer use of renewable energy: Determinants and gender and age moderator effects. J. Glob. Sch. Mark. 2015, 25, 198–215. [Google Scholar] [CrossRef]
- Muhammad, I.; Shabbir, M.S.; Saleem, S.; Bilal, K.; Ulucak, R. Nexus between willingness to pay for renewable energy sources: Evidence from Turkey. Environ. Sci. Pollut. Res. 2021, 28, 2972–2986. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.F.; Kotchen, M.J.; Moore, M.R. Internal and external influences on pro-environmental behavior: Participation in a green electricity program. J. Environ. Psychol. 2003, 23, 237–246. [Google Scholar] [CrossRef]
- Hojnik, J.; Ruzzier, M.; Fabri, S.; Klopčič, A.L. What you give is what you get: Willingness to pay for green energy. Renew. Energy 2021, 174, 733–746. [Google Scholar] [CrossRef]
- Panarello, D. Economic insecurity, conservatism, and the crisis of environmentalism: 30 years of evidence. Soc.-Econ. Plan. Sci. 2021, 73, 100925. [Google Scholar] [CrossRef]
- Fang, J.; Gozgor, G.; Mahalik, M.K.; Mallick, H.; Padhan, H. Does urbanisation induce renewable energy consumption in emerging economies? The role of education in energy switching policies. Energy Econ. 2022, 111, 106081. [Google Scholar] [CrossRef]
- Hanke, F.; Guyet, R.; Feenstra, M. Do renewable energy communities deliver energy justice? Exploring insights from 71 European cases. Energy Res. Soc. Sci. 2021, 80, 102244. [Google Scholar] [CrossRef]
- Irfan, M.; Elavarasan, R.M.; Hao, Y.; Feng, M.; Sailan, D. An assessment of consumers’ willingness to utilize solar energy in China: End-users’ perspective. J. Clean. Prod. 2021, 292, 126008. [Google Scholar] [CrossRef]
- Irfan, M.; Zhao, Z.Y.; Rehman, A.; Ozturk, I.; Li, H. Consumers’ intention-based influence factors of renewable energy adoption in Pakistan: A structural equation modeling approach. Environ. Sci. Pollut. Res. 2021, 28, 432–445. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Zhao, Z.Y.; Li, H.; Rehman, A. The influence of consumers’ intention factors on willingness to pay for renewable energy: A structural equation modeling approach. Environ. Sci. Pollut. Res. 2020, 27, 21747–21761. [Google Scholar] [CrossRef]
- Wall, W.P.; Khalid, B.; Urbański, M.; Kot, M. Factors influencing consumer’s adoption of renewable energy. Energies 2021, 14, 5420. [Google Scholar] [CrossRef]
- Hanke, F.; Lowitzsch, J. Empowering vulnerable consumers to join renewable energy communities—Towards an inclusive design of the clean energy package. Energies 2020, 13, 1615. [Google Scholar] [CrossRef]
- Nisa, C.; Witt, K.; Ferguson, M.; Hodson, A.; Ashworth, P. Australian Energy Preferences and the Place of Carbon Capture and Storage (CCS) within the Energy Mix; The University of Queensland: Brisbane, Australia, 2018. [Google Scholar]
- Bang, H.K.; Ellinger, A.E.; Hadjimarcou, J.; Traichal, P.A. Consumer concern, knowledge, belief, and attitude toward renewable energy: An application of the reasoned action theory. Psychol. Market. 2000, 17, 449–468. [Google Scholar] [CrossRef]
- Claudy, M.C.; Peterson, M.; O’driscoll, A. Understanding the attitude-behavior gap for renewable energy systems using behavioral reasoning theory. J. Macromark. 2013, 33, 273–287. [Google Scholar] [CrossRef]
- Lei, Z.; Jingxiao, J.; Ruyang, L. Research on the consumption mode of green electricity in China-Based on theory of reasoned action. Energy Procedia 2011, 5, 938–944. [Google Scholar] [CrossRef]
- Botelho, A.; Pinto, L.M.; Lourenço-Gomes, L.; Valente, M.; Sousa, S. Public perceptions of environmental friendliness of renewable energy power plants. Energy Procedia 2016, 106, 73–86. [Google Scholar] [CrossRef]
- Dallenes, H.; Geerts, R.; Vandermoere, F.; Verbist, G. The Energy Mix: Understanding People’s Diverging Energy Preferences in Belgium. Soc. Sci. 2023, 12, 260. [Google Scholar] [CrossRef]
- De Silva, D.G.; Pownall, R.A. Going green: Does it depend on education, gender or income? Appl. Econ. 2014, 46, 573–586. [Google Scholar] [CrossRef]
- Gaspar, R.; Antunes, D. Energy efficiency and appliance purchases in Europe: Consumer profiles and choice determinants. Energy Policy 2011, 39, 7335–7346. [Google Scholar] [CrossRef]
- Grunert, K.G.; Hieke, S.; Wills, J. Sustainability labels on food products: Consumer motivation, understanding and use. Food Policy 2014, 44, 177–189. [Google Scholar] [CrossRef]
- Hobman, E.V.; Ashworth, P. Public support for energy sources and related technologies: The impact of simple information provision. Energy Policy 2013, 63, 862–869. [Google Scholar] [CrossRef]
- Khanam, T.; Reiner, D.M. Evaluating gaps in knowledge, willingness and heating performance in individual preferences on household energy and climate policy: Evidence from the UK. Renew. Sustain. Energy Rev. 2022, 160, 112229. [Google Scholar] [CrossRef]
- Pagliuca, M.M.; Panarello, D.; Punzo, G. Values, concern, beliefs, and preference for solar energy: A comparative analysis of three European countries. Environ. Impact Assess. Rev. 2022, 93, 106722. [Google Scholar] [CrossRef]
- Schelly, C. Residential solar electricity adoption: What motivates, and what matters? A case study of early adopters. Energy Res. Soc. Sci. 2014, 2, 183–191. [Google Scholar] [CrossRef]
- Chuanmin, S.; Xiaomin, Y.; Yukun, Z.; Chuanxi, S.; Penghui, D. Consumer behaviour on low-carbon agri-food purchase: A carbon labelling experimental study in China. Agric. Econ-Czech. 2014, 60, 133–146. [Google Scholar] [CrossRef]
- Ho, S.S.; Chuah, A.S. Why support nuclear energy? The roles of citizen knowledge, trust, media use, and perceptions across five Southeast Asian countries. Energy Res. Soc. Sci. 2021, 79, 102155. [Google Scholar] [CrossRef]
- Jia, J.J.; Xu, J.H.; Fan, Y. Public acceptance of household energy-saving measures in Beijing: Heterogeneous preferences and policy implications. Energy Policy 2018, 113, 487–499. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.Y.; Lee, J. Do people really want renewable energy? Who wants renewable energy? Discrete choice model of reference-dependent preference in South Korea. Energy Policy 2018, 120, 761–770. [Google Scholar] [CrossRef]
- Mbaka, C.K.; Gikonyo, J.; Kisaka, O.M. Households’ energy preference and consumption intensity in Kenya. Energy Sustain. Soc. 2019, 9, 20. [Google Scholar] [CrossRef]
- Dolšak, J.; Hrovatin, N.; Zorić, J. Analysing consumer preferences, characteristics, and behaviour to identify energy-efficient consumers. Sustainability 2020, 12, 9870. [Google Scholar] [CrossRef]
- Cotton, D.R.; Miller, W.; Winter, J.; Bailey, I.; Sterling, S. Developing students’ energy literacy in higher education. Int. J. Sustain. High. Educ. 2015, 16, 456–473. [Google Scholar] [CrossRef]
- Allcott, H.; Mullainathan, S. Behavior and energy policy. Science 2010, 327, 1204–1205. [Google Scholar] [CrossRef]
- Kanellakis, M.; Martinopoulos, G.; Zachariadis, T. European energy policy—A review. Energy Policy 2013, 62, 1020–1030. [Google Scholar] [CrossRef]
- Ansolabehere, S.; Konisky, D.M. Public attitudes toward construction of new power plants. Public Opin. Q. 2009, 73, 566–577. [Google Scholar] [CrossRef]
- Arikawa, H.; Cao, Y.; Matsumoto, S. Attitudes toward nuclear power and energy-saving behavior among Japanese households. Energy Res. Soc. Sci. 2014, 2, 12–20. [Google Scholar] [CrossRef]
- Briguglio, M.; Formosa, G. When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights. Energy Policy 2017, 108, 154–162. [Google Scholar] [CrossRef]
- Choma, B.L.; Hanoch, Y.; Currie, S. Attitudes toward hydraulic fracturing: The opposing forces of political conservatism and basic knowledge about fracking. Glob. Environ. Chang. 2016, 38, 108–117. [Google Scholar] [CrossRef]
- Clulow, Z.; Ferguson, M.; Ashworth, P.; Reiner, D. Comparing public attitudes towards energy technologies in Australia and the UK: The role of political ideology. Glob. Environ. Chang. 2021, 70, 102327. [Google Scholar] [CrossRef]
- Costa-Font, J.; Rudisill, C.; Mossialos, E. Attitudes as an expression of knowledge and “political anchoring”: The case of nuclear power in the United Kingdom. Risk Anal. 2008, 28, 1273–1288. [Google Scholar] [CrossRef]
- Ruotsalainen, J.; Karjalainen, J.; Child, M.; Heinonen, S. Culture, values, lifestyles, and power in energy futures: A critical peer-to-peer vision for renewable energy. Energy Res. Soc. Sci. 2017, 34, 231–239. [Google Scholar] [CrossRef]
- Kosenius, A.K.; Ollikainen, M. Valuation of environmental and societal trade-offs of renewable energy sources. Energy Policy 2013, 62, 1148–1156. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Ali, S.; Khan, Z. Eco-innovation and energy productivity: New determinants of renewable energy consumption. J. Environ. Manag. 2020, 271, 111028. [Google Scholar] [CrossRef] [PubMed]
- Sardianou, E.; Genoudi, P. Which factors affect the willingness of consumers to adopt renewable energies? Renew. Energy 2013, 57, 1–4. [Google Scholar] [CrossRef]
- Sundström, A.; McCright, A.M. Women and nuclear energy: Examining the gender divide in opposition to nuclear power among Swedish citizens and politicians. Energy Res. Soc. Sci. 2016, 11, 29–39. [Google Scholar] [CrossRef]
- Connor, M.; Siegrist, M. Factors influencing people’s acceptance of gene technology: The role of knowledge, health expectations, naturalness, and social trust. Sci. Commun. 2010, 32, 514–538. [Google Scholar] [CrossRef]
- Costa, D.; Pereira, V.; Góis, J.; Danko, A.; Fiúza, A. Understanding public perception of hydraulic fracturing: A case study in Spain. J. Environ. Manag. 2017, 204, 551–562. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, W.; Kim, M. An international comparative analysis of public acceptance of nuclear energy. Energy Policy 2014, 66, 475–483. [Google Scholar] [CrossRef]
- Vainio, A.; Paloniemi, R.; Varho, V. Weighing the risks of nuclear energy and climate change: Trust in different information sources, perceived risks, and willingness to pay for alternatives to nuclear power. Risk. Anal. 2017, 37, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Clar, C.; Prutsch, A.; Steurer, R. Barriers and guidelines for public policies on climate change adaptation: A missed opportunity of scientific knowledge-brokerage. In Natural Resources Forum; Wiley: Hoboken, NJ, USA, 2013; Volume 37, pp. 1–18. [Google Scholar]
- King, K.; Palmer, R.; Hayman, R. Bridging research and policy on education, training and their enabling environments. J. Int. Dev. J. Dev. Stud. Assoc. 2005, 17, 803–817. [Google Scholar] [CrossRef]
- Trench, B.; Miller, S. Policies and practices in supporting scientists’ public communication through training. Sci. Public Policy 2012, 39, 722–731. [Google Scholar] [CrossRef]
- Commission of the European Communities. Action Plan for Energy Efficiency: Realising the Potential. COM (2006) 545 Final, Brussels 19.10.2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A52006DC0545 (accessed on 1 August 2024).
- FEE. Key Information Related to Energy Education. European Commission, Directorate-General for Energy and Transport. 2008. Available online: www.managenergy.net/education.html (accessed on 1 August 2024).
- FEEDU. Educational Resources, Force for Energy by Children through Education Project, Intelligent Energy Europe Program. 2007. Available online: https://energy.ec.europa.eu/index_en (accessed on 1 August 2024).
- Kids4Future. Kids4Future Project Website, Intelligent Energy Europe Program. 2008. Available online: https://www.seea.government.bg/en/project-en/105-projects-en/closed-projects-en/9595-kids4future-en (accessed on 1 August 2024).
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; Working Paper No. 3914; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Cutcu, I.; Ozkok, Y.; Golpek, F. Environment, education, and economy nexus: Evidence from selected EU countries. Environ. Sci. Pollut. Res. 2023, 30, 7474–7497. [Google Scholar] [CrossRef] [PubMed]
- Özbay, F.; Duyar, I. Exploring the role of education on environmental quality and renewable energy: Do education levels really matter? Curr. Res. Environ. Sustain. 2022, 4, 100185. [Google Scholar] [CrossRef]
- Davies, P. What is evidence-based education? Br. J. Educ. Stud. 1999, 47, 108–121. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Lambert, K.F.; Chapin III, F.S.; Nowak, D.J.; Spies, T.A.; Swanson, F.J.; David, B.K.; Clarisse, M.H. Science and society: The role of long-term studies in environmental stewardship. Bioscience 2012, 62, 354–366. [Google Scholar] [CrossRef]
- Solesbury, W. Evidence Based Policy: Whence It Came and Where It’s Going; ESRC UK Centre for Evidence Based Policy and Practice: London, UK, 2001. [Google Scholar]
- Strassheim, H.; Kettunen, P. When does evidence-based policy turn into policy-based evidence? Configurations, contexts and mechanisms. Evid. Policy 2014, 10, 259–277. [Google Scholar] [CrossRef]
- Zografakis, N.; Menegaki, A.N.; Tsagarakis, K.P. Effective education for energy efficiency. Energy Policy 2008, 36, 3226–3232. [Google Scholar] [CrossRef]
- Bishop, B.J.; Vicary, D.A.; Browne, A.L.; Guard, N. Public policy, participation and the third position: The implication of engaging communities on their own terms. Am. J. Community Psychol. 2009, 43, 111–121. [Google Scholar] [CrossRef]
- Schot, J.; Geels, F.W. Niches in evolutionary theories of technical change: A critical survey of the literature. J. Evol. Econ. 2007, 17, 605–622. [Google Scholar] [CrossRef]
- Sorrell, S. Improving the evidence base for energy policy: The role of systematic reviews. Energy Policy 2007, 35, 1858–1871. [Google Scholar] [CrossRef]
- Newborough, M.; Probert, S.D.; Page, P.A. Energy education in the UK Problems and perspectives. Energy Policy 1991, 19, 659–665. [Google Scholar] [CrossRef]
- Dias, R.A.; de Paula, M.R.; Rizol, P.M.S.R.; Matelli, J.A.; de Mattos, C.R.; Balestieri, J.A.P. Energy education: Reflections over the last fifteen years. Renew. Sustain. Energy Rev. 2021, 141, 110845. [Google Scholar] [CrossRef]
- Hasanah, A.; Sahlani, L.; Zuhri, M.T.; Kholifah, N.; Nurtanto, M. A systematic review of energy literacy programs at primary and middle schools. Pegem J. Educ. Instr. 2023, 13, 145–155. [Google Scholar]
- Motevalli, S.; Saffari, N.; Michael, M.T.A.; Abadi, F.H. Enculturation, Education and Sustainable Development: Understanding the Impact of Culture and Education on Climate Change. Int. Educ. Stud. 2022, 15, 31–41. [Google Scholar] [CrossRef]
- Cappelen, A.; List, J.; Samek, A.; Tungodden, B. The effect of early-childhood education on social preferences. J. Political Econ. 2020, 128, 2739–2758. [Google Scholar] [CrossRef] [PubMed]
- Aruta, J.J.B.R. Science literacy promotes energy conservation behaviors in Filipino youth via climate change knowledge efficacy: Evidence from PISA 2018. Aust. J. Environ. Educ. 2023, 39, 55–66. [Google Scholar] [CrossRef]
- Newborough, M.; Probert, D. Purposeful energy education in the UK. Appl. Energy 1994, 48, 243–259. [Google Scholar] [CrossRef]
- Stern, P.C. What psychology knows about energy conservation. Am. Psychol. 1992, 47, 1224. [Google Scholar] [CrossRef]
- Bauman, P.C.; Petrock, E.M. Energy Education: Why, What and How? Report No. 181-1; Education Commission of the States: Denver, CO, USA, 1981. [Google Scholar]
- Petrock, E. Energy Education: A Policy Development Handbook; Report No. 142; State Energy Education Project, Education Commission of the State: Denver, CO, USA, 1981. [Google Scholar]
- Akitsu, Y.; Ishihara, K.N.; Okumura, H.; Yamasue, E. Investigating Energy Literacy and Its Structural Model for Lower Secondary Students in Japan. Int. J. Environ. Sci. Educ. 2017, 12, 1067–1095. [Google Scholar]
- DeWaters, J.E.; Powers, S.E. Energy literacy of secondary students in New York State (USA): A measure of knowledge, affect, and behavior. Energy Policy 2011, 39, 1699–1710. [Google Scholar] [CrossRef]
- Lee, L.S.; Chang, L.T.; Lai, C.C.; Guu, Y.H.; Lin, K.Y. Energy literacy of vocational students in Taiwan. Environ. Educ. Res. 2017, 23, 855–873. [Google Scholar] [CrossRef]
- Lee, Y.F.; Nguyen, H.B.N.; Sung, H.T. Energy literacy of high school students in Vietnam and determinants of their energy-saving behavior. Environ. Educ. Res. 2022, 28, 907–924. [Google Scholar] [CrossRef]
- Alqallaf, N.; Ghannam, R. Immersive learning in photovoltaic energy education: A comprehensive review of virtual reality applications. Solar 2024, 4, 136–161. [Google Scholar] [CrossRef]
- AlQallaf, N.; Chen, X.; Ge, Y.; Khan, A.; Zoha, A.; Hussain, S.; Ghannam, R. Teaching solar energy systems design using game-based virtual reality. In Proceedings of the 2022 IEEE Global Engineering Education Conference (EDUCON), Tunis, Tunisia, 28–31 March 2022; pp. 956–960. [Google Scholar]
- Brigham, J.K.; Imbertson, P. Energy-Transition Education in a Power Systems Journey: Making the Invisible Visible and Actionable. Am. J. Econ. Soc. 2020, 79, 981–1022. [Google Scholar] [CrossRef]
- Zyadin, A. Prospects for renewable energy education (REE) in elevating youth energy and environmental awareness in Jordan. Diss. For. 2015, 207, 39. [Google Scholar] [CrossRef]
- Caton, E.; Brewer, C.; Brown, F. Building teacher-scientist partnerships: Teaching about energy through inquiry. Sch. Sci. Math. 2000, 100, 7–15. [Google Scholar] [CrossRef]
- Zeichner, K.; Liston, D. Teaching student teachers to reflect. Harv. Educ. Rev. 1987, 57, 23–49. [Google Scholar] [CrossRef]
- Dincer, I.; Rosen, M.A. Energy, environment and sustainable development. Appl. Energy 1999, 64, 427–440. [Google Scholar] [CrossRef]
- Ibekwe, K.I.; Umoh, A.A.; Nwokediegwu, Z.Q.S.; Etukudoh, E.A.; Ilojianya, V.I.; Adefemi, A. Energy efficiency in industrial sectors: A review of technologies and policy measures. Eng. Sci. Technol. J. 2024, 5, 169–184. [Google Scholar] [CrossRef]
- Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Higde, E. An Interdisciplinary Renewable Energy Education: Investigating the Influence of STEM Activities on Perception, Attitude, and Behavior. J. Sci. Learn. 2022, 5, 373–385. [Google Scholar] [CrossRef]
- Wang, J.C.; Wang, T.H. Learning effectiveness of energy education in junior high schools: Implementation of action research and the predict–observe–explain model to STEM course. Heliyon 2023, 9, e14058. [Google Scholar] [CrossRef]
- Yildirim, B.; Selvi, M. Examination of the effects of STEM education integratedas a part of science technology society and environmentcourses. J. Hum. Sci. 2016, 13, 3684–3695. [Google Scholar]
- Janda, K.B.; Parag, Y. A middle-out approach for improving energy performance in buildings. Build. Res. Inf. 2013, 41, 39–50. [Google Scholar] [CrossRef]
- Sheppard, S.R. Making climate change visible: A critical role for landscape professionals. Landsc. Urban Plan. 2015, 142, 95–105. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Bartoletti, R.; Faccioli, F. Public engagement, local policies, and citizens’ participation: An Italian case study of civic collaboration. Soc. Media + Soc. 2016, 2, 2056305116662187. [Google Scholar] [CrossRef]
- Hungerford, H.R.; Volk, T.L. Changing learner behavior through environmental education. J. Environ. Educ. 1990, 21, 8–21. [Google Scholar] [CrossRef]
- Boudet, H.S. Public perceptions of and responses to new energy technologies. Nat. Energy 2019, 4, 446–455. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Alexander, J.; Ioannidis, A. Leveraging knowledge, learning, and innovation in forming strategic government–university–industry (GUI) R&D partnerships in the US, Germany, and France. Technovation 2000, 20, 477–488. [Google Scholar]
- Lam, A. Knowledge networks and careers: Academic scientists in industry–university links. J. Manag. Stud. 2007, 44, 993–1016. [Google Scholar] [CrossRef]
- Kocoglu, I.; Imamoglu, S.Z.; Ince, H.; Keskin, H. Learning, R&D and manufacturing capabilities as determinants of technological learning: Enhancing innovation and firm performance. Procedia Soc. Behav. Sci. 2012, 58, 842–852. [Google Scholar]
- Sagar, A.D.; Van Der Zwaan, B. Technological innovation in the energy sector: R&D, deployment, and learning-by-doing. Energy Policy 2006, 34, 2601–2608. [Google Scholar]
- Carayannis, E.G.; Popescu, D.; Sipp, C.; Stewart, M. Technological learning for entrepreneurial development (TL4ED) in the knowledge economy (KE): Case studies and lessons learned. Technovation 2006, 26, 419–443. [Google Scholar] [CrossRef]
- Langerak, F.; Hultink, E.J.; Robben, H.S. The impact of market orientation, product advantage, and launch proficiency on new product performance and organizational performance. J. Prod. Innov. Manag. 2004, 21, 79–94. [Google Scholar] [CrossRef]
- Newbert, S.L.; Gopalakrishnan, S.; Kirchhoff, B.A. Looking beyond resources: Exploring the importance of entrepreneurship to firm-level competitive advantage in technologically intensive industries. Technovation 2008, 28, 6–19. [Google Scholar] [CrossRef]
- Bergek, A.; Jacobsson, S.; Hekkert, M.; Smith, K. Functionality of innovation systems as a rationale for and guide to innovation policy. In The Theory and Practice of Innovation Policy; Edward Elgar Publishing: Cheltenham, UK, 2010. [Google Scholar]
- Fischer, M.M. Innovation, knowledge creation and systems of innovation. Ann. Reg. Sci. 2001, 35, 199–216. [Google Scholar] [CrossRef]
- Geller, H. Energy Revolution: Policies for a Sustainable Future; Island Pres: Washington, DC, USA, 2012. [Google Scholar]
- Warnke, P.; Koschatzky, K.; Dönitz, E.; Zenker, A.; Stahlecker, T.; Som, O.; Kerstin, C.; Güth, S. Opening Up the Innovation System Framework Towards New Actors and Institutions; Fraunhofer ISI Discussion Papers-Innovation Systems and Policy Analysis, (No. 49); Fraunhofer-Institut für System- und Innovationsforschung ISI: Karlsruhe, Germany, 2016. [Google Scholar]
- Liu, H.; Liang, D. A review of clean energy innovation and technology transfer in China. Renew. Sustain. Energy Rev. 2013, 18, 486–498. [Google Scholar] [CrossRef]
- Nemet, G.F. Demand-pull, technology-push, and government-led incentives for non-incremental technical change. Res. Policy 2009, 38, 700–709. [Google Scholar] [CrossRef]
- Roy, I. Technology Push, Demand Pull, Networks, and Public Policy: What Drives and Facilitates Innovation? In Science, Technology and Innovation Ecosystem: An Indian and Global Perspective; Springer Nature: Singapore, 2024; pp. 133–147. [Google Scholar]
- Baumann, H.; Boons, F.; Bragd, A. Mapping the green product development field: Engineering, policy and business perspectives. J. Clean. Prod. 2002, 10, 409–425. [Google Scholar] [CrossRef]
- Pittaway, L.; Robertson, M.; Munir, K.; Denyer, D.; Neely, A. Networking and innovation: A systematic review of the evidence. Int. J. Manag. Rev. 2004, 5, 137–168. [Google Scholar] [CrossRef]
- Godin, B.; Lane, J.P. Pushes and pulls: Hi (S) tory of the demand pull model of innovation. Sci. Technol. Hum. Values 2013, 38, 621–654. [Google Scholar] [CrossRef]
- Hannon, M.J.; Foxon, T.J.; Gale, W.F. ‘Demand pull’government policies to support Product-Service System activity: The case of Energy Service Companies (ESCos) in the UK. J. Clean. Prod. 2015, 108, 900–915. [Google Scholar] [CrossRef]
- Hötte, K. Demand-pull, technology-push, and the direction of technological change. Res. Policy 2023, 52, 104740. [Google Scholar] [CrossRef]
- Dinica, V. Support systems for the diffusion of renewable energy technologies—An investor perspective. Energy Policy 2006, 34, 461–480. [Google Scholar] [CrossRef]
- Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development–A discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. [Google Scholar] [CrossRef]
- Weber, L. Some reflections on barriers to the efficient use of energy. Energy Policy 1997, 25, 833–835. [Google Scholar] [CrossRef]
- IqtiyaniIlham, N.; Hasanuzzaman, M.; Hosenuzzaman, M. European smart grid prospects, policies, and challenges. Renew. Sustain. Energy Rev. 2017, 67, 776–790. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Ma, Z.; Wang, C.; Campillo, J.; Zhang, Q.; Wallin, F.; Guo, J. A comprehensive review of smart energy meters in intelligent energy networks. IEEE Internet Things J. 2015, 3, 464–479. [Google Scholar] [CrossRef]
- Darby, S. Smart metering: What potential for householder engagement? Build. Res. Inform. 2010, 38, 442–457. [Google Scholar] [CrossRef]
- Eissa, M.M. Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol. Appl. Energy 2019, 236, 273–292. [Google Scholar] [CrossRef]
- Boie, I.; Fernandes, C.; Frías, P.; Klobasa, M. Efficient strategies for the integration of renewable energy into future energy infrastructures in Europe–An analysis based on transnational modeling and case studies for nine European regions. Energy Policy 2014, 67, 170–185. [Google Scholar] [CrossRef]
- Farhangi, H. Microgrids Smart: Lessons from Campus Microgrid. Design and Implementation; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- European Smart Grids Technology Platform. Vision and Strategy for Europe’s Electricity Networks of the Future; Technical Report; European Smart Grids Technology Platform, 2006; Available online: https://op.europa.eu/en/publication-detail/-/publication/a2ea8d86-7216-444d-8ef5-2d789fa890fc/language-en (accessed on 3 August 2024).
- Gangale, F.; Mengolini, A.; Onyeji, I. Consumer engagement: An insight from smart grid projects in Europe. Energy Policy 2013, 60, 621–628. [Google Scholar] [CrossRef]
- Giordano, V.; Meletiou, A.; Covrig, C.; Mengolini, A.; Ardelean, M.; Fulli, G.; Sanchez Jimenez, M.; Filiou, C. Smart Grid Projects in Europe: Lessons Learned and Current Developments; JRC Reference Reports; Publications Office of the European Union, 2011; Available online: https://op.europa.eu/en/publication-detail/-/publication/8fa38f9a-f163-496d-bd98-3ae1dfa96861/language-en (accessed on 3 August 2024).
- Sharma, R.; Monteiro, S. Creating social change: The ultimate goal of education for sustainability. Int. J. Soc. Sci. Humanit. 2016, 6, 72–76. [Google Scholar] [CrossRef]
- Lennon, B.; Dunphy, N.P.; Sanvicente, E. Community acceptability and the energy transition: A citizens’ perspective. Energy Sustain. Soc. 2019, 9, 1–18. [Google Scholar] [CrossRef]
- Ferguson, C.D. Nuclear Energy: What Everyone Needs to Know; Oxford University Press: Oxford, NY, USA, 2011. [Google Scholar]
- Lee, T.J.; Lee, K.H.; Oh, K.B. Strategic environments for nuclear energy innovation in the next half century. Prog. Nucl. Energy 2007, 49, 397–408. [Google Scholar] [CrossRef]
- Spence, A.; Poortinga, W.; Pidgeon, N.; Lorenzoni, I. Public perceptions of energy choices: The influence of beliefs about climate change and the environment. Energy Environ. 2010, 21, 385–407. [Google Scholar] [CrossRef]
- Innes, J.E.; Booher, D.E. Reframing public participation: Strategies for the 21st century. Plan. Theory Pract. 2004, 5, 419–436. [Google Scholar] [CrossRef]
- Spyke, N.P. Public participation in environmental decisionmaking at the New Millenium: Structuring new spheres of public influence. BC Envtl. Aff. L. Rev. 1998, 26, 263–313. [Google Scholar]
- Finucane, M.L.; Holup, J.L. Risk as value: Combining affect and analysis in risk judgments. J. Risk Res. 2006, 9, 141–164. [Google Scholar] [CrossRef]
- Fischhoff, B.; Lichtenstein, S.; Slovic, P. Perception and Acceptability of Risk from Energy Systems; Erlbaum: Mahwah, NJ, USA, 1981. [Google Scholar]
- Batel, S. Research on the social acceptance of renewable energy technologies: Past, present and future. Energy Res. Soc. Sci. 2020, 68, 101544. [Google Scholar] [CrossRef]
- Vaganov, P.A.; Yim, M.S. Societal risk communication and nuclear waste disposal. Int. J. Risk Assess. Manag. 2000, 1, 20–41. [Google Scholar] [CrossRef]
- Cruz, M.R.; Fitiwi, D.Z.; Santos, S.F.; Catalão, J.P. A comprehensive survey of flexibility options for supporting the low-carbon energy future. Renew. Sustain. Energy Rev. 2018, 97, 338–353. [Google Scholar] [CrossRef]
- Da Graça Carvalho, M.; Bonifacio, M.; Dechamps, P. Building a low carbon society. Energy 2011, 36, 1842–1847. [Google Scholar] [CrossRef]
- Nieto, J.; Carpintero, Ó.; Miguel, L.J.; De Blas, I. Macroeconomic modelling under energy constraints: Global low carbon transition scenarios. Energy Policy 2020, 137, 111090. [Google Scholar] [CrossRef]
- Parvin, K.; Hannan, M.A.; Mun, L.H.; Lipu, M.H.; Abdolrasol, M.G.; Ker, P.J.; Muttaqi, K.M.; Dong, Z.Y. The future energy internet for utility energy service and demand-side management in smart grid: Current practices, challenges and future directions. Sustain. Energy Technol. Assess. 2022, 53, 102648. [Google Scholar] [CrossRef]
- Smale, R.; Van Vliet, B.; Spaargaren, G. When social practices meet smart grids: Flexibility, grid management, and domestic consumption in The Netherlands. Energy Res. Soc. Sci. 2017, 34, 132–140. [Google Scholar] [CrossRef]
- Hoggett, R.; Eyre, N.; Keay, M. Demand and energy security. In New Challenges in Energy Security: The UK in a Multipolar World; Palgrave Macmillan: London, UK, 2013; pp. 92–115. [Google Scholar]
- Pellizzone, A.; Allansdottir, A.; De Franco, R.; Muttoni, G.; Manzella, A. Geothermal energy and the public: A case study on deliberative citizens’ engagement in central Italy. Energy Policy 2017, 101, 561–570. [Google Scholar] [CrossRef]
- Bennett, A. Culture and Everyday Life; SAGE Publications Ltd.: London, UK, 2005. [Google Scholar]
- Genus, A.; Iskandarova, M.; Goggins, G.; Fahy, F.; Laakso, S. Alternative energy imaginaries: Implications for energy research, policy integration and the transformation of energy systems. Energy Res. Soc. Sci. 2021, 73, 101898. [Google Scholar] [CrossRef]
- Rau, H. Minding the mundane: Everyday practices as central pillar of sustainability thinking and research. In Palgrave Studies in Environmental Sociology and Policy; Springer: Berlin/Heidelberg, Germany, 2018; pp. 207–232. [Google Scholar]
- Vassileva, J. Toward social learning environments. IEEE Trans. Learn. Technol. 2008, 1, 199–214. [Google Scholar] [CrossRef]
- Wüstenhagen, R.; Wolsink, M.; Bürer, M.J. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 2007, 35, 2683–2691. [Google Scholar] [CrossRef]
- Zoellner, J.; Schweizer-Ries, P.; Wemheuer, C. Public acceptance of renewable energies: Results from case studies in Germany. Energy Policy 2008, 36, 4136–4141. [Google Scholar] [CrossRef]
- Smith, A.L. Equalizing Power: Ireland and the Rapid Transition to a Sustainable Energy Future for Europe. Ph.D. Thesis, University of Delaware, Newark, DE, USA, 2020. [Google Scholar]
- Stewart, D. Smart Growth: From Rhetoric to Reality in Irish Urban Planning 1997–2007. Ph.D. Thesis, Technological University Dublin, Dublin, Ireland, 2010. [Google Scholar]
- Jellema, J.; Mulder, H.A. Public engagement in energy research. Energies 2016, 9, 125. [Google Scholar] [CrossRef]
- Kemp, R.; Schot, J.; Hoogma, R. Regime shifts to sustainability through processes of niche formation: The approach of strategic niche management. Technol. Anal. Strategy Manag. 1998, 10, 175–198. [Google Scholar] [CrossRef]
- Slotterback, C.S. Public involvement in transportation project planning and design. J. Archit. Plan. Res. 2010, 27, 144–162. [Google Scholar]
- Koirala, B.P.; Koliou, E.; Friege, J.; Hakvoort, R.A.; Herder, P.M. Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renew. Sustain. Energy Rev. 2016, 56, 722–744. [Google Scholar] [CrossRef]
- Seyfang, G.; Hielscher, S.; Hargreaves, T.; Martiskainen, M.; Smith, A. A grassroots sustainable energy niche? Reflections on community energy in the UK. Environ. Innov. Soc. Trans. 2014, 13, 21–44. [Google Scholar] [CrossRef]
- Van Der Schoor, T.; Scholtens, B. Power to the people: Local community initiatives and the transition to sustainable energy. Renew. Sustain. Energy Rev. 2015, 43, 666–675. [Google Scholar] [CrossRef]
- Budiman, I. Enabling community participation for social innovation in the energy sector. Indones. J. Appl. Phys. 2018, 1, 21–31. [Google Scholar] [CrossRef]
- Candelise, C.; Ruggieri, G. Status and evolution of the community energy sector in Italy. Energies 2020, 13, 1888. [Google Scholar] [CrossRef]
- Gui, E.M.; MacGill, I. Typology of future clean energy communities: An exploratory structure, opportunities, and challenges. Energy Res. Soc. Sci. 2018, 35, 94–107. [Google Scholar] [CrossRef]
- Hoffman, S.M.; Fudge, S.; Pawlisch, L.; High-Pippert, A.; Peters, M.; Haskard, J. Public values and community energy: Lessons from the US and UK. Sustainability 2013, 5, 1747–1763. [Google Scholar] [CrossRef]
- Karami, M.; Madlener, R. Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences. Appl. Energy 2022, 306, 118053. [Google Scholar] [CrossRef]
- Radtke, J.; Drewing, E.; Eichenauer, E.; Holstenkamp, L.; Kamlage, J.H.; Mey, F.; Warode, J.; Wegener, J. Energy transition and civic engagement. In The Role of Public Participation in Energy Transitions; Academic Press: Cambridge, MA, USA, 2020; pp. 81–91. [Google Scholar]
- Romero-Rubio, C.; De Andrés Díaz, J.R. Sustainable energy communities: A study contrasting Spain and Germany. Energy Policy 2015, 85, 397–409. [Google Scholar] [CrossRef]
- Arshad, R.; Zahoor, S.; Shah, M.A.; Wahid, A.; Yu, H. Green IoT: An investigation on energy saving practices for 2020 and beyond. IEEE Access 2017, 5, 15667–15681. [Google Scholar] [CrossRef]
- Mohd Aman, A.H.; Shaari, N.; Ibrahim, R. Internet of things energy system: Smart applications, technology advancement, and open issues. Int. J. Energy Res. 2021, 45, 8389–8419. [Google Scholar] [CrossRef]
- Mollah, M.B.; Zeadally, S.; Azad, M.A.K. Emerging wireless technologies for Internet of Things applications: Opportunities and challenges. In Encyclopedia of Wireless Networks; Springer: Berlin/Heidelberg, Germany, 2020; pp. 390–400. [Google Scholar]
- Pradhan, D.; Priyanka, K.C. A comprehensive study of renewable energy management for 5G green communications: Energy saving techniques and its optimization. J. Seybold Rep. ISSN 2020, 1533, 9211. [Google Scholar]
- Shuhaiber, A.; Mashal, I.; Alsaryrah, O. Smart homes as an IoT application: Predicting attitudes and behaviours. In Proceedings of the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab Emirates, 3–7 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Paverd, A.; Martin, A.; Brown, I. Privacy-enhanced bi-directional communication in the smart grid using trusted computing. In Proceedings of the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, Italy, 3–6 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 872–877. [Google Scholar]
- Martiskainen, M.; Coburn, J. The role of information and communication technologies (ICTs) in household energy consumption—Prospects for the UK. Energy Effic. 2011, 4, 209–221. [Google Scholar] [CrossRef]
- Devine-Wright, P.; Devine-Wright, H. Public engagement with community-based energy service provision: An exploratory case study. Energy Environ. 2009, 20, 303–317. [Google Scholar] [CrossRef]
- Knox, H. Making climate public: Energy monitoring and smart grids as political participation. J. Br. Acad. 2021, 9, 183–204. [Google Scholar] [CrossRef]
- Massey, B.; Verma, P.; Khadem, S. Citizen engagement as a business model for smart energy communities. In Proceedings of the 2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), Rome, Italy, 24–26 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Hu, J.L.; Bui, N.H.B. The Future Design of Smart Energy Systems with Energy Flexumers: A Constructive Literature Review. Energies 2024, 17, 2039. [Google Scholar] [CrossRef]
- Kotilainen, K. Energy prosumers’ role in the sustainable energy system. In Affordable and Clean Energy; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–14. [Google Scholar]
- Olkkonen, L.; Korjonen-Kuusipuro, K.; Grönberg, I. Redefining a stakeholder relation: Finnish energy “prosumers” as co-producers. Environ. Innov. Soc. Trans. 2017, 24, 57–66. [Google Scholar] [CrossRef]
- Fichera, A.; Pluchino, A.; Volpe, R. From self-consumption to decentralized distribution among prosumers: A model including technological, operational and spatial issues. Energy Conv. Manag. 2020, 217, 112932. [Google Scholar] [CrossRef]
- Kühnbach, M.; Bekk, A.; Weidlich, A. Towards improved prosumer participation: Electricity trading in local markets. Energy 2022, 239, 122445. [Google Scholar] [CrossRef]
- Mir-Artigues, P.; del Río, P.; Gil-Estallo, A. Regulation of photovoltaic prosumer plants: An analysis through a dynamic expression of the avoided cost. Energy Rep. 2023, 9, 2002–2015. [Google Scholar] [CrossRef]
- Szulecki, K.; Ancygier, A.; Szwed, D. Energy Democratization? Societal Aspects of De-Carbonization in the German and Polish Energy Sectors; Elsevier: Amsterdam, The Netherlands, 2015; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2575695 (accessed on 3 August 2024).
- Szulecki, K.; Overland, I. Energy democracy as a process, an outcome and a goal: A conceptual review. Energy Res. Soc. Sci. 2020, 69, 101768. [Google Scholar] [CrossRef]
- Knox-Hayes, J.; Brown, M.A.; Sovacool, B.K.; Wang, Y. Understanding attitudes toward energy security: Results of a cross-national survey. Glob. Environ. Change-Hum. Policy Dimens. 2013, 23, 609–622. [Google Scholar] [CrossRef]
- André, P.; Enserink, B.; Conner, D.; Croal, P. Public Participation International Best Practice Principles; IAIA: Fargo, ND, USA, 2006. [Google Scholar]
- Chávez, B.V.; Bernal, A.S. Planning hydroelectric power plants with the public: A case of organizational and social learning in Mexico. Impact Assess. Proj. Apprais. 2008, 26, 163–176. [Google Scholar] [CrossRef]
- Del Furia, L.; Wallace-Jones, J. The effectiveness of provisions and quality of practices concerning public participation in EIA in Italy. Environ. Impact Assess. Rev. 2000, 20, 457–479. [Google Scholar] [CrossRef]
- Lockie, N.M.; Van Lanen, R.J. Impact of the Supplemental Instruction Experience on Science SI Leaders. J. Dev. Educ. 2008, 31, 2. [Google Scholar]
- Vanclay, F. International principles for social impact assessment. Impact Assess. Proj. Apprais. 2003, 21, 5–12. [Google Scholar] [CrossRef]
- Bănică, B.; Patrício, L.; Miguéis, V. Citizen engagement with sustainable energy solutions-understanding the influence of perceived value on engagement behaviors. Energy Policy 2024, 184, 113895. [Google Scholar] [CrossRef]
- Huttunen, S.; Ojanen, M.; Ott, A.; Saarikoski, H. What about citizens? A literature review of citizen engagement in sustainability transitions research. Energy Res. Soc. Sci. 2022, 91, 102714. [Google Scholar] [CrossRef]
- Kwok, S.H.; Gao, S. Attitude towards knowledge sharing behavior. J. Comput. Inf. Syst. 2005, 46, 45–51. [Google Scholar]
- Monroe, M.C. Two avenues for encouraging conservation behaviors. Hum. Ecol. Rev. 2003, 10, 113–125. [Google Scholar]
- Ploštajner, Z.; Mendeš, I. Citizens participation. In How to Improve Development on Local Level; Friedrich Ebert Stiftung: Zagreb, Croatia, 2005; pp. 97–113. Available online: https://library.fes.de/pdf-files/bueros/kroatien/50250/06.pdf (accessed on 3 August 2024).
- Nowotny, J.; Dodson, J.; Fiechter, S.; Gür, T.M.; Kennedy, B.; Macyk, W.; Bak, T.; Sigmund, W.; Yamawaki, M.; Rahman, K.A. Towards global sustainability: Education on environmentally clean energy technologies. Renew. Sustain. Energy Rev. 2018, 81, 2541–2551. [Google Scholar] [CrossRef]
- Chapman, A.; Shigetomi, Y.; Karmaker, S.C.; Saha, B.B.; Huff, K.; Brooks, C.; Stubbins, J. The cultural dynamics of energy: The impact of lived experience, preference and demographics on future energy policy in the United States. Energy Res. Soc. Sci. 2021, 80, 102231. [Google Scholar] [CrossRef]
- Kammermann, L.; Angst, M. The effect of beliefs on policy instrument preferences: The case of Swiss renewable energy policy. Policy Stud. J. 2021, 49, 757–784. [Google Scholar] [CrossRef]
- Santillán, O.S.; Cedano, K.G. Energy Literacy: A Systematic Review of the Scientific Literature. Energies 2023, 16, 7235. [Google Scholar] [CrossRef]
- DeWaters, J.; Powers, S. Establishing measurement criteria for an energy literacy questionnaire. J. Environ. Educ. 2013, 44, 38–55. [Google Scholar] [CrossRef]
- Martins, A.; Madaleno, M.; Dias, M.F. Energy Literacy: Does education field matter? In Proceedings of the TEEM’19: Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 19–21 October 2019; pp. 494–499. [Google Scholar]
- Boz, V.; Arı, A.G. Teachers Views About Energy Education and Energy Literacy. IBAD Sos. Bilim. Derg. 2021, 11, 93–110. [Google Scholar] [CrossRef]
- Liarakou, G.; Gavrilakis, C.; Flouri, E. Secondary school teachers’ knowledge and attitudes towards renewable energy sources. J. Sci. Educ. Technol. 2009, 18, 120–129. [Google Scholar] [CrossRef]
- Kandpal, T.C.; Garg, H.P. Energy education. Appl. Energy 1999, 64, 71–78. [Google Scholar] [CrossRef]
- Akitsu, Y.; Ishihara, K.N. An integrated model approach: Exploring the energy literacy and values of lower secondary students in Japan. Int. J. Educ. Res. 2018, 4, 161–186. [Google Scholar] [CrossRef]
- Mosler, H.J. A systematic approach to behavior change interventions for the water and sanitation sector in developing countries: A conceptual model, a review, and a guideline. Int. J. Environ. Health Res. 2012, 22, 431–449. [Google Scholar] [CrossRef]
- Lee, L.S.; Lee, Y.F.; Altschuld, J.W.; Pan, Y.J. Energy literacy: Evaluating knowledge, affect, and behavior of students in Taiwan. Energy Policy 2015, 76, 98–106. [Google Scholar] [CrossRef]
- Brounen, D.; Kok, N.; Quigley, J.M. Residential Energy Literacy and Capitalization; The European Centre for Corporate Engagement: Maastricht, MD, USA, 2012. [Google Scholar]
- Bertot, J.C.; Jaeger, P.T.; Hansen, D. The impact of polices on government social media usage: Issues, challenges, and recommendations. Gov. Inf. Q. 2012, 29, 30–40. [Google Scholar] [CrossRef]
- Chen, K.L.; Liu, S.Y.; Chen, P.H. Assessing multidimensional energy literacy of secondary students using contextualized assessment. Int. J. Environ. Sci. 2015, 10, 201–218. [Google Scholar]
- Berg, T.B.; Achiam, M.; Poulsen, K.M.; Sanderhoff, L.B.; Tøttrup, A.P. The role and value of out-of-school environments in science education for 21st century skills. In Frontiers in Education; Frontiers Media SA: Lausanne, Switzerland, 2021; Volume 6, p. 674541. [Google Scholar]
- Chapman, A.; Shigetomi, Y.; Karmaker, S.C.; Saha, B.; Brooks, C. Cultural and demographic energy system awareness and preference: Implications for future energy system design in the United States. Energy Econ. 2022, 112, 106141. [Google Scholar] [CrossRef]
- Chaikumbung, M. Institutions and consumer preferences for renewable energy: A meta-regression analysis. Renew. Sustain. Energy Rev. 2021, 146, 111143. [Google Scholar] [CrossRef]
- Fehr, E.; Fischbacher, U. Why social preferences matter–the impact of non-selfish motives on competition, cooperation and incentives. Econ. J. 2002, 112, C1–C33. [Google Scholar]
- List, J.A. The behavioralist meets the market: Measuring social preferences and reputation effects in actual transactions. J. Political Econ. 2006, 114, 1–37. [Google Scholar] [CrossRef]
- Perlaviciute, G.; Steg, L.; Van Der Werff, E. Understanding residential sustainable energy behaviour and policy preferences. In The Cambridge Handbook of Psychology and Economic Behaviour, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018; pp. 516–540. [Google Scholar]
- Chetty, R. Behavioral economics and public policy: A pragmatic perspective. Am. Econ. Rev. 2015, 105, 1–33. [Google Scholar] [CrossRef]
- Dermont, C.; Ingold, K.; Kammermann, L.; Stadelmann-Steffen, I. Bringing the policy making perspective in: A political science approach to social acceptance. Energy Policy 2017, 108, 359–368. [Google Scholar] [CrossRef]
- Peters, B.G.; Jordan, A.; Tosun, J. Over-Reaction and Under-Reaction in Climate Policy: An institutional analysis. J. Environ. Pol. Plan. 2017, 19, 612–624. [Google Scholar] [CrossRef]
- Peters, D.; Axsen, J.; Mallett, A. The role of environmental framing in socio-political acceptance of smart grid: The case of British Columbia, Canada. Renew. Sustain. Energy Rev. 2018, 82, 1939–1951. [Google Scholar] [CrossRef]
- Powell, M.C.; Colin, M. Participatory paradoxes: Facilitating citizen engagement in science and technology from the top-down? Bull. Sci. Technol. Soc. 2009, 29, 325–342. [Google Scholar] [CrossRef]
- Stephenson, J.; Barton, B.; Carrington, G.; Gnoth, D.; Lawson, R.; Thorsnes, P. Energy cultures: A framework for understanding energy behaviours. Energy Policy 2010, 38, 6120–6129. [Google Scholar] [CrossRef]
- Andrews-Speed, P. How may National culture shape public policy? The case of energy policy in China. Energy J. 2022, 43, 257–273. [Google Scholar] [CrossRef]
- Drews, S.; Van den Bergh, J.C. What explains public support for climate policies? A review of empirical and experimental studies. Clim. Policy 2016, 16, 855–876. [Google Scholar] [CrossRef]
- Milfont, T.L.; Sibley, C.G. The big five personality traits and environmental engagement: Associations at the individual and societal level. J. Environ. Psychol. 2012, 32, 187–195. [Google Scholar] [CrossRef]
- Milfont, T.L.; Schultz, P.W. Culture and the natural environment. Curr. Opin. Psychol. 2016, 8, 194–199. [Google Scholar] [CrossRef]
- Stephenson, J.; Barton, B.; Carrington, G.; Doering, A.; Ford, R.; Hopkins, D.; Lawson, R.; McCarthy, A.; Rees, D.; Scott, M.; et al. The energy cultures framework: Exploring the role of norms, practices and material culture in shaping energy behaviour in New Zealand. Energy Res. Soc. Sci. 2015, 7, 117–123. [Google Scholar] [CrossRef]
- Bingham, L.B.; Nabatchi, T.; O’Leary, R. The new governance: Practices and processes for stakeholder and citizen participation in the work of government. Public Adm. Rev. 2005, 65, 547–558. [Google Scholar] [CrossRef]
- Fung, A. Putting the public back into governance: The challenges of citizen participation and its future. Public Adm. Rev. 2015, 75, 513–522. [Google Scholar] [CrossRef]
- Irvin, R.A.; Stansbury, J. Citizen participation in decision making: Is it worth the effort? Public Adm. Rev. 2004, 64, 55–65. [Google Scholar] [CrossRef]
- Cornwall, A. Unpacking ‘Participation’: Models, meanings and practices. Community Dev. J. 2008, 43, 269–283. [Google Scholar] [CrossRef]
- Vivian, J. How safe are ‘social safety nets’? Adjustment and social sector restructuring in developing countries. Eur. J. Dev. Res. 1995, 7, 1–25. [Google Scholar] [CrossRef]
- Hoffman, S.M.; High-Pippert, A. From private lives to collective action: Recruitment and participation incentives for a community energy program. Energy Policy 2010, 38, 7567–7574. [Google Scholar] [CrossRef]
- Stewart, J.M.; Sinclair, A.J. Meaningful public participation in environmental assessment: Perspectives from Canadian participants, proponents, and government. J. Environ. Assess. Policy Manag. 2007, 9, 161–183. [Google Scholar] [CrossRef]
- Thaler, T.; Seebauer, S. Bottom-up citizen initiatives in natural hazard management: Why they appear and what they can do? Environ. Sci. Policy 2019, 94, 101–111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.-L.; Yang, P.-S. Interactive Cycles between Energy Education and Energy Preferences: A Literature Review on Empirical Evidence. Energies 2024, 17, 5092. https://doi.org/10.3390/en17205092
Hu J-L, Yang P-S. Interactive Cycles between Energy Education and Energy Preferences: A Literature Review on Empirical Evidence. Energies. 2024; 17(20):5092. https://doi.org/10.3390/en17205092
Chicago/Turabian StyleHu, Jin-Li, and Po-Sheng Yang. 2024. "Interactive Cycles between Energy Education and Energy Preferences: A Literature Review on Empirical Evidence" Energies 17, no. 20: 5092. https://doi.org/10.3390/en17205092
APA StyleHu, J. -L., & Yang, P. -S. (2024). Interactive Cycles between Energy Education and Energy Preferences: A Literature Review on Empirical Evidence. Energies, 17(20), 5092. https://doi.org/10.3390/en17205092