Methods for Enhancing Electrolysis for Hydrogen Production: The Benefits of Applying Magnetic Fields
Abstract
:1. Introduction
- Magneto-hydro-dynamic (due to the Lorentz force)
- Magneto-thermal effect (in alternating magnetic fields)
- Interactions with spin states of molecules (in the electrode reactions)
2. Water Electrolysis Systems Design and Limitations
- Increased energy consumption due to overpotentials
- Reduced hydrogen production due to current losses
3. Enhancing the Efficiency of Water Electrolysis with Applied Magnetic Fields
3.1. Applying an Alternating Magnetic Field
3.1.1. The Effects of Different Electrode Materials
3.1.2. The Effects of Magnetic Field Strength and Frequency
3.1.3. The Effects of Current Density and Magnetic Field Direction
3.2. Applying a Static Magnetic Field
3.2.1. The Effects Electrode Materials with a Static Magnetic Field
3.2.2. The Effects Using an Upward/Downward Lorentz Force
3.2.3. The Effects Using a Magnetic Field Parallel to the Electric Current
3.2.4. The Effects Using a Lorentz Force Horizontal and Perpendicular to the Electric Current
3.2.5. The Effects of Different Electrode Gaps
3.2.6. The Effects of Different Current Densities and Magnetic Field Strengths
4. Limitations of Existing Studies and Recommendations for Magnetic Enhanced Electrolysis Systems
4.1. Limitations and Recommendations Using an Alternating Magnetic Field
- Enhancement effects have not been investigated for higher current densities (e.g., 400 mA cm−2 and higher)
- The direction of the applied magnetic field has not been considered
- The effects of different frequencies of alternating magnetic fields have not been considered (except for a single study)
- Frequency of the magnetic field
- Direction of the magnetic field
- Current densities up to 400 mA cm−2
- Strength of the magnetic field
4.2. Limitations and Recommendations Using an Static Magnetic Field
- There is a lack of studies looking at enhancement using smaller electrode gaps (2 mm or smaller)
- In most cases only 1–2 configurations have been considered.
- It is still not clear exactly which configuration will be the best when other parameters are optimised (electrode gap, magnetic field strength, etc.)
- Gap between electrodes (using values such as 2 mm or smaller)
- Direction of the resulting Lorentz force
- Strength of magnetic fields
- Horizontal vs. vertical oriented electrodes
Funding
Conflicts of Interest
References
- Zhou, Y.; Li, R.; Lv, Z.; Liu, J.; Zhou, H.; Xu, C. Green hydrogen: A promising way to the carbon-free society. Chin. J. Chem. Eng. 2022, 43, 2–13. [Google Scholar] [CrossRef]
- Horri, B.A.; Ozcan, H. Green hydrogen production by water electrolysis: Current status and challenges. Curr. Opin. Green Sustain. Chem. 2024, 47, 100932. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Afroze, S.; Sofri, A.N.S.B.; Reza, M.S.; Iskakova, Z.B.; Kabyshev, A.; Kuterbekov, K.A.; Bekmyrza, K.Z.; Taimuratova, L.; Uddin, M.R.; Azad, A.K. Solar-powered water electrolysis using hybrid solid oxide electrolyser cell (soec) for green hydrogen—A review. Energies 2023, 16, 7794. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Dash, S.K.; Chakraborty, S.; Elangovan, D. A brief review of hydrogen production methods and their challenges. Energies 2023, 16, 1141. [Google Scholar] [CrossRef]
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life cycle assessment of hydrogen production via electrolysis—A review. J. Clean. Prod. 2014, 85, 151–163. [Google Scholar] [CrossRef]
- Gerloff, N. Comparative life-cycle-assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener ydrogen production. J. Energy Storage 2021, 43, 102759. [Google Scholar] [CrossRef]
- Ayub, H.M.U.; Nizami, M.; Qyyum, M.A.; Iqbal, N.; Al-Mutaseb, A.H.; Hasan, M. Sustainable hydrogen production via microalgae: Technological advancements, economic indicators, environmental aspects, challenges, and policy implications. Environ. Res. 2024, 244, 117815. [Google Scholar] [CrossRef]
- Wang, X.; Tian, H.; Yu, X.; Chen, L.; Cui, X.; Shi, J. Advances and insights in amorphous electrocatalyst towards water splitting. Chin. J. Catal. 2023, 51, 5–48. [Google Scholar] [CrossRef]
- Olivier, P.; Bourasseau, C.; Bouamama, P.B. Low-temperature electrolysis system modelling: A review. Renew. Sustain. Energy Rev. 2017, 78, 280–300. [Google Scholar] [CrossRef]
- Hu, S.; Guo, B.; Ding, S.; Yang, F.; Dang, J.; Liu, B.; Gu, J.; Ma, J.; Ouyang, M. A comprehensive review of alkaline water electrolysis mathematical modeling. Appl. Energy 2022, 327, 120099. [Google Scholar] [CrossRef]
- Li, W.; Tian, H.; Ma, L.; Wang, Y.; Liu, X.; Gao, X. Low-temperature water electrolysis: Fundamentals, progress, and new strategies. Mater. Adv. 2022, 3, 5598–5644. [Google Scholar] [CrossRef]
- Sun, Y.; Lv, H.; Yao, H.; Gao, Y.; Zhang, C. Magnetic field-assisted electrocatalysis: Mechanisms and design strategies. Carbon Energy 2024, e575. [Google Scholar] [CrossRef]
- UK Environment Agency. Review of Emerging Techniques for Hydrogen Production from Electrolysis of Water. Available online: https://www.gov.uk/government/publications/review-of-emerging-techniques-for-hydrogen-production-from-electrolysis-of-water (accessed on 27 July 2024).
- Ulleberg, O. Modeling of advanced alkaline electrolyzers: A system simulation approach. Int. J. Hydrogen Energy 2003, 28, 21–33. [Google Scholar] [CrossRef]
- Sakas, G.; Ibanez-rioja, A.; Ruuskanen, V.; Kosonen, A.; Ahola, J.; Bergmann, O. Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process. Int. J. Hydrogen Energy 2022, 47, 4328–4345. [Google Scholar] [CrossRef]
- El-Nowihy, G.H.; Abdellatif, M.M.; El-Deab, M.S. Magnetic field-assisted water splitting at ternary nicofe magnetic nanocatalysts: Optimization study. Renew. Energy 2024, 226, 120395. [Google Scholar] [CrossRef]
- Gatard, V.; Deseure, J.; Chatenet, M. Use of magnetic fields in electrochemistry: A selected review. Curr. Opin. Electrochem. 2020, 23, 96–105. [Google Scholar] [CrossRef]
- Xiong, G.; Chen, Y.; Zhou, Z.; Liu, F.; Liu, X.; Yang, L.; Liu, Q.; Sang, Y.; Liu, H.; Zhang, X.; et al. Rapid synthesis of various electrocatalysts on ni foam using a universal and facile induction heating method for efficient water splitting. Adv. Funct. Mater. 2021, 31, 2009580. [Google Scholar] [CrossRef]
- Rouina, M.; Kariminia, H.-R.; Mousavi, S.A.; Shahryari, E. Effect of electromagnetic field on membrane fouling in reverse osmosis process. Desalination 2016, 395, 41–45. [Google Scholar] [CrossRef]
- Zheng, H.-B.; Wang, Y.-L.; Xie, J.-W.; Gao, P.-Z.; Li, D.-Y.; Rebrov, E.V.; Qin, H.; Liu, X.-P.; Xiao, H.-N. Enhanced alkaline oxygen evolution using spin polarization and magnetic heating effects under an AC magnetic field. ACS Appl. Mater. Interfaces 2022, 14, 34627–34636. [Google Scholar] [CrossRef]
- Zheng, H.-B.; Wang, Y.-L.; Zhang, P.; Ma, F.; Gao, P.-Z.; Guo, W.-M.; Qin, H.; Liu, X.-P.; Xiao, H.-N. Multiple effects driven by ac magnetic field for enhanced electrocatalytic oxygen evolution in alkaline electrolyte. Chem. Eng. J. 2021, 426, 130785. [Google Scholar] [CrossRef]
- Peng, D.; Hu, C.; Luo, X.; Huang, J.; Ding, Y.; Zhou, W.; Zhou, H.; Yang, Y.; Yu, T.; Lei, W.; et al. Electrochemical reconstruction of nife/nifeooh superparamagnetic core/catalytic shell heterostructure for magnetic heating enhancement of oxygen evolution reaction. Small 2023, 19, 2205665. [Google Scholar] [CrossRef]
- Gong, X.; Jiang, Z.; Zeng, W.; Hu, C.; Luo, X.; Lei, W.; Yuan, C. Alternating magnetic field induced magnetic heating in ferromagnetic cobalt single-atom catalysts for efficient oxygen evolution reaction. Nano Lett. 2022, 22, 9411–9417. [Google Scholar] [CrossRef]
- Zheng, H.-B.; Chen, H.-H.; Wang, Y.-L.; Gao, P.-Z.; Liu, X.-P.; Rebrov, E.V. Fabrication of magnetic superstructure nife04@mof74 and its derivative for electrocatalytic hydrogen evolution with ac magnetic field. ACS Appl. Mater. Interfaces 2020, 12, 45987–45996. [Google Scholar] [CrossRef]
- Su, M.; Zhou, W.; Liu, L.; Chen, M.; Jiang, Z.; Luo, X.; Yang, Y.; Yu, T.; Lei, W.; Yuan, C. Micro eddy current facilitated by screwed mos2 structure for enhanced hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2111067. [Google Scholar] [CrossRef]
- Cai, L.; Huo, J.; Zou, P.; Li, G.; Liu, J.; Xu, W.; Gao, M.; Zhang, S. Key role of Lorentz excitation in the electromagnetic-enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2022, 14, 15243–15249. [Google Scholar] [CrossRef]
- Zeng, W.; Jiang, Z.; Gong, X.; Hu, C.; Luo, X.; Lei, W.; Yuan, C. Atomic magnetic heating effect enhanced hydrogen reaction of gd@mos2 single-atom catalysts. Small 2023, 19, 2206155. [Google Scholar] [CrossRef]
- Li, Q.; Chen, C.; Luo, W.; Yu, X.; Chang, Z.; Kong, F.; Zhu, L.; Huang, Y.; Tian, H.; Cui, X.; et al. In situ active site refreshing of electro-catalytic materials for ultra-durable hydrogen evolution at elevated current densities. Adv. Energy Mater. 2024, 14, 2304099. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Ma, J.; Deng, X.; Gu, J.; Yang, F.; Ouyang, M. Study the effect of lye flow rate, temperature, system pressure and different current density on energy consumption in catalyst test and 500W commercial alkaline water electrolysis. Mater. Today Phys. 2022, 22, 100606. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Hsu, W.-N.; Hourng, L.-W.; Shih, T.-S.; Hung, C.-M. Effect of Lorentz force on hydrogen production in water electrolysis employing multielectrodes. J. Mar. Sci. Technol. 2016, 24, 511–518. [Google Scholar] [CrossRef]
- Fogaca, W.; Ikeda, H.; Misumi, R.; Kuroda, Y.; Mitsushima, S. Enhancement of oxygen evolution reaction in alkaline water electrolysis by Lorentz forces generated by an external magnetic field. Int. J. Hydrogen Energy 2024, 61, 1274–1281. [Google Scholar] [CrossRef]
- Li, Y.-H.; Chen, Y.-J. The effect of magnetic field on the dynamics of gas bubbles in water electrolysis. Sci. Rep. 2021, 11, 9346. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Peng, W.; Zhang, W.; Peng, K. Magnetic field enhancing electrocatalysis of co3o4/nf for oxygen evolution reaction. J. Power Sources 2019, 433, 226704. [Google Scholar] [CrossRef]
- Liu, H.-B.; Pan, L.-M.; Qin, Q.-J.; Li, P.-F. Experimental and numerical investigation of gas-liquid flow in water electrolysis under magnetic field. J. Electroanal. Chem. 2019, 832, 293–302. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, P.; Li, S.; Sun, J.; Wang, W.; Song, B.; Yang, X.; Wang, X.; Jiang, Z.; Wu, G.; et al. Magnetic field assisted electrocatalytic oxygen evolution reaction of nickel-based materials. J. Mater. Chem. A 2022, 10, 1760. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Zhong, W.; Liu, G.; Zhang, L.; Du, Y. Magnetic field improvement of hydrogen evolution reaction in mof-derived nico2s4 nanostructure. Ceram. Int. 2023, 49, 16836–16841. [Google Scholar] [CrossRef]
- Matsushima, H.; Kiuchi, D.; Fukunaka, Y. Measurement of dissolved hydrogen supersaturation during water electrolysis in a magnetic field. Electrochim. Acta 2009, 54, 5858–5862. [Google Scholar] [CrossRef]
- Kaya, M.F.; Demir, N.; Albawabiji, M.S.; Tas, M. Investigation of alkaline water electrolysis performance for different cost effective electrodes under magnetic field. Int. J. Hydrogen Energy 2017, 42, 17583–17592. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Hourng, L.-W.; Kuo, C.-W. The effect of magnetic force on hydrogen production efficiency in water electrolysis. Int. J. Hydrogen Energy 2012, 37, 1311–1320. [Google Scholar] [CrossRef]
- Li, X.; Hao, C.; Du, Y.; Lu, Y.; Fan, Y.; Wang, M.; Wang, N.; Meng, R.; Wang, X.; Xu, Z.J.; et al. Harnessing magnetic fields to accelerate oxygen evolution reaction. Chin. J. Catal. 2023, 55, 191–199. [Google Scholar] [CrossRef]
- Chen, Y.J.; Li, Y.-H.; Chen, C.-Y. Studying the effect of electrode material and magnetic field on hydrogen production efficiency. Magnetochemistry 2022, 8, 53. [Google Scholar] [CrossRef]
- Haverkort, J.W.; Rajaei, H. Voltage losses in zero-gap alkaline water electrolysis. J. Power Sources 2021, 497, 229864. [Google Scholar] [CrossRef]
- Alabi, A.; Chiesa, M.; Garlisi, C.; Palmisano, G. Advances in anti-scale magnetic water treatment. Environ. Sci. Water Res. Technol. 2015, 1, 408. [Google Scholar] [CrossRef]
Reference | Electrode Material (OER) | Magnetic Field Direction | Magnetic Field (mT) | Reduction in Overpotential (mV) | Current Density (mA cm−2) |
---|---|---|---|---|---|
[18] | GC | Vertical | 0.72 | 20 | 10 |
Au/GC | Vertical | 0.72 | 20 | 10 | |
Fe/GC | Vertical | 0.72 | 100 | 10 | |
Co/GC | Vertical | 0.72 | 80 | 10 | |
Ni/GC | Vertical | 0.72 | 70 | 10 | |
NiFeCo/GC | Vertical | 0.72 | 90 | 10 | |
NiFeCo/GC | Vertical | 0.18 | 30 | 10 | |
[22] | Co | Horizontal | 4.32 (150 kHz) | 140 | 10 |
CoO | Horizontal | 4.32 (150 kHz) | 119 | 10 | |
Co3O4 | Horizontal | 4.32 (150 kHz) | 142 | 10 | |
[23] | Carbon paper | Horizontal | 5.184 (150 kHz) | 85 | 10 |
Carbon paper | Horizontal | 5.184 (150 kHz) | −277 | 40 | |
NiCoFe-MOF-74 | Horizontal | 5.184 (150 kHz) | 124 | 10 | |
NiCoFe-MOF-74 | Horizontal | 5.184 (150 kHz) | −121 | 40 | |
[24] | NiFe/NiFeOOH | Vertical | 3.9 (300 kHz) | 133 | 10 |
[25] | CoMoS2 | Vertical | 4.55 (300 kHz) | 67 | 10 |
CoMoS2 | Vertical | 4.55 (200 kHz) | 47 | 10 |
Reference | Electrode Materials (HER) | Magnetic Field Direction | Magnetic Field (mT) | Reduction of Overpotential (mV) | Current Density (mA cm−2) |
---|---|---|---|---|---|
[18] | NiFeCo/GC | Vertical | 0.72 | 210 | 10 |
NiFeCo/GC | Vertical | 0.18 | 120 | 10 | |
[26] | NiFe2O4MOF-74 | Horizontal | 2.3 | 31 | 10 |
[27] | Step MoS2 | Vertical | 3.25 (300 kHz) | 37 | 10 |
Screw MoS2 | Vertical | 3.25 (300 kHz) | 72 | 10 | |
[28] | FeCoNiPB soft magnetic alloy | Vertical | 20 (160.9 kHz) | 39 * (10%) | 10 |
[29] | GdMoS2 | Vertical | 3.9 (300 kHz) | 103 | 10 |
Reference | Electrode Material | Configuration from Figure 3 and Figure 4 (and Lorentz Force Direction) | Magnetic Field (mT) | Inter Electrode Distance (mm) and Alignment | Current Density Range (mA cm−2) | Reduction in Overpotentials (mV) |
---|---|---|---|---|---|---|
[18] | NiFeCo/GC (OER) | c or d (horizontal) | 0.18 | 20, Vertical | 0 to 10 | Less than 10 |
NiFeCo/GC (OER) | c or d (horizontal) | 0.72 | 20, Vertical | 0 to 10 | Less than 10 | |
NiFeCo/GC (HER) | c or d (horizontal) | 0.18 | 20, Vertical | 0 to 100 | 0 to 160 | |
NiFeCo/GC (HER) | c or d (horizontal) | 0.72 | 20, Vertical | 0 to 100 | 0 to 220 | |
[33] | Ni wire (OER) | e (upward) | 1000 | 5, Vertical | 400 to 1500 | Up to 16 * |
f (downward) | 1000 | 5, Vertical | 400 to 1500 | Up to 36 * | ||
[34] | Pt (OER+HER) | i or j | 220 | 50 *, Horizontal | 120 to 400 | 466 to 1331 * |
Pt (OER+HER) | g/h/k/l (horizontal) | 220 | 50 *, Horizontal | 120 to 400 | 1165 to 3295 * | |
Pt (OER+HER) | a or b | 220 | 50 *, Vertical | 120 to 400 | −391 to −1564 * | |
Pt (OER+HER) | c or d (horizontal) | 220 | 50 *, Vertical | 120 to 400 | 423 to 2379 * | |
Pt (OER+HER) | a or b | 220 | 50 *, Vertical | 120 to 400 | 0 to −1320 * | |
Pt (OER+HER) | e (upward) | 220 | 50 *, Vertical | 120 to 400 | −255 to −1965 * | |
Pt (OER+HER) | f (downward) | 220 | 50 *, Vertical | 120 to 400 | −225 to −2126 * | |
[35] | Co3O4 (OER) | e (upward) | 125 | Unknown, Vertical | 0 to 200 | 0 to 122 * |
Co3O4 (OER) | a | 125 | Unknown, Vertical | 0 to 200 | 0 to 85 * | |
[36] | Pt (OER+HER) | e (upward) | 900 | 3, Vertical | 625 to 2500 | 46 to 395 * |
Pt (OER+HER) | f (downward) | 900 | 3, Vertical | 625 to 2500 | −137 to 166 * | |
[37] | IrO2 (OER) | a | 1400 | 10, Vertical | 10 | 10 |
Ni(OH)2 (OER) | a | 1400 | 10, Vertical | 10 | 12 | |
NiO (OER) | a | 1400 | 10, Vertical | 10 | 11 | |
Ni (OER) | a | 1400 | 10, Vertical | 10 | 20 | |
[38] | NiCo2S4 (HER) | e (upward) | 100 | Unknown, Vertical | 0 to 60 | 41 to 66 * |
[39] | Pt (HER) | c (horizontal) | 5000 | Unknown, Vertical | 1 to 1000 | 0 to 237 |
Reference | Electrode Material | Configuration from Figure 3 and Figure 4 (and Lorentz Force Direction) | Magnetic Field (mT) | Inter Electrode Distance (mm) and Alignment | Initial Current Density (mA cm−2) | Current Density with Magnetic Field (mA cm−2) |
---|---|---|---|---|---|---|
[18] | NiFeCo/GC (OER) | c or d (horizontal) | 0.18 | 20, Vertical | 10 | 13 (+3) |
NiFeCo/GC (OER) | c or d (horizontal) | 0.72 | 20, Vertical | 10 | 20 (+10) | |
NiFeCo/GC (HER) | c or d (horizontal) | 0.18 | 20, Vertical | 10 | 15 (+5) | |
NiFeCo/GC (HER) | c or d (horizontal) | 0.72 | 20, Vertical | 10 | 20 (+10) | |
[40] | Graphite (OER) HCS (HER) | e (upward) | 500 | 35, Vertical | 173 * | 207 * (+34) |
Graphite (OER) HCS (HER) | f (downward) | 500 | 35, Vertical | 173 * | 153 * (−20) | |
Graphite (OER) HCS (HER) | e (upward) | 500 | 35, Vertical | 278 * | 293 * (+15) | |
Graphite (OER) HCS (HER) | f (downward) | 500 | 35, Vertical | 278 * | 260 * (−18) | |
Graphite (OER) HCS (HER) | e (upward) | 500 | 35, Vertical | 366 * | 411 * (+45) | |
Graphite (OER) HCS (HER) | f (downward) | 500 | 35, Vertical | 366 * | 351 * (−15) | |
[41] | C (OER+HER) | e (upward) | 4500 | 2, Vertical | 331 * | (+24) |
C (OER+HER) | f (downward) | 4500 | 2, Vertical | 331 * | (+0 *) | |
Ni (OER+HER) | e (upward) | 4500 | 2, Vertical | 1744 * | (+247) | |
Ni (OER+HER) | f (downward) | 4500 | 2, Vertical | 1744 * | (−102) | |
Pt (OER+HER) | e (upward) | 4500 | 2, Vertical | 1200 * | (+122) | |
Pt (OER+HER) | f (downward) | 4500 | 2, Vertical | 1200 * | (−32) | |
[42] | γ-Fe2O3 (OER) | b | 400 | Vertical | 70 70 | (+0 *) |
γ-Fe2O3 (OER) | a | 400 | Vertical | (+2 *) | ||
γ-Fe2O3 (OER) | f (downward) | 400 | Vertical | 70 | (+0 *) | |
γ-Fe2O3 (OER) | e (upward) | 400 | Vertical | 70 | (−2 *) | |
[43] | C (OER+HER) | j—inverted | 220 | 10, Horizontal | 70 * | 96 * (+26 *) |
C (OER+HER) | j—inverted | 220 | 50, Horizontal | 21 * | 17 * (−4 *) | |
Pt (OER+HER) | j—inverted | 220 | 10, Horizontal | 80 * | 103 * (+23 *) | |
Pt (OER+HER) | j—inverted | 220 | 50, Horizontal | 27 * | 24 * (−3 *) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binns, M. Methods for Enhancing Electrolysis for Hydrogen Production: The Benefits of Applying Magnetic Fields. Energies 2024, 17, 4897. https://doi.org/10.3390/en17194897
Binns M. Methods for Enhancing Electrolysis for Hydrogen Production: The Benefits of Applying Magnetic Fields. Energies. 2024; 17(19):4897. https://doi.org/10.3390/en17194897
Chicago/Turabian StyleBinns, Michael. 2024. "Methods for Enhancing Electrolysis for Hydrogen Production: The Benefits of Applying Magnetic Fields" Energies 17, no. 19: 4897. https://doi.org/10.3390/en17194897
APA StyleBinns, M. (2024). Methods for Enhancing Electrolysis for Hydrogen Production: The Benefits of Applying Magnetic Fields. Energies, 17(19), 4897. https://doi.org/10.3390/en17194897