Sedimentary Characteristics and Basin Evolution of a Compartmentalized Foreland Basin—Internal Ionian Zone, Western Greece †
Abstract
:1. Introduction
2. Materials and Methods
3. Geological Setting
4. Sedimentology
4.1. Lithofacies
4.1.1. Mudstones
4.1.2. Sandstones
4.1.3. Conglomerates (Cg)
Bed Types | Sub-Categories | Description | Flow Type |
---|---|---|---|
Mudstones | Massive mudstone (mM) | Structureless, bluish-to-grayish mudstones that can form packets up to 20 m | Deposition by cohesive debris flows by en masse consolidation or muddy turbidites. |
Laminated mudstone (lM) | Planar-laminated or cross-laminated mudstone, usually on top of sandstone beds. Laminas are typically less than 2 mm thick. | Turbidites, unclear whether it is a dilute or a high concentration flow. | |
Hemipelagic mudstone (hM) | Light grayish, structureless, rich in microfossils and nannoplankton | Settling of suspended oceanic material | |
Sandstones | Massive sandstones (mS) | >0.6 m thick beds of fine-grained to coarse-grained sandstone or pebbly sandstones. Typically, beds are structureless, with thin divisions at bed tops that grade to very fine-grained sandstone. Amalgamation surfaces between beds are highlighted by subtle grain-size breaks or thin discontinuity surfaces, usually filled with mudstone clasts. Mud clasts are deposited in distinctive horizons parallel to beds or distributed across the sandy mass. | Deposition in a layer-by-layer fashion by high-density turbidity currents (TA) or in an en masse fashion by (liquefied) debris flow (DCS) |
Planar-laminated sandstones/siltstones (lS) | Planar-laminated sandstones with laminations that range from fine-scale (<1 mm) or thicker. In most cases, planar-laminated sandstones characterize fine-grained beds. Planar-laminated sandstones may occur as individual beds, at the top of massive sandstones, or the base of cross-laminated sandstones. Rarely spaced planar-laminated sand (Tb-3) occurs with laminar bands ranging in thickness from 0.5 to 10 cm. | Low-density and high-density turbidity currents | |
Cross-laminated sandstones/siltstones (clS) | This lithological type is mainly represented by thinner sandstone beds (up to 0.5 m), characterized by low-angle lamination and/or climbing current-ripple cross-lamination corresponding to the Tc interval, as it was introduced by Bouma [98]. These beds occur either at the tops of sandstone (mS or lS) beds or interbedded as distinct beds in mudstone lithofacies. Convolute lamination is also common. | Dilute, highly turbulent flows | |
Conglomerates | Paraconglomerates (pCg) | Granural, pebbly, and cobble extraformational conglomerates of a monomictic or polymictic character. Build packets with thicknesses up to 20 m. | Debris flows |
Orthoconglomerates (oCg) | Stratified, well-sorted, clast-supported conglomerates of a monomictic or polymictic character. Stratified layers are up to 0.2 m. | Debris or grain flow processes [99] |
4.2. Facies Associations
4.3. Depositional Settings
4.3.1. Basinal Deposits
4.3.2. Lobe Complexes
4.3.3. Channels and Canyons
4.3.4. Slope Deposits
4.3.5. Shelf-Edge Deltas
5. Biostratigraphic Framework
6. Facies Association Distribution and Stratigraphic Correlations
6.1. Unit I
6.2. Unit II
6.3. Unit III
6.4. Unit IV
6.5. Unit V
7. Paleocurrent Data
8. Discussion
8.1. Basin Evolution
8.2. Reservoir Evaluation
8.3. Correlation with Mesozoic Ionian Zone Petroleum System
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weimer, P.; Pettingill, H.S. Global Overview of Deep-Water Exploration and Production; AAPG Datapages: Tulsa, OK, USA, 2007. [Google Scholar]
- Normark, W.R. Growth patterns of deep-sea fans. AAPG Bull. 1970, 54, 2170–2195. [Google Scholar]
- Walker, R.G.; Mutti, E. Part IV. Turbidite Facies and Facies Associations; AAPG Datapages: Tulsa, OK, USA, 1973. [Google Scholar]
- Ricci-Lucchi, F. Depositional cycles in two turbidite formations of northern Apennines. J. Sediment. Res. 1975, 45, 3–43. [Google Scholar] [CrossRef]
- Nelson, C.H.; Nilsen, T.H. Modern and Ancient Deep-Sea Fan Sedimentation; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1984. [Google Scholar]
- Mutti, E. Turbidite systems and their relations to depositional sequences. Proven. Arenites 1985, 148, 65–93. [Google Scholar]
- Ricci Lucchi, F. The Oligocene to Recent foreland basins of the northern Apennines. Foreland Basins 1986, 103–139. [Google Scholar] [CrossRef]
- Hiscott, R.; Pickering, K.; Beeden, D.R. Progressive filling of a confined Middle Ordovician foreland basin associated with the Taconic Orogeny, Quebec, Canada. Foreland Basins 1986, 8, 307–325. [Google Scholar]
- Mutti, E.; Normark, W.R. Comparing examples of modern and ancient turbidite systems: Problems and concepts. Mar. Clastic Sedimentol. Concepts Case Stud. 1987, 1–38. [Google Scholar] [CrossRef]
- Shanmugam, G.; Moiola, R.J. Submarine fans: Characteristics, models, classification, and reservoir potential. Earth-Sci. Rev. 1988, 24, 383–428. [Google Scholar] [CrossRef]
- Ghibaudo, G. Subaqueous sediment gravity flow deposits: Practical criteria for their field description and classification. Sedimentology 1992, 39, 423–454. [Google Scholar] [CrossRef]
- Reading, H.G.; Richards, M. Turbidite systems in deep-water basin margins classified by grain size and feeder system. AAPG Bull. 1994, 78, 792–822. [Google Scholar]
- Shanmugam, G.; Moiola, R.; Damuth, J. Eustatic control of submarine fan development. In Submarine Fans and Related Turbidite Systems; Springer: Berlin/Heidelberg, Germany, 1985; pp. 23–28. [Google Scholar]
- Shanmugam, G. The Bouma sequence and the turbidite mind set. Earth-Sci. Rev. 1997, 42, 201–229. [Google Scholar] [CrossRef]
- Shanmugam, G.J.M.; Geology, P. 50 years of the turbidite paradigm (1950s–1990s): Deep-water processes and facies models—A critical perspective. Mar. Pet. Geol. 2000, 17, 285–342. [Google Scholar] [CrossRef]
- Bouma, A.H.J.M.; Geology, P. Coarse-grained and fine-grained turbidite systems as end member models: Applicability and dangers. Mar. Pet. Geol. 2000, 17, 137–143. [Google Scholar] [CrossRef]
- Stow, D.A.; Mayall, M.J.M.; Geology, P. Deep-water sedimentary systems: New models for the 21st century. Pet. Geol. 2000, 17, 125–135. [Google Scholar] [CrossRef]
- Mutti, E.; Bernoulli, D.; Lucchi, F.R.; Tinterri, R.J.S. Turbidites and turbidity currents from Alpine ‘flysch’to the exploration of continental margins. Sedimentology 2009, 56, 267–318. [Google Scholar] [CrossRef]
- Kassem, A.A.; Hussein, W.S.; Radwan, A.E.; Anani, N.; Abioui, M.; Jain, S.; Shehata, A.A. Petrographic and diagenetic study of siliciclastic Jurassic sediments from the northeastern margin of Africa: Implication for reservoir quality. J. Pet. Sci. Eng. 2021, 200, 108340. [Google Scholar] [CrossRef]
- Kassem, A.A.; Osman, O.A.; Nabawy, B.S.; Baghdady, A.R.; Shehata, A.A. Microfacies analysis and reservoir discrimination of channelized carbonate platform systems: An example from the Turonian Wata Formation, Gulf of Suez, Egypt. J. Pet. Sci. Eng. 2022, 212, 110272. [Google Scholar] [CrossRef]
- Shehata, A.A.; Kassem, A.A.; Brooks, H.L.; Zuchuat, V.; Radwan, A.E. Facies analysis and sequence-stratigraphic control on reservoir architecture: Example from mixed carbonate/siliciclastic sediments of Raha Formation, Gulf of Suez, Egypt. Mar. Pet. Geol. 2021, 131, 105160. [Google Scholar] [CrossRef]
- Barton, M.; O’Byrne, C.; Pirmez, C.; Prather, B.; Van der Vlugt, F.; Alpak, F.O.; Sylvester, Z. Turbidite Channel Architecture: Recognizing and Quantifying the Distribution of Channel-Base Drapes Using Core and Dipmeter Data; AAPG Datapages: Tulsa, OK, USA, 2010. [Google Scholar]
- Covault, J.A.; Sylvester, Z.; Hubbard, S.M.; Jobe, Z.R.; Sech, R.P.; Thornton, S.E. The Stratigraphic Record of Submarine-Channel Evolution. Sediment. Rec. 2016, 14, 4–11. [Google Scholar] [CrossRef]
- Deptuck, M.E.; Sylvester, Z.; Pirmez, C.; O’Byrne, C. Migration–aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope. Mar. Pet. Geol. 2007, 24, 406–433. [Google Scholar] [CrossRef]
- Di Celma, C.N.; Brunt, R.L.; Hodgson, D.M.; Flint, S.S.; Kavanagh, J.P. Spatial and Temporal Evolution of a Permian Submarine Slope Channel-Levee System, Karoo Basin, South Africa. J. Sediment. Res. 2011, 81, 579–599. [Google Scholar] [CrossRef]
- Eldrett, J.; Tripsanas, E.; Davis, C.; McKie, T.; Vieira, M.; Osterloff, P.; Sandison, T. Sedimentological evolution of Sele Formation deep-marine depositional systems of the Central North Sea. Geol. Soc. Lond. Spec. Publ. 2015, 403, 63–98. [Google Scholar] [CrossRef]
- Fildani, A.; Hubbard, S.M.; Covault, J.A.; Maier, K.L.; Romans, B.W.; Traer, M.; Rowland, J.C. Erosion at inception of deep-sea channels. Mar. Pet. Geol. 2013, 41, 48–61. [Google Scholar] [CrossRef]
- Gong, C.; Wang, Y.; Steel, R.J.; Peakall, J.; Zhao, X.; Sun, Q.; Hampson, G. Flow processes and sedimentation in unidirectionally migrating deep-water channels: From a three-dimensional seismic perspective. Sedimentology 2016, 63, 645–661. [Google Scholar] [CrossRef]
- Groenenberg, R.M.; Hodgson, D.M.; Prelat, A.; Luthi, S.M.; Flint, S.S. Flow-Deposit Interaction in Submarine Lobes: Insights from Outcrop Observations and Realizations of a Process-Based Numerical Model. J. Sediment. Res. 2010, 80, 252–267. [Google Scholar] [CrossRef]
- Grundvåg, S.A.; Johannessen, E.P.; Helland-Hansen, W.; Plink-Björklund, P.; Talling, P. Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen. Sedimentology 2013, 61, 535–569. [Google Scholar] [CrossRef]
- Hubbard, S.M.; Covault, J.A.; Fildani, A.; Romans, B.W. Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep-sea processes from outcrop. Geol. Soc. Am. Bull. 2014, 126, 857–871. [Google Scholar] [CrossRef]
- Jobe, Z.R.; Sylvester, Z.; Parker, A.O.; Howes, N.; Slowey, N.; Pirmez, C. Rapid Adjustment of Submarine Channel Architecture to Changes in Sediment Supply. J. Sediment. Res. 2015, 85, 729–753. [Google Scholar] [CrossRef]
- Kremer, K.; Corella, J.P.; Hilbe, M.; Marillier, F.; Dupuy, D.; Zenhäusern, G.; Girardclos, S. Changes in distal sedimentation regime of the Rhone delta system controlled by subaquatic channels (Lake Geneva, Switzerland/France). Mar. Geol. 2015, 370, 125–135. [Google Scholar] [CrossRef]
- Masalimova, L.U.; Lowe, D.R.; McHargue, T.; Derksen, R.; Talling, P. Interplay between an axial channel belt, slope gullies and overbank deposition in the Puchkirchen Formation in the Molasse Basin, Austria. Sedimentology 2015, 62, 1717–1748. [Google Scholar] [CrossRef]
- Pemberton, E.A.L.; Hubbard, S.M.; Fildani, A.; Romans, B.; Stright, L. The stratigraphic expression of decreasing confinement along a deep-water sediment routing system: Outcrop example from southern Chile. Geosphere 2016, 12, 114–134. [Google Scholar] [CrossRef]
- Pyles, D.R.; Strachan, L.J.; Jennette, D.C. Lateral juxtapositions of channel and lobe elements in distributive submarine fans: Three-dimensional outcrop study of the Ross Sandstone and geometric model. Geosphere 2014, 10, 1104–1122. [Google Scholar] [CrossRef]
- Piper, D.J.; Panagos, A.; Pe, G. Conglomeratic Miocene flysch, western Greece. J. Sediment. Res. 1978, 48, 117–125. [Google Scholar]
- Botziolis, C.; Maravelis, A.G.; Pantopoulos, G.; Kostopoulou, S.; Catuneanu, O.; Zelilidis, A. Stratigraphic and paleogeographic development of a deep-marine foredeep: Central Pindos foreland basin, western Greece. Marine and Petroleum Geology 2021, 128, 105012. [Google Scholar] [CrossRef]
- Leigh, S.; Hartley, A.J. Mega-debris flow deposits from the Oligo-Miocene Pindos foreland basin, western mainland Greece: Implications for transport mechanisms in ancient deep marine basins. Sedimentology 1992, 39, 1003–1012. [Google Scholar] [CrossRef]
- Avramidis, P. Depositional Environments and Hydrocarbon Potential of Tertiary Formations in Klematia-Paramythia Basin, Epirus. Ph.D. Thesis, University of Patras, Patras, Greece, 1999. [Google Scholar]
- Vakalas, I. Evolution of Foreland Basins in Western Greece. Ph.D. Thesis, University of Patras, Patras, Greece, 2003. [Google Scholar]
- Konstantopoulos, P.A.; Maravelis, A.G.; Zelilidis, A.J.T.N. The implication of transfer faults in foreland basin evolution: Application on Pindos Foreland Basin, West Peloponnesus, Greece. Terra Nova 2013, 25, 323–336. [Google Scholar] [CrossRef]
- Konstantopoulos, P.; Zelilidis, A. The geodynamic evolution of Pindos foreland basin in SW Greece. Epis. J. Int. Geosci. 2012, 35, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Konstantopoulos, P.A.; Zelilidis, A. Sedimentation of submarine fan deposits in the Pindos foreland basin, from late Eocene to early Oligocene, west Peloponnesus peninsula, SW Greece. Geol. J. 2013, 48, 335–362. [Google Scholar] [CrossRef]
- Vakalas, I.; Zelilidis, A. Paleogeographic reconstruction of Pindos Foreland basin during Middle Eocene–Upper Oligocene. In Proceedings of the IAS 25th Meeting, Patras, Greece, 4–7 September 2007; p. 311. [Google Scholar]
- Pantopoulos, G.; Vakalas, I.; Maravelis, A.; Zelilidis, A. Statistical analysis of turbidite bed thickness patterns from the Alpine fold and thrust belt of western and southeastern Greece. Sediment. Geol. 2013, 294, 37–57. [Google Scholar] [CrossRef]
- Underhill, J.R. Neogene and Quaternary Tectonics and Sedimentation in Western Greece. Ph.D. Thesis, Cardiff University, Cardiff, UK, 1985. [Google Scholar]
- Clews, J.E. Structural controls on basin evolution: Neogene to Quaternary of the Ionian zone, Western Greece. J. Geol. Soc. 1989, 146, 447–457. [Google Scholar] [CrossRef]
- Kissel, C.; Laj, C.; Müller, C.J.E.; Letters, P.S. Tertiary geodynamical evolution of northwestern Greece: Paleomagnetic results. Earth Planet. Sci. Lett. 1985, 72, 190–204. [Google Scholar] [CrossRef]
- Rigakis, N.; Nikolaou, K.; Marnelis, F.; Pakos, T. The utility of oil shows in the hydrocarbon exploration of western Greece. Bull. Geol. Soc. Greece 2007, 40, 959–971. [Google Scholar] [CrossRef]
- Vakalas, J.; Ananiadis, G.; Mpourlokas, J.; Poulimenos, D.; Getsos, K.; Pantopoulos, G.; Avramidis, P.; Zelilidis, A.; Kontopoulos, N. Palaeocurrent directions as an indicator of Pindos foreland evolution (central and southern part), Western Greece. Bull. Geol. Soc. Greece 2001, 34, 785–791. [Google Scholar] [CrossRef]
- Vakalas, I.; Ananiadis, G.; Kontopoulos, N.; Stoykova, K.; Zelilidis, A. Age determination and palaeogeographic reconstruction of pindos foreland basin based on calcareous nannofossils. Bull. Hell. Geol. Soc. 2004, 36, 864–873. [Google Scholar] [CrossRef]
- Kamberis, E.; Kokinou, E.; Koci, F.; Lioni, K.; Alves, T.M.; Velaj, T. Triassic evaporites and the structural architecture of the External Hellenides and Albanides (SE Europe): Controls on the petroleum and geoenergy systems of Greece and Albania. Int. J. Earth Sci. 2022, 111, 789–821. [Google Scholar] [CrossRef]
- Atkinson, J.; Wignall, P.; Barbullushi, R. Basin Evolution and Hydrocarbon Plays in Albania American Association of Petroleum Geologists. Search Discov. 2013, 19, 10504. [Google Scholar]
- Kokkalas, S.; Kamberis, E.; Xypolias, P.; Sotiropoulos, S.; Koukouvelas, I. Coexistence of thin-and thick-skinned tectonics in zakynthos area (Western Greece): Insights from seismic sections and regional seismicity. Tectonophysics 2013, 597–598, 73–84. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Mountrakis, D. Tectonic development of the Eastern Mediterranean region: An introduction. Geol. Soc. Spec. Publ. 2006, 260, 1–9. [Google Scholar] [CrossRef]
- Zelilidis, A.; Piper, D.J.W.; Vakalas, I.; Avramidis, P.; Getsos, K. Oil and gas plays in Albania: Do equivalent plays exist in Greece? J. Pet. Geol. 2003, 26, 29–48. [Google Scholar] [CrossRef]
- Rigakis, N. Contribution to Stratigraphic Research on Wells and Outcrops of the Alpine Formations in Western Greece, in Relation to the Petroleum Generation Efficiency of their Organic Matter. Ph.D. Thesis, Athens University, Zografou, Greece, 1999. [Google Scholar]
- Nikolaou, C. Contribution to the Knowledge of the Neogene, the Geology of the Ionian and Pre-Apulian Zone Boundaries Relation to the Petroleum Geology Observations in Strofades, Zakynthos and Kefallonia Islands. Ph.D. Thesis, University of Athens, Athens, Greece, 1986; p. 228. [Google Scholar]
- Pe-Piper, G.; Piper, D.J.W.; Bourli, N.; Zelilidis, A. Evolution of sedimentary basins as recorded in silica concretions: An example from the ionian zone, western greece. Minerals 2021, 11, 763. [Google Scholar] [CrossRef]
- Alexandridis, I.; Oikonomopoulos, I.K.; Carvajal-Ortiz, H.; Gentzis, T.; Kalaitzidis, S.; Georgakopoulos, A.N.; Christanis, K. Discovery of a new source-rock interval within the Pantokrator Formation, Ionian Zone, western Greece: Insights from sulfur speciation and kinetics analyses. Mar. Pet. Geol. 2022, 145, 105918. [Google Scholar] [CrossRef]
- Karakitsios, V.; Kvacek, Z.; Mantzouka, D. The first plant megafossil in the Early Jurassic of Greece: Brachyphyllum (Coniferales) from the Lower Posidonia Beds (Toarcian) in the Ionian zone (NW Greece) and its palaeogeographic implications. N. Jahrb. Geol. Paläontol. Abh. 2015, 278, 79–94. [Google Scholar] [CrossRef]
- Rigakis, N.; Karakitsios, V.; Marnelis, F.; Sotiropoulos, S. Geological solutions concluded by petroleum geochemical data in Western Greece. Bull. Geol. Soc. Greece 2013, 47, 2131–2143. [Google Scholar] [CrossRef]
- Rigakis, N.; Karakitsios, V. The source rock horizons of the Ionian Basin (NW Greece). Mar. Pet. Geol. 1998, 15, 593–617. [Google Scholar] [CrossRef]
- Makri, V.I.; Bellas, S.; Moschou, G.; Pasadakis, N.J.G. An Integrated Approach for the Thermal Maturity Modeling Re-Assessment of an Exploration Well in the Hellenides Fold and Thrust Belt. Geosciences 2023, 13, 76. [Google Scholar] [CrossRef]
- Vakalas, I.; Kokkalas, S.; Konstantopoulos, P.; Tzimeas, C.; Kampolis, I.; Tsiglifi, H.; Pérez-Martin, R.; Hernandez-Jiménez, P.; Pita-Gutierrez, J.P. Implications of Salt Diapirism in Syn-Depositional Architecture of a Carbonate Margin-to-Edge Transition: An Example from Plataria Syncline, Ionian Zone, NW Greece. Appl. Sci. 2023, 13, 7043. [Google Scholar] [CrossRef]
- Karakitsios, V. Western Greece and Ionian Sea petroleum systems. AAPG Bull. 2013, 97, 1567–1595. [Google Scholar] [CrossRef]
- Karakitsios, V. The influence of preexisting structure and halokinensis on organic matter preservation and thrust system evolution in the Ionian Basin, northwest Greece. Am. Assoc. Pet. Geol. Bull. 1995, 79, 960–980. [Google Scholar]
- Karakitsios, V. Ouverture et inversion tectonique du bassin ionien (Epire, Grece). Ann. Géologiques Pays Helléniques 1992, 35, 185–318. [Google Scholar]
- Bega, Z.; Soto, J. The Ionian fold-and-thrust belt in Central and Southern Albania: A petroleum province with Triassic evaporites. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins; Elsevier: Amsterdam, The Netherlands, 2017; pp. 517–539. [Google Scholar]
- Hernandez, P.; Pérez, R.; Pita, J.; Ponte, A.; Rubio, B.; Malmcrona, Y.; Chambers, A.; Martin, A.; Cascone, L.; Konstantopoulos, T. New structural and petroleum system models of the Ionian Zone, North-Western Greece. In Proceedings of the 15th International Congress of the Geological Society of Greece, Athens, Greece, 22–24 May 2019. [Google Scholar]
- Avramidis, P.; Zelilidis, A.; Kontopoulos, N. Thrust dissection control of deep-water clastic dispersal patterns in the Klematia–Paramythia foreland basin, western Greece. Geol. Mag. 2000, 137, 667–685. [Google Scholar] [CrossRef]
- de Graciansky, P.C.; Dardeau, G.; Lemoine, M.; Tricart, P. The inverted margin of the French Alps and foreland basin inversion. Geol. Soc. Spec. Publ. 1989, 44, 87–104. [Google Scholar] [CrossRef]
- Aubouin, J.; Neumann, M.J.R.d.M. Contribution al’etude stratigraphique et micropaleontologique de l’Eocene en Grece. Rev. Micropaléontologie 1959, 2, 31–49. [Google Scholar]
- Underhill, J.R. Late Cenozoic deformation of the Hellenide foreland, western Greece. Geol. Soc. Am. Bull. 1989, 101, 613–634. [Google Scholar] [CrossRef]
- Alexander, J.; Nichols, G.J.; Leigh, S.J.S.G. The origins of marine conglomerates in the Pindus foreland basin, Greece. Sediment. Geol. 1990, 66, 243–254. [Google Scholar] [CrossRef]
- British Petroleum Company. The Geological Results of Petroleum Exploration in Western GREECE; Special Report; Institute for Geology and Subsurface Research: Athens, Greece, 1971. [Google Scholar]
- Institute of Geology and Subsurface Research, Greece; Institut Français Pétrole. Etude Géologique de l’Epire (Grèce Nord-Occidentale); Technip: Paris, France, 1966; p. 306. [Google Scholar]
- Fleury, J.-J. Les zones de Gavrovo-Tripolitza et du Pinde-Olonos (Grèce continentale et Péloponnèse du Nord). Evolution d’une plate-forme et d’un bassin dans leur cadre alpin. Soc. Géol. Nord 1980, 4, 1–651. [Google Scholar]
- Leigh, S.P. The Sedimentary Evolution of the Pindos Foreland Basin, Western Greece. Ph.D. thesis, University of Wales College of Cardiff, Cardiff, UK, 1991. [Google Scholar]
- Wilpshaar, M. Direct stratigraphic correlation of the Vercors carbonate platform in SE France with the Barremian stratotype by means of dinoflagellate cysts. Cretac. Res. 1995, 16, 273–281. [Google Scholar] [CrossRef]
- Bellas, S.M. Calcareous Nannofossils of the Tertiary Flysch (Post Eocene to Early Miocene) of the Ionian Zone in Epirus, NW-Greece: Taxonomy and Biostratigraphical Correlations; Selbstverlag Fachbereich Geowissenschaften: Berlin, Germay, 1997. [Google Scholar]
- Triantaphyllou, M.V. Calcareous nannofossil dating of Ionian and Gavrovo flysch deposits in the External Hellenides Carbonate Platform (Greece): Overview and implications. Tectonophysics 2013, 595–596, 235–249. [Google Scholar] [CrossRef]
- Talling, P.J.; Masson, D.G.; Sumner, E.J.; Malgesini, G. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology 2012, 59, 1937–2003. [Google Scholar] [CrossRef]
- Tripsanas, E.K.; Bryant, W.R.; Phaneuf, B.A. Slope-instability processes caused by salt movements in a complex deep-water environment, Bryant Canyon area, northwest Gulf of Mexico. AAPG Bull. 2004, 88, 801–823. [Google Scholar] [CrossRef]
- Campos, C.; Beck, C.; Crouzet, C.; Demory, F.; Van Welden, A.; Eris, K. Deciphering hemipelagites from homogenites through anisotropy of magnetic susceptibility. Paleoseismic implications (Sea of Marmara and Gulf of Corinth). Sediment. Geol. 2013, 292, 1–14. [Google Scholar] [CrossRef]
- Mulder, T.; Razin, P.; Faugeres, J.-C. Hummocky cross-stratification-like structures in deep-sea turbidites: Upper Cretaceous Basque basins (Western Pyrenees, France). Sedimentology 2009, 56, 997–1015. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Shanmugam, G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments. Sediment. Geol. 1980, 25, 23–42. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Bowen, A.J. A physical model for the transport and sorting of fine-grained sediment by turbidity currents. Deep-Water Turbid. Syst. 1980, 27, 31–46. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Bowen, A.J. Origin of lamination in deep sea, fine-grained sediments. Nature 1978, 274, 324–328. [Google Scholar] [CrossRef]
- Tripsanas, E.K.; Bryant, W.R.; Slowey, N.C.; Kim, J.W. Marine Isotope Stage 6 Canyon and Spillover Deposits of the Bryant and Eastern Canyon Systems, Northwest Gulf of Mexico: Importance of Fine-Grained Turbidites on a Delta-Fed Prograding Slope. J. Sediment. Res. 2006, 76, 1012–1034. [Google Scholar] [CrossRef]
- Sylvester, Z.; Lowe, D.R. Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians, Romania. Sedimentology 2004, 51, 945–972. [Google Scholar] [CrossRef]
- Amy, L.A.; Talling, P.J.; Peakall, J.; Wynn, R.B.; Arzola Thynne, R.G. Bed geometry used to test recognition criteria of turbidites and (sandy) debrites. Sediment. Geol. 2005, 179, 163–174. [Google Scholar] [CrossRef]
- Amy, L.A.; Talling, P.J. Anatomy of turbidites and linked debrites based on long distance (120 × 30 km) bed correlation, Marnoso Arenacea Formation, Northern Apennines, Italy. Sedimentology 2006, 53, 161–212. [Google Scholar] [CrossRef]
- Talling, P.J.; Amy, L.A.; Wynn, R.B.; Blackbourn, G.; Gibson, O. Evolution of Turbidity Currents Deduced from Extensive Thin Turbidites: Marnoso Arenacea Formation (Miocene), Italian Apennines. J. Sediment. Res. 2007, 77, 172–196. [Google Scholar] [CrossRef]
- Talling, P.J.; Amy, L.A.; Wynn, R.B. New insight into the evolution of large-volume turbidity currents: Comparison of turbidite shape and previous modelling results. Sedimentology 2007, 54, 737–769. [Google Scholar] [CrossRef]
- Talling, P.J.; Wynn, R.B.; Masson, D.G.; Frenz, M.; Cronin, B.T.; Schiebel, R.; Akhmetzhanov, A.M.; Dallmeier-Tiessen, S.; Benetti, S.; Weaver, P.P.E.; et al. Onset of submarine debris flow deposition far from original giant landslide. Nature 2007, 450, 541–544. [Google Scholar] [CrossRef]
- Boum, A.H. Sedimentology of Some Flysch Deposits. A Graphic Approach to Facies Interpretation; Elsevier: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Nemec, W. Aspects of Sediment Movement on Steep Delta Slopes. Coarse-Grained Deltas 1990, 10, 29–73. [Google Scholar]
- Tripsanas, E.K.; Piper, D.J.W.; Jenner, K.A.; Bryant, W.R. Submarine mass-transport facies: New perspectives on flow processes from cores on the eastern North American margin. Sedimentology 2008, 55, 97–136. [Google Scholar] [CrossRef]
- Vakalas, I.; Ananiadis, G.; Zelilidis, A.; Kontopoulos, N.; Tsikouras, B. Provenance of pindos foreland flysch deposits using scanning electron microscopy and microanalysis. Bull. Hell. Geol. Soc. 2004, 36, 607–614. [Google Scholar] [CrossRef]
- Blair, T.C.; Mcpherson, J.G. Quaternary sedimentology of the Rose Creek fan delta, Walker Lake, Nevada, USA, and implications to fan-delta facies models. Sedimentology 2008, 55, 579–615. [Google Scholar] [CrossRef]
- Gobo, K.; Ghinassi, M.; Nemec, W. Reciprocal changes in foreset to bottomset facies in a Gilbert-type delta: Response to short-term changes in base level. J. Sediment. Res. 2014, 84, 1079–1095. [Google Scholar] [CrossRef]
- PrÉLat, A.; Hodgson, D.M.; Flint, S.S. Evolution, architecture and hierarchy of distributary deep-water deposits: A high-resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology 2009, 56, 2132–2154. [Google Scholar] [CrossRef]
- Etienne, S.; Mulder, T.; Bez, M.; Desaubliaux, G.; Kwasniewski, A.; Parize, O.; Dujoncquoy, E.; Salles, T. Multiple scale characterization of sand-rich distal lobe deposit variability: Examples from the Annot Sandstones Formation, Eocene–Oligocene, SE France. Sediment. Geol. 2012, 273–274, 1–18. [Google Scholar] [CrossRef]
- Prélat, A.; Hodgson, D.M. The full range of turbidite bed thickness patterns in submarine lobes: Controls and implications. J. Geol. Soc. 2013, 170, 209–214. [Google Scholar] [CrossRef]
- Spychala, Y.T.; Hodgson, D.M.; Flint, S.S.; Mountney, N.P. Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa. Sediment. Geol. 2015, 322, 67–81. [Google Scholar] [CrossRef]
- Marchand, A.M.E.; Apps, G.; Li, W.; Rotzien, J.R. Depositional processes and impact on reservoir quality in deepwater Paleogene reservoirs, US Gulf of Mexico. AAPG Bull. 2015, 99, 1635–1648. [Google Scholar] [CrossRef]
- Masalimova, L.U.; Lowe, D.R.; Sharman, G.R.; King, P.R.; Arnot, M.J. Outcrop characterization of a submarine channel-lobe complex: The Lower Mount Messenger Formation, Taranaki Basin, New Zealand. Mar. Pet. Geol. 2016, 71, 360–390. [Google Scholar] [CrossRef]
- Gardner, M.H.; Borer, J.M.; Melick, J.J.; Mavilla, N.; Dechesne, M.; Wagerle, R.N. Stratigraphic process-response model for submarine channels and related features from studies of Permian Brushy Canyon outcrops, West Texas. Mar. Pet. Geol. 2003, 20, 757–787. [Google Scholar] [CrossRef]
- Jenner, K.A.; Piper, D.J.W.; Campbell, D.C.; Mosher, D.C. Lithofacies and origin of late Quaternary mass transport deposits in submarine canyons, central Scotian Slope, Canada. Sedimentology 2007, 54, 19–38. [Google Scholar] [CrossRef]
- Jobe, Z.; Sylvester, Z.; Pittaluga, M.B.; Frascati, A.; Pirmez, C.; Minisini, D.; Howes, N.; Cantelli, A. Facies architecture of submarine channel deposits on the western Niger Delta slope: Implications for grain-size and density stratification in turbidity currents. J. Geophys. Res. Earth Surf. 2017, 122, 473–491. [Google Scholar] [CrossRef]
- Cronin, B.T.; Çelik, H.; Hurst, A.; Turkmen, I. Mud prone entrenched deep-water slope channel complexes from the Eocene of eastern Turkey. Geol. Soc. Lond. Spec. Publ. 2005, 244, 155–180. [Google Scholar] [CrossRef]
- Stevenson, C.J.; Jackson, C.A.-L.; Hodgson, D.M.; Hubbard, S.M.; Eggenhuisen, J.T. Deep-water sediment bypass. J. Sediment. Res. 2015, 85, 1058–1081. [Google Scholar] [CrossRef]
- Martini, E. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. In Proceedings of the Second Planktonic Conference, Rome, Italy; 1971; pp. 739–785. [Google Scholar]
- Porębski, S.J.; Steel, R.J. Shelf-margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth-Sci. Rev. 2003, 62, 283–326. [Google Scholar] [CrossRef]
- Ferentinos, G.; Papatheodorou, G.; Collins, M. Sediment transport processes on an active submarine fault escarpment: Gulf of Corinth, Greece. Mar. Geol. 1988, 83, 43–61. [Google Scholar] [CrossRef]
- Lykousis, V.; Sakellariou, D.; Moretti, I.; Kaberi, H. Late Quaternary basin evolution of the Gulf of Corinth: Sequence stratigraphy, sedimentation, fault–slip and subsidence rates. Tectonophysics 2007, 440, 29–51. [Google Scholar] [CrossRef]
- Beckers, A.; Hubert-Ferrari, A.; Beck, C.; Papatheodorou, G.; De Batist, M.; Sakellariou, D.; Tripsanas, E.; Demoulin, A.J.N.H.; Sciences, E.S. Characteristics and frequency of large submarine landslides at the western tip of the Gulf of Corinth. Nat. Hazards Earth Syst. Sci. 2018, 18, 1411–1425. [Google Scholar] [CrossRef]
- Lyberis, N.; Chorowicz, J.; Papamarinopoulos, S. La paleofaille transformante du Kastaniotikos (Grece); teledetection, donnees de terrain et geophysique. Bull. Société Géologique Fr. 1982, S7-XXIV, 73–85. [Google Scholar] [CrossRef]
- Leeder, M. Sedimentary Environments and Facies; Reading, H.G., Ed.; Blackwells: Oxford, UK, 1978; (in 1979, 557). [Google Scholar] [CrossRef]
- Duvall, M.A.-O.; Waldron, J.A.-O.; Godin, L.A.-O.; Najman, Y.A.-O. Active strike-slip faults and an outer frontal thrust in the Himalayan foreland basin. Proc. Natl. Acad. Sci. USA 2020, 117, 17615–17621. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, M.S.; Soumaya, A.; Kadri, A.; Ben Ayed, N.; Braham, A.; Shimi, N. Evolution of E-W strike-slip fault network, the northwestern foreland of Tunisia. J. Afr. Earth Sci. 2019, 153, 278–290. [Google Scholar] [CrossRef]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of Fluctuating Sea Levels since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef]
- Kilias, A.T.M.; Papadimitriou, E.E.; Karakostas, V. The recent crustal deformation of the Hellenic orogen in Central Greece; the Kremasta and Sperchios Fault Systems and their relationship with the adjacent large structural features. Z. Dtsch. Ges. Geowiss. 2008, 159, 533–547. [Google Scholar] [CrossRef]
- Bellas, S. New Tenders: Prospectivity of the Ionian, South and Southwestern Crete Offshore blocks, Greece. In Proceedings of the AAPG/ICE Conference, London, UK, 15–18 October 2017. [Google Scholar]
- Hempton, M.; Marshall, J.; Sadler, S.; Hogg, N.; Charles, R.; Harvey, C. Turbidite reservoirs of the Sele Formation, Central North Sea: Geological challenges for improving production. In Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference; Doré, A.G., Vining, B.A., Eds.; Geological Society of London: London, UK, 2005; Volume 6. [Google Scholar]
- Garland, C.R.; Haughton, P.; King, R.F.; Moulds, T.P. Capturing reservoir heterogeneity in a sand-rich submarine fan, Miller Field. Geol. Soc. Lond. Pet. Geol. Conf. Ser. 1999, 5, 1199–1208. [Google Scholar] [CrossRef]
- Stewart, J.; Dunn, P.A.; Lyttle, C.; Campion, K.; Oyerinde, A.; Fischer, B. Improving Performance Prediction in Deep-Water Reservoirs: Learning from Outcrop Analogues, Conceptual Models and Flow Simulation. In Proceedings of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 3–5 December 2008; p. IPTC–12892-MS. [Google Scholar]
- Larue, D.; Hovadik, J. Connectivity of channelized reservoirs: A modelling approach. Pet. Geosci.-Petrol. Geosci. 2006, 12, 291–308. [Google Scholar] [CrossRef]
- Labourdette, R. Integrated three-dimensional modeling approach of stacked turbidite channels. AAPG Bull. 2007, 91, 1603–1618. [Google Scholar] [CrossRef]
- Meirovitz, C.; Stright, L.; Romans, B.; Hubbard, S. The Influence of Intra- and Inter-Channel Architecture in Selecting Optimal Gridding for Field-Scale Reservoir Simulation. In Proceedings of the American Association of Petroleum Geology ACE Conference, Calgary, AL, Canada, 19–22 June 2016. [Google Scholar]
- Clark, I.R.; Cartwright, J.A. Key controls on submarine channel development in structurally active settings. Mar. Pet. Geol. 2011, 28, 1333–1349. [Google Scholar] [CrossRef]
- Clark, I.R.; Cartwright, J.A. Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean sea. Mar. Pet. Geol. 2009, 26, 1465–1482. [Google Scholar] [CrossRef]
- Bernhardt, A.; Jobe, Z.R.; Lowe, D.R. Stratigraphic evolution of a submarine channel–lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile. Mar. Pet. Geol. 2011, 28, 785–806. [Google Scholar] [CrossRef]
- Velaj, T. New ideas on the tectonic of the Kurveleshi anticlinal belt in Albania, and the perspective for exploration in its subthrust. Petroleum 2015, 1, 269–288. [Google Scholar] [CrossRef]
- Kokkalas, S.; Vakalas, I.; Jones, R. Fracture density variation at different observation scales in carbonate reservoir outcrop analogues. In EAGE Middle East Geomechanics Workshop: Lessons Learned & New Frontiers; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2022; Volume 2022, pp. 1–5. [Google Scholar] [CrossRef]
- Grieser, B.; Bray, J. Identification of Production Potential in Unconventional Reservoirs. In Proceedings of the Production and Operations Symposium, Oklahoma, OK, USA, 31 March–3 April 2007. [Google Scholar]
- Perez Altamar, R.; Marfurt, K. Mineralogy-based brittleness prediction from surface seismic data: Application to the Barnett Shale. Interpretation 2014, 2, T1–T17. [Google Scholar] [CrossRef]
Facies | Description | Lithological Types |
---|---|---|
Calcareous shaly facies (CSF) | Fine-grained, light-bluish to grayish marly mudstones consisting mainly of hemipelagic mudstones (hM) interbedded with massive mudstones (mM). Planar-laminated (plS) and cross-laminated sandstones (clS) are typical. Thickness up to 30 m | hM, mM, plS, clS |
Mud-Dominated Heterolithic facies (MHF) | Alternations of bluish to grayish massive mudstones (mM) with very thin to thin-bedded (up to 2–3 cm) siltstones or very fine-grained sandstones. Thickness up to 100 m | mM, plS, clS, hM |
Heterolithic facies (HF) | Heterolithic facies consist of sandstones (mainly laminated sandstones (lS) and, to a lesser degree, massive sandstones (mS) that are interbedded with massive (mM) and laminated mudstones (lM) and to a lesser degree by hemipelagic mudstones (hM). Thickness up to 200 m | plS, clS, mS, mM, lM, hM |
Sand-Dominated Heterolithic facies (SHF) | Sand-dominated heterolithic facies consist of all the lithological types of sandstones (mS, lS), various sandstones (types) interbedded with massive (mM) or laminated (lM) mudstones. Thickness up to 200 m. | mS, lS, mM, lM |
Massive sandstone beds facies (MS) | Massive sandstone bed facies consist of packets 50 to 100 m thick formed mainly by massive sandstone beds (mS) 10–100 cm thick. Rarely, at the top of the beds, planar-laminated sandstones occur (plS) in stratification. Pebbly sandstone lags may be present (oCg lithofacies). | mS, plS, oCg |
Deformed facies (DF) | Deformed facies consist of blocks of contorted, folded, deformed sandstone and mudstone facies of various lithological types (mS, lS, mM), with evidence of brecciation. Thickness up to 30 m. | mS, lS, mM |
Hemipelagic mudstone facies (HMF) | Structureless, bluish to grayish mudstones consisting mainly of massive mudstone lithofacies (mM). Intervals of very thin to thinly bedded siltstones (up to 5 cm) may occur, characterized by rippled top beds (clS lithofacies) | mM, clS |
Matrix-supported pebbly mudstone facies (PMF) | PMF facies consist almost exclusively of mud-matrix-supported pebbly to cobbled mudstones (pCg lithofacies), forming intervals that range in thickness from 4–20 m. | pCg |
Matrix-supported organized conglomerates facies (MOC) | Sand-matrix clast-supported organized conglomerate facies are composed mainly of alternations of pCg lithological types (granular to pebbly concerning class size) with coarse-grained massive sandstone beds (mS) that at the top gradually pass to planar-laminated sandstones (plS). Thickness up to 10 m | pCg, mS, plS |
Poorly organized clast-supported conglomerates (CsPoC) | Sand-matrix clast-supported poorly sorted conglomerates of (pCg) lithological type with extremely erosive bases, poor lateral extent, and a maximum thickness of 80 m. At the base of the conglomerates, massive mudstone fragments (mM) showing a size of 1.5 × 2.0 m are present. | pCg, mM |
Well-organized clast-supported conglomerates (CsWoC) | Well-organized sand-matrix clast-supported conglomerates are characterized by inclined bedding planes consisting mainly of oCg lithological type. Massive sandstone beds (mS) 15 cm thick are also present at the top of the facies. Thickness up to 50 m. | oCg, mS |
Kavasila | PalaioPyrgos | Metsovo AA | Metsovo BB | Petrovouni | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SL | NP | SL | NP | SL | NP | SL | NP | SL | NP | ||||||||||
740 | 20–21 | 270 | 20 | 2200 | 18–22 | 1875 | 24–25 | 1800 | 20–23 | ||||||||||
610 | 20–21 | 190 | 20–21 | 1850 | 17–20 | 1650 | 24–25 | 1750 | 20–23 | ||||||||||
240 | 20–21 | 130 | - | 1450 | 17–20 | 1350 | - | 1700 | 20–23 | ||||||||||
170 | 20–21 | 30 | 16 | 1100 | 16 | 1100 | 22–23 | 1650 | 20–23 | ||||||||||
30 | 20–21 | 400 | 13–16 | 700 | 21–23 | 1100 | 20–22 | ||||||||||||
0 | 20–21 | 75 | 13–16 | 400 | 21–22 | 980 | 20–22 | ||||||||||||
85 | 21–22 | 730 | - | ||||||||||||||||
680 | 20–23 | ||||||||||||||||||
380 | 20–22 | ||||||||||||||||||
30 | 19–20 | ||||||||||||||||||
0 | 18–20 | ||||||||||||||||||
Pramanta | Agnanta | Petas | Kompoti | Amphilochia | Ellinika | ||||||||||||||
SL | NP | SL | NP | SL | NP | SL | NP | SL | NP | SL | NP | ||||||||
3980 | 19–20 | 3180 | 21–23 | 1800 | 21–22 ? | 1000 | 24–25 ? | 3150 | 23–24 | 1800 | 24–25 | ||||||||
3290 | 19–20 | 3140 | 21–23 | 1510 | 21–24 | 900 | 24–25 ? | 2600 | 23–24 | 1620 | 24–25 | ||||||||
3220 | 19–20 | 3120 | 21–23 | 1200 | 21–24 | 720 | - | 1450 | - | 1400 | 21–23 | ||||||||
3150 | 19–20 | 3070 | 21–23 | 1000 | 21–22 | 680 | 24–25 | 1400 | 21–23 | 1090 | 21–23 | ||||||||
2570 | 18–20 | 2700 | 21–23 | 600 | 21–23 | 420 | 24–25 | 1290 | - | 1080 | 21–23 | ||||||||
1900 | 18–20 | 2650 | 21–23 | 330 | 21–22 | 400 | 24–25 | 1270 | - | 690 | 21 | ||||||||
1600 | 18–20 | 2600 | 21–22 | 250 | 21–22 | 380 | 24–25 | 1200 | - | 380 | - | ||||||||
1280 | 18 | 2400 | 21–23 | 0 | 21 | 150 | 24–25 | 1150 | 21–22 | 210 | 17–20 | ||||||||
1060 | 18 | 2180 | 21–23 | 100 | 24–25 | 980 | 21–22 | 20 | 17–20 | ||||||||||
930 | 17 | 1380 | 21–23 | 850 | 21–22 | ||||||||||||||
770 | - | 1270 | 21–23 | 800 | 21 | ||||||||||||||
480 | 17 | 1150 | - | 760 | 21 | ||||||||||||||
30 | 17 | 1060 | 21–23 | 730 | - | ||||||||||||||
0 | 16 | 870 | 21–23 | 680 | 21–22 | ||||||||||||||
810 | 21–23 | 620 | 21–22 | ||||||||||||||||
780 | 21–23 | 550 | 21–22 | ||||||||||||||||
700 | 21–23 | 470 | 21–22 | ||||||||||||||||
680 | 21–23 | 420 | 21–22 | ||||||||||||||||
630 | 21–23 | 410 | 21 | ||||||||||||||||
570 | 21–22 | 320 | 21 | ||||||||||||||||
500 | 21–22 | 220 | - | ||||||||||||||||
200 | 21 | ||||||||||||||||||
170 | - | ||||||||||||||||||
150 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vakalas, I.; Tripsanas, E.; Tzimeas, C.; Konstantopoulos, P. Sedimentary Characteristics and Basin Evolution of a Compartmentalized Foreland Basin—Internal Ionian Zone, Western Greece. Energies 2024, 17, 315. https://doi.org/10.3390/en17020315
Vakalas I, Tripsanas E, Tzimeas C, Konstantopoulos P. Sedimentary Characteristics and Basin Evolution of a Compartmentalized Foreland Basin—Internal Ionian Zone, Western Greece. Energies. 2024; 17(2):315. https://doi.org/10.3390/en17020315
Chicago/Turabian StyleVakalas, Ioannis, Efthymios Tripsanas, Constantinos Tzimeas, and Panagiotis Konstantopoulos. 2024. "Sedimentary Characteristics and Basin Evolution of a Compartmentalized Foreland Basin—Internal Ionian Zone, Western Greece" Energies 17, no. 2: 315. https://doi.org/10.3390/en17020315
APA StyleVakalas, I., Tripsanas, E., Tzimeas, C., & Konstantopoulos, P. (2024). Sedimentary Characteristics and Basin Evolution of a Compartmentalized Foreland Basin—Internal Ionian Zone, Western Greece. Energies, 17(2), 315. https://doi.org/10.3390/en17020315