Effect of Tributyl Citrate as a Cosolvent on the Phase Behavior of Crude Oil during CO2 Injection Process
Abstract
:1. Introduction
2. Experimental Section
2.1. Experimental Materials
2.2. Experimental Apparatus
2.3. Experimental Procedure
2.3.1. Experiment Preparation
2.3.2. Constant Mass Expansion Experiment
2.3.3. Differential Liberation Experiment
2.3.4. Tributyl Citrate Concentration Optimization Experiment
3. Results and Discussion
3.1. Tributyl Citrate Concentration Optimization
3.2. Bubble Point Pressure Variation
3.3. Density Variation
3.4. Changes in Solubility
3.5. Changes in Expansion Coefficient
3.6. Changes in Viscosity
3.7. Changes in Four Components and Carbon Number Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Whorton, L.P.; Brownscombe, E.R.; Dyes, A.B. Method for Producing Oil by Means of Carbon Dioxide. U.S. Patent US2623596A, 30 December 1952. Available online: https://patents.google.com/patent/US2623596A/en (accessed on 8 December 2023).
- Warrlich, G.; Al-Waili, I.; Said, D.; Diri, M.; Al-Bulushi, N.; Strauss, J.; Al-Kindi, M.; Al-Hadhrami, F.; Heel, T.V.; Wunnik, J.V.; et al. PDOS EOR Screening Methodology for Heavy-Oil Fractured Carbonate Fields—A Case Study. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 16–18 April 2012. [Google Scholar] [CrossRef]
- Mohammadian, E.; Jan, B.M.; Azdarpour, A.; Hamidi, H.; Othman, N.H.B.; Dollah, A. CO2-EOR/Sequestration: Current Trends and Future Horizons. In Enhanced Oil Recovery Processes—New Technologies; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/69763 (accessed on 8 December 2023).
- Zhang, N.; Wei, M.; Bai, B.J. Comprehensive Review of Worldwide CO2 Immiscible Flooding. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 14 April 2018. [Google Scholar] [CrossRef]
- Bruce, H.L.; Li, X.C.; Wei, N. CO2-EOR in China: A comparative review. Int. J. Greenh. Gas. Con. 2020, 103, 103173. [Google Scholar] [CrossRef]
- Cai, M.Y.; Su, Y.L.; Hao, Y.M.; Guo, Y.C.; Elsworth, D.; Li, L.; Li, D.S.; Li, X.Y. Monitoring oil displacement and CO2 trapping in low-permeability media using NMR: A comparison of miscible and immiscible flooding. Fuel 2021, 305, 121606. [Google Scholar] [CrossRef]
- Kumar, N.; Sampaio, M.A.; Ojha, K.; Hoteit, H.; Mandal, A. Fundamental aspects, mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: A review. Fuel 2022, 330, 125633. [Google Scholar] [CrossRef]
- Zhao, M.W.; Yan, X.W.; Wang, X.Y.; Yan, R.Q.; Dai, C.L. The development of a smart gel for CO2 mobility control in heterogeneity reservoir. Fuel 2023, 342, 127844. [Google Scholar] [CrossRef]
- Han, H.S.; Yuan, S.Y.; Li, S.; Liu, X.L.; Chen, X.L. Dissolving capacity and volume expansion of carbon dioxide in chain n-alkanes. Petrol. Explor. Dev. 2015, 42, 97–103. [Google Scholar] [CrossRef]
- Li, S.; Zhang, K.; Ma, D.S.; Qin, J.S.; Chen, X.L. Correlation of miscible ability between key components of formation crude and CO2. Reserv. Eval. Dev. 2013, 3, 30–33. Available online: https://10.3969/j.issn.2095-1426.2013.05.006 (accessed on 9 December 2023).
- Han, H.S.; Li, S.; Chen, X.L.; Qin, J.S.; Zeng, B.Q. Main control factors of carbon dioxide on swelling effect of crude hydrocarbon components. Acta Pet. Sin. 2016, 37, 392–398. Available online: http://www.syxb-cps.com.cn/EN/Y2016/V37/I3/392 (accessed on 9 December 2023).
- Nascimento, F.P.; Paredes, M.L.L.; Bernardes, A.P.D.; Pessoa, F.L.P. Phase behavior of CO2/toluene, CO2/n-decane and CO2/toluene/n-decane: Experimental measurements and thermodynamic modeling with SAFT-VR Mie equation of state. J. Supercrit. Fluids 2019, 154, 104634. [Google Scholar] [CrossRef]
- Cao, M.; Gu, Y.A. Temperature effects on the phase behaviour, mutual interactions and oil recovery of a light crude oil–CO2 system. Fluid Phase Equilibria 2013, 356, 78–89. [Google Scholar] [CrossRef]
- Zuo, M.S.; Chen, H.; Qi, X.Y.; Liu, X.Y.; Xu, C.H.; Yu, H.Z.; Brahim, M.S.; Wu, Y.; Liu, H.P. Effects of CO2 injection volume and formation of in-situ new phase on oil phase behavior during CO2 injection for enhanced oil recovery(EOR)in tight oil reservoirs. Chem. Eng. J. 2023, 452, 139454. [Google Scholar] [CrossRef]
- Al-Marzouqi, A.H.; Zekri, A.Z.; Jobe, B.; Dowaidar, A. Supercritical fluid extraction for the determination of optimum oil recovery conditions. J. Petrol. Sci. Eng. 2007, 55, 37–47. [Google Scholar] [CrossRef]
- Hawthorne, S.B.; Miller, D.J. Comparison of CO2 and Produced Gas Hydrocarbons to Dissolve and Mobilize Bakken Crude Oil at 10.3, 20.7, and 34.5 MPa and 110 °C. Energy Fuels 2020, 34, 10882–10893. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.L.; Guo, P.; Zhuo, Y.Y.; Sha, Y. Improving oil recovery in the CO2 flooding process by utilizing nonpolar chemical modifiers. Chin. J. Chem. Eng. 2016, 24, 646–650. [Google Scholar] [CrossRef]
- Wu, Y.N.; Liu, Q.X.; Liu, D.Y.; Cao, X.P.; Yuan, B.; Zhao, M.W. CO2 responsive expansion hydrogels with programmable swelling for in-depth CO2 conformance control in porous media. Fuel 2023, 332, 126047. [Google Scholar] [CrossRef]
- Zhao, M.W.; Li, Y.; Wang, T.; Gao, M.W.; Zhang, B.H.; Song, X.G.; Wang, X.; Guan, B.S.; Liu, P.; Dai, C.L. The dissolution characteristic of nonionic surfactants in supercritical CO2. J. Mol. Liq. 2020, 305, 112846. [Google Scholar] [CrossRef]
- Yan, X.W.; Zhao, M.W.; Yan, R.Q.; Wang, X.Y.; Dai, C.L. Statistical analysis of gelation mechanism of high-temperature CO2-responsive smart gel system. J. Mol. Liq. 2023, 377, 121521. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.M.; Wang, R.J.; Zhang, X.; Ma, S.T.; Su, Y.L.; Wang, C.L.; Luo, W.T.; Sun, H.T. Microscopic experiment study on mechanisms of oil-gas interaction and CO2-surfactant flooding with different temperatures and pressures. J. CO2 Util. 2023, 69, 102389. [Google Scholar] [CrossRef]
- Bon, J.; Sarma, H.K.; Theophilos, A.M. An Investigation of Minimum Miscibility Pressure for CO2-Rich Injection Gases with Pentanes-Plus Fraction. In Proceedings of the SPE International Improved Oil Recovery Conference, Kuala Lumpur, Malaysia, 5–6 December 2005. [Google Scholar] [CrossRef]
- Almobarak, M.; Wu, Z.Y.; Myers, M.B.; Wood, C.D.; Al-Maskari, N.S.; Liu, Y.B.; Rommerskirchen, R.; Saeedi, A.; Xie, Q. Chemical-assisted minimum miscibility pressure reduction between oil and methane. J. Petrol. Sci. Eng. 2021, 196, 108094. [Google Scholar] [CrossRef]
- Li, H.Z.; Zheng, S.X.; Yang, D.Y. Enhanced swelling effect and viscosity reducti-on of solvent(s)/CO2/heavy-oil systems. SPE. J. 2013, 18, 695–707. [Google Scholar] [CrossRef]
- Saira, H.Y.; Furqan, L.H. Effect of alcohol-treated CO2 on interfacial tension between CO2 and oil, and oil swelling. Adv. Geo-Energy Res. 2021, 5, 407–421. [Google Scholar] [CrossRef]
- Shang, Q.Y.; Xia, S.Q.; Cui, G.W.; Tang, B.; Ma, P.S. Experiment and correlation of the equilibrium interfacial tension for paraffin+CO2 modified with ethanol. J. Chem. Thermodyn. 2018, 116, 206–212. [Google Scholar] [CrossRef]
- Djabbarah, N.F. Tall Oil as Additive in Gas Drive Hydrocarbon Oil Recovery. U.S. Patent US4736793, 12 January 1988. Available online: https://patents.google.com/patent/US4736793/en (accessed on 9 December 2023).
- Lv, W.; Gong, H.J.; Li, Y.J.; Li, Z.J.; Dong, M.Z. The potential and mechanism of nonionic polyether surfactants dissolved in CO2 to improve the miscibility of CO2–hydrocarbon systems. Fuel 2022, 326, 125012. [Google Scholar] [CrossRef]
- Lv, W.; Dong, M.Z.; Sarma, H.; Li, Y.J.; Li, Z.J.; Sun, J.T.; Gong, H.J. Effects of CO2-philic nonionic polyether surfactants on miscibility behaviors of CO2–hydrocarbon systems: Experimental and simulation approach. Chem. Eng. J. 2023, 464, 142701. [Google Scholar] [CrossRef]
- Fan, G.G.; Zhao, Y.J.; Li, Y.L.; Zhang, X.D.; Chen, H. Research for reducing the Minimum Miscible Pressure of crude oil and carbon dioxide by injecting citric acid isobutyl ester. Oil Gas Sci. Technol.–Rev. D’ifp Energ. Nouv. 2021, 76, 30. [Google Scholar] [CrossRef]
- Kong, S.Q.; Feng, G.; Liu, Y.L.; Li, K.J.; Li, K.J. Potential of dimethyl ether as an additive in CO2 for shale oil recovery. Fuel 2021, 296, 120643. [Google Scholar] [CrossRef]
- Wang, T.F.; Wang, L.L.; Meng, X.B.; Chen, Y.; Song, W.; Yuan, C.D. Key parameters and dominant EOR mechanism of CO2 miscible flooding applied in low-permeability oil reservoirs. Geoenergy Sci. Eng. 2023, 225, 211724. [Google Scholar] [CrossRef]
- Almobarak, M.; Wu, Z.Y.; Zhou, D.Y.; Fan, K.; Liu, Y.B.; Xie, Q. A review of chemical-assisted minimum miscibility pressure reduction in CO2 injection for enhanced oil recovery. Petroleum 2021, 7, 245–253. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, Y.C.; Fan, W.Y.; Nan, G.Z.; Li, Z.M. Effects of the Non-ionic Surfactant (CiPOj) on the Interfacial Tension Behavior between CO2 and Crude Oil. Energy Fuels 2018, 32, 6708–6712. [Google Scholar] [CrossRef]
- Zhang, C.; Xi, L.H.; Wu, P.K.; Li, Z.M. A novel system for reducing CO2-crude oil minimum miscibility pressure with CO2-soluble surfactants. Fuel 2020, 281, 118690. [Google Scholar] [CrossRef]
- Al-Azani, K.H.; Abu-Khamsin, S.A.; Sultan, A.S. Solubilities of Carbon Dioxide in Ethyl Benzoate and Triethyl Citrate at High Temperatures and Pressures. J. Chem. Eng. Data 2020, 65, 1857–1868. [Google Scholar] [CrossRef]
- Al-Azani, K.H.; Abu-Khamsin, S.A.; Sultan, A.S. Experimental Study of Blending CO2 with Triethyl Citrate for Mitigating Gravity Override During Reservoir Flooding. Arab. J. Sci. Eng. 2021, 46, 6787–6796. [Google Scholar] [CrossRef]
- SY/T 5542-2009; Test Method for Reservoir Fluid Physical Properties. Standardization Administration of China: Beijing, China, 2009.
Sample | Content/% | |||
---|---|---|---|---|
Resin | Asphaltene | Saturates | Aromatics | |
Degassed crude oil | 8.45 | 0.59 | 70.12 | 20.84 |
Component | Stabilized Condensate/mol% | Component | Stabilized Condensate/mol% |
---|---|---|---|
≤C6 | 0.99 | C19 | 2.76 |
C7 | 4.81 | C20 | 2.73 |
C8 | 3.69 | C21 | 2.52 |
C9 | 3.14 | C22 | 2.60 |
C10 | 3.13 | C23 | 2.20 |
C11 | 2.88 | C24 | 2.20 |
C12 | 2.91 | C25 | 2.51 |
C13 | 3.13 | C26 | 2.52 |
C14 | 3.71 | C27 | 2.75 |
C15 | 3.27 | C28 | 2.62 |
C16 | 2.80 | C29 | 2.40 |
C17 | 3.29 | C30+ | 31.35 |
C18 | 3.08 |
System | Crude Oil | 0.3%Tributyl Citrate |
---|---|---|
Bubble point pressure/MPa | 14.28 | 13.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, F.; Yang, L.; Li, J.; Yan, R.; Zhao, M. Effect of Tributyl Citrate as a Cosolvent on the Phase Behavior of Crude Oil during CO2 Injection Process. Energies 2024, 17, 410. https://doi.org/10.3390/en17020410
Xue F, Yang L, Li J, Yan R, Zhao M. Effect of Tributyl Citrate as a Cosolvent on the Phase Behavior of Crude Oil during CO2 Injection Process. Energies. 2024; 17(2):410. https://doi.org/10.3390/en17020410
Chicago/Turabian StyleXue, Fangfang, Li’an Yang, Jianshan Li, Ruoqin Yan, and Mingwei Zhao. 2024. "Effect of Tributyl Citrate as a Cosolvent on the Phase Behavior of Crude Oil during CO2 Injection Process" Energies 17, no. 2: 410. https://doi.org/10.3390/en17020410
APA StyleXue, F., Yang, L., Li, J., Yan, R., & Zhao, M. (2024). Effect of Tributyl Citrate as a Cosolvent on the Phase Behavior of Crude Oil during CO2 Injection Process. Energies, 17(2), 410. https://doi.org/10.3390/en17020410