Mathematical Models and Dynamic Global Warming Potential Calculation for Estimating the Role of Organic Amendment in Net-Zero Goal Achievement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of the In-House Model
2.2. Uses of Organic Waste in a Biorefinery and Uses of Residue Generated from a Biorefinery as a Soil Amendment
2.3. Biorefinery for Recycling of Nutrients
2.4. Dynamic Counting of CO2 for Better Estimation of Global Warming Potential
3. Results and Discussion
3.1. Carbon Remaining on the Land after Different Time Frames (Simulation Results Obtained from the In-House Model)
3.2. Implication of Carbon Buildup on Land and Its Role in Net-Zero Target Achievement
Country | GHG Emissions (Gton CO2), 2020 [81] | Net-Zero Target Year [82] | Arable Land Available (km2) [83] | GHG Emission Mitigation from Biomass Residue Applications (Gton CO2 eq.) | Biomass Required per Year (Gton) | Residual Biomass Available | Residual Emission at Net Zero (Buck et al., [7] Mt CO2 eq | Reference |
---|---|---|---|---|---|---|---|---|
China | 13.74 | 2060 [82] | 1,086,420 | (4.8–1.1) [4.23–1] | 0.094 | 0.39 | Cuiping et al., [84] | |
USA | 6.3 | 2050 [82] | 1,705,000 | (5.9–1.6) [5.28–1.5] | 0.15 | 0.4–3.383 | 1605 | Gronowska et al., [85] |
EU27 | 3.9 | 2050 [82] | 1,570,000 [86] | (5.4–1.8) [4.9–1.4] | 0.14 | 0.365 | Esteban and Carrasco, [87] | |
India | 3.61 | 2070 [82] | 1,581,450 | (8.4–1.6) [7.3–1.5] | 0.14 | 0.5 | Kumar et al., [88] | |
Russia | 2.3 | 2060 [89] | 1,216,490 | (5.4–1.23) [4.74–1.12] | 0.11 | 0.213 | Namsaraev et al., [90] | |
Japan | 1.27 | 2050 [82] | 43,080 | (0.15–0.04) [0.13–0.04] | 0.04 | |||
Brazil | 1.26 | 2050 [91] | 610,000 | (2.1–0.6) [1.9–0.5] | 0.05 | 0.782 | Ferreira et al., [92] | |
Indonesia | 1.074 | 2060 [93] | 220,000 | (0.97–0.22) [0.85–0.21] | 0.02 | |||
Mexico | 0.801 | 2050 [91] | 248,000 | (0.85–0.24) [0.77–0.22] | 0.02 | 0.05 | Lozano-Garcia et al., 2020 [94] | |
Canada | 0.762 | 2050 [82] | 451,000 | (1.6–0.43) [1.4–0.4] | 0.04 | 0.05–1.02 | 149 | Gronowska et al., 2004 [85] |
South Korea | 0.758 | 2050 [82] | 15,530 | (0.05–0.015) [0.05–0.013] | 0.001 | |||
Saudi Arabia | 0.75 | 2060 [95] | 34,460 | (0.15–0.035) [0.13–0.03] | 0.003 | |||
South Africa | 0.574 | 2050 [82] | 145,000 | (0.5–0.14) [0.45–0.13] | 0.012 | |||
UK | 0.464 | 2050 [82] | 60,050 | (0.2–0.06) [0.19–0.05] | 0.005 | 76 | ||
France and Monaco | 0.45 | 2050 [82] | 182,603 | (0.63–0.17) [0.57–0.16] | 0.016 | 80 | ||
Poland | 0.425 | 2050 [96] | 125,710 | (0.43 –0.12) [0.39–0.11] | 0.011 | |||
Vietnam | 0.419 | 2050 | 63,000 | (0.22–0.06) [0.2 –0.06] | 0.005 | |||
Italy | 0.418 | 2050 [82] | 71,320 | (0.24–0.07) [0.22–0.06] | 0.006 | |||
Argentina | 0.397 | 2050 [97] | 320,000 | (0.11–0.3) [0.99–0.28] | 0.028 | |||
Spain | 0.35 | 2050 [82] | 125,000 | (0.43–0.12)–[0.39–0.11] | 0.011 | 29 | ||
Malaysia | 0.324 | 2050 [98] | 18,000 | (0.062–0.017) [0.056–0.016] | 0.0016 | |||
Taiwan | 0.32 | 2050 [97] | 7.87 [98] | (2.71 × 10−5–0.75 × 10−5) [2.44 × 10−5–0.69 × 10−5] | 6.8 × 10−7 | |||
Ukraine | 0.278 | 2060 [82] | 324,740 | (1.43–0.33) [1.27–0.3] | 0.028 |
3.3. Dynamic Counting of CO2 and Associated GHG Mitigation Potential
3.4. Role of Biorefinery in Residual Biomass Generation and Nutrient Management
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Symbol | Description | Unit |
fs | Labile fraction in organic amendment | fraction |
SS | Organic amendment | fraction |
fp | Labile fraction in plant residue | fraction |
Y | yield | ton-day−1 |
SOC | Soil organic carbon | kg |
c1 | Carbon content in organic amendment | fraction |
c2 | Carbon content in plant residue | fraction |
nc11 | Nitrogen to carbon ratio in organic amendment | fraction |
nc12 | Nitrogen to carbon ratio in plant residue | fraction |
kd11 | Decay rate of labile fraction of organic amendment and plant residue to CO2 | day−1 |
kd12 | Decay rate of nonlabile fraction of organic amendment and plant residue to CO2 | Day−1 |
pc11 | Phosphorus to carbon ratio in organic amendment | fraction |
pc12 | Phosphorus to carbon ratio in plant residue | fraction |
Porg | Organic Phosphorus | kg |
Norg | Organic nitrogen | kg |
P | Inorganic phosphorus | kg |
N | Inorganic nitrogen | kg |
kgmp | conversion rate of organic P to inorganic P | Day−1 |
kgmn | conversion rate of organic N to inorganic N | Day−1 |
kdn | Denitrification rate of inorganic N | Day−1 |
kln | Leaching rate of inorganic N | Day−1 |
klp | Leaching rate of inorganic P | Day−1 |
γ | Fraction of inorganic N that is nitrate | fraction |
Nu | Plant uptake of inorganic nitrogen | kg-day−1 |
Pu | Plant uptake of inorganic phosphorus | kg-day−1 |
cy | Constant | |
t | Time | day |
GWP | Global warming potential | Kg CO2 eq. |
DCF | Dynamic global warming | W/m2 |
Ct | Atmospheric decay function of CO2 | Mass/volume |
r | Radiative efficiency of greenhouse gases | W/m2 |
References
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Van Soest, H.L.; den Elzen, M.G.; van Vuuren, D.P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nat. Commun. 2021, 12, 2140. [Google Scholar] [CrossRef] [PubMed]
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The meaning of net zero and how to get it right. Nat. Clim. Chang. 2022, 12, 15–21. [Google Scholar] [CrossRef]
- Anderson, C.M.; DeFries, R.S.; Litterman, R.; Matson, P.A.; Nepstad, D.C.; Pacala, S.; Schlesinger, W.H.; Shaw, M.R.; Smith, P.; Weber, C.; et al. Natural climate solutions are not enough. Science 2019, 363, 933–934. [Google Scholar] [CrossRef] [PubMed]
- Beillouin, D.; Corbeels, M.; Demenois, J.; Berre, D.; Boyer, A.; Fallot, A.; Feder, F.; Cardinael, R. A global meta-analysis of soil organic carbon in the Anthropocene. Nat. Commun. 2023, 14, 3700. [Google Scholar] [CrossRef] [PubMed]
- DeAngelo, J.; Azevedo, I.; Bistline, J.; Clarke, L.; Luderer, G.; Byers, E.; Davis, S.J. Energy systems in scenarios at net-zero CO2 emissions. Nat. Commun. 2021, 12, 6096. [Google Scholar] [CrossRef]
- Buck, H.J.; Carton, W.; Lund, J.F.; Markusson, N. Why residual emissions matter right now. Nat. Clim. Chang. 2023, 13, 351–358. [Google Scholar] [CrossRef]
- Matthews, H.D.; Tokarska, K.B.; Nicholls, Z.R.; Rogelj, J.; Canadell, J.G.; Friedlingstein, P.; Frölicher, T.L.; Forster, P.M.; Gillett, N.P.; Ilyina, T.; et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nat. Geosci. 2020, 13, 769–779. [Google Scholar] [CrossRef]
- Matthews, H.D.; Zickfeld, K.; Dickau, M.; MacIsaac, A.J.; Mathesius, S.; Nzotungicimpaye, C.M.; Luers, A. Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario. Commun. Earth Environ. 2022, 3, 65. [Google Scholar] [CrossRef]
- Jenkins, S.; Cain, M.; Friedlingstein, P.; Gillett, N.; Walsh, T.; Allen, M.R. Quantifying non-CO2 contributions to remaining carbon budgets. NPJ Clim. Atmos. Sci. 2021, 4, 47. [Google Scholar] [CrossRef]
- Gentzis, T. Subsurface sequestration of carbon dioxide—An overview from an Alberta (Canada) perspective. Int. J. Coal Geol. 2000, 43, 287–305. [Google Scholar] [CrossRef]
- Bossio, D.A.; Cook-Patton, S.C.; Ellis, P.W.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.J.; von Unger, M.; Emmer, I.M.; et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 2020, 11, 5427. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Wang, J.; Lv, J.; Liu, Z.; Sun, T.; Yang, Y.; Zhu, Y.G. Carbon Sequestration Strategies in Soil Using Biochar: Advances, Challenges, and Opportunities. Environ. Sci. Technol. 2023, 57, 11357–11372. [Google Scholar] [CrossRef] [PubMed]
- Goulding, K.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 667–680. [Google Scholar] [CrossRef]
- Kowalska, A.; Grobelak, A.; Almås, Å.R.; Singh, B.R. Effect of biowastes on soil remediation, plant productivity and soil organic carbon sequestration: A review. Energies 2020, 13, 5813. [Google Scholar] [CrossRef]
- Lho, A.; Parker, D.; Zilberman, D. Optimal Regional Regulation of Animal Waste. In Modeling, Dynamics, Optimization and Bioeconomics III: DGS IV, Madrid, Spain, June 2016, and Bioeconomy VIII, Berkeley, USA, April 2015–Selected Contributions IV; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 1–23. [Google Scholar]
- Dahiya, S.; Chowdhury, R.; Kumar, P.; Ghosh, S.; Srinivasan, A. Recovery of Sugar and Nutrients from Algae and Colocasia esculenta (Taro) Leaves Using Chemical Hydrolysis. Sustainability 2022, 14, 16383. [Google Scholar] [CrossRef]
- Wang, L.; Min, M.; Li, Y.; Chen, P.; Chen, Y.; Liu, Y.; Wang, Y.; Ruan, R. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 2010, 162, 1174–1186. [Google Scholar] [CrossRef]
- Abreu, A.P.; Fernandes, B.; Vicente, A.A.; Teixeira, J.; Dragone, G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour. Technol. 2012, 118, 61–66. [Google Scholar] [CrossRef]
- Rani, S.; Chowdhury, R.; Tao, W.; Nedbalová, L. Microalga-Mediated Tertiary Treatment of Municipal Wastewater: Removal of Nutrients and Pathogens. Sustainability 2021, 13, 9554. [Google Scholar] [CrossRef]
- Chowdhury, R.; Freire, F. Bioenergy production from algae using dairy manure as a nutrient source: Life cycle energy and greenhouse gas emission analysis. Appl. Energy 2015, 154, 1112–1121. [Google Scholar] [CrossRef]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biol. Biochem. 2006, 38, 1577–1582. [Google Scholar] [CrossRef]
- He, Y.T.; Zhang, W.J.; Xu, M.G.; Tong, X.G.; Sun, F.X.; Wang, J.Z.; Huang, S.M.; Zhu, P.; He, X.H. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Sci. Total Environ. 2015, 532, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, W.; Li, M.; Zhang, Y.; Li, F.; Li, C. Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change? Agric. Syst. 2017, 150, 67–77. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Z. Organic Amendments Alter Long-Term Turnover and Stability of Soil Carbon: Perspectives from a Data-Model Integration. Agronomy 2021, 11, 2134. [Google Scholar] [CrossRef]
- Tripathi, R.; Nayak, A.K.; Bhattacharyya, P.; Shukla, A.K.; Shahid, M.; Raja, R.; Panda, B.B.; Mohanty, S.; Kumar, A.; Thilagam, V.K. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years long-term fertilizer experiment in tropical rice–rice system. Geoderma 2014, 213, 280–286. [Google Scholar] [CrossRef]
- Mandal, B.; Majumder, B.; Bandyopadhyay, P.K.; Hazra, G.C.; Gangopadhyay, A.; Samantaray, R.N.; Mishra, A.K.; Chaudhury, J.; Saha, M.N.; Kundu, S. The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Glob. Chang. Biol. 2007, 13, 357–369. [Google Scholar] [CrossRef]
- Yang, J.; Gao, W.; Ren, S. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil. Soil Tillage Res. 2015, 151, 67–74. [Google Scholar] [CrossRef]
- Mandal, A.; Majumder, A.; Dhaliwal, S.S.; Toor, A.S.; Mani, P.K.; Naresh, R.K.; Gupta, R.K.; Mitran, T. Impact of agricultural management practices on soil carbon sequestration and its monitoring through simulation models and remote sensing techniques: A review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1–49. [Google Scholar] [CrossRef]
- Jiang, Z.; Yin, S.; Zhang, X.; Li, C.; Shen, G.; Zhou, P.; Liu, C. Research and Development of a DNDC Online Model for Farmland Carbon Sequestration and GHG Emissions Mitigation in China. Int. J. Environ. Res. Public Health 2017, 14, 1493. [Google Scholar] [CrossRef]
- Jensen, L.; Mueller, T.; Nielsen, N.; Hansen, S.; Crocker, G.; Grace, P.; Klír, J.; Körschens, M.; Poulton, P. Simulating trends in soil organic carbon in long-term experiments using the soil-plant-atmosphere model DAISY. Geoderma 1997, 81, 5–28. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D.; Crocker, G.; Grace, P.; Klír, J.; Körschens, M.; Poulton, P.; Richter, D. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 1997, 81, 29–44. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Pal, D.K.; Ray, S.K.; Chandran, P.; Mandal, C.; Telpande, B.; Deshmukh, A.S.; Tiwary, P. Simulating change in soil organic carbon in two long term fertilizer experiments in India: With the RothC model. Clim. Chang. Environ. Sustain. 2013, 1, 104–117. [Google Scholar] [CrossRef]
- Farina, R.; Testani, E.; Campanelli, G.; Leteo, F.; Napoli, R.; Canali, S.; Tittarelli, F. Potential carbon sequestration in a Mediterranean organic vegetable cropping system. A model approach for evaluating the effects of compost and Agro-ecological Service Crops (ASCs). Agric. Syst. 2018, 162, 239–248. [Google Scholar] [CrossRef]
- Mishra, G.; Jangir, A.; Francaviglia, R. Modeling soil organic carbon dynamics under shifting cultivation and forests using Rothc model. Ecol. Model. 2019, 396, 33–41. [Google Scholar] [CrossRef]
- Mohanty, M.; Sinha, N.K.; Somasundaram, J.; McDermid, S.S.; Patra, A.K.; Singh, M.; Dwivedi, A.K.; Reddy, K.S.; Rao, C.S.; Prabhakar, M.; et al. Soil carbon sequestration potential in a Vertisol in central India-results from a 43-year long-term experiment and APSIM modeling. Agric. Syst. 2020, 184, 102906. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J.; Smith, C.J.; Probert, M.E. Modeling long-term soil carbon dynamics and sequestration potential in semi-arid agro-ecosystems. Agric. For. Meteorol. 2011, 151, 1529–1544. [Google Scholar] [CrossRef]
- Yin, J.; Zhao, L.; Xu, X.; Li, D.; Qiu, H.; Cao, X. Evaluation of long-term carbon sequestration of biochar in soil with biogeochemical field model. Sci. Total Environ. 2022, 822, 153576. [Google Scholar] [CrossRef]
- Yoshida, H.; Nielsen, M.P.; Scheutz, C.; Jensen, L.S.; Christensen, T.H.; Nielsen, S.; Bruun, S. Effects of sewage sludge stabilization on fertilizer value and greenhouse gas emissions after soil application. Acta Agric. Scand. Sect. B Soil Plant Sci. 2015, 65, 506–516. [Google Scholar] [CrossRef]
- Li, L.L.; Li, S.T. Nitrogen mineralization from animal manures and its relation to organic N fractions. J. Integr. Agric. 2014, 13, 2040–2048. [Google Scholar] [CrossRef]
- Oehl, F.; Frossard, E.; Fliessbach, A.; Dubois, D.; Oberson, A. Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol. Biochem. 2004, 36, 667–675. [Google Scholar] [CrossRef]
- Barton, L.; McLay, C.D.A.; Schipper, L.A.; Smith, C.T. Annual denitrification rates in agricultural and forest soils: A review. Soil Res. 1999, 37, 1073–1094. [Google Scholar] [CrossRef]
- Cooke, C.M.; Gove, L.; Nicholson, F.A.; Cook, H.F.; Beck, A.J. Effect of drying and composting biosolids on the movement of nitrate and phosphate through repacked soil columns under steady-state hydrological conditions. Chemosphere 2001, 44, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, C.; Assadian, N.W.; Lindemann, W. The fate of nitrogen in a moderately alkaline and calcareous soil amended with biosolids and urea. Chemosphere 2006, 63, 1933–1941. [Google Scholar] [CrossRef]
- Kidd, P.S.; Domínguez-Rodríguez, M.J.; Díez, J.; Monterroso, C. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere 2007, 66, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Masscheleyn, P.H.; DeLaune, R.D.; Patrick, W.H., Jr. Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: Effect of soil oxidation-reduction status. Chemosphere 1993, 26, 251–260. [Google Scholar] [CrossRef]
- Kralova, M.; Masscheleyn, P.H.; Lindau, C.W.; Patrick, W.H. Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential. Water Air Soil Pollut. 1992, 61, 37–45. [Google Scholar] [CrossRef]
- Lee, J.-M.; Park, D.-G.; Kang, S.-S.; Choi, E.-J.; Gwon, H.-S.; Lee, H.-S.; Lee, S.-I. Short-Term Effect of Biochar on Soil Organic Carbon Improvement and Nitrous Oxide Emission Reduction According to Different Soil Characteristics in Agricultural Land: A Laboratory Experiment. Agronomy 2022, 12, 1879. [Google Scholar] [CrossRef]
- Yuan, Y.; Dai, X.; Wang, H.; Xu, M.; Fu, X.; Yang, F. Effects of land-use conversion from double rice cropping to vegetables on methane and nitrous oxide fluxes in southern China. PLoS ONE 2016, 11, e0155926. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Chang. Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Henault, C.; Devis, X.; Page, S.; Justes, E.; Reau, R.; Germon, J.C. Nitrous oxide emissions under different soil and land management conditions. Biol. Fertil. Soils 1998, 26, 199–207. [Google Scholar] [CrossRef]
- Jørgensen, K.; Jensen, L.S. Chemical and biochemical variation in animal manure solids separated using different commercial separation technologies. Bioresour. Technol. 2009, 100, 3088–3096. [Google Scholar] [CrossRef] [PubMed]
- Lage, S.; Gentili, F.G. Chemical composition and species identification of microalgal biomass grown at pilot-scale with municipal wastewater and CO2 from flue gases. Chemosphere 2023, 313, 137344. [Google Scholar] [CrossRef] [PubMed]
- Krull, E.S.; Baldock, J.A.; Skjemstad, J.O.; Smernik, R.J. Characteristics of biochar: Organo-chemical properties. In Biochar for Environmental Management; Routledge: Oxfordshire, UK, 2009; pp. 53–63. [Google Scholar]
- Chowdhury, R.; Sadhukhan, J.; Traverso, M.; Keen, P.L. Effects of residence time on life cycle assessment of bioenergy production from dairy manure. Bioresour. Technol. Rep. 2018, 4, 57–65. [Google Scholar] [CrossRef]
- Chowdhury, R.; Caetano, N.; Franchetti, M.J.; Hariprasad, K. Life Cycle Based GHG Emissions from Algae Based Bioenergy with a Special Emphasis on Climate Change Indicators and Their Uses in Dynamic LCA: A Review. Sustainability 2023, 15, 1767. [Google Scholar] [CrossRef]
- Chowdhury, R.; Franchetti, M. Life cycle energy demand from algal biofuel generated from nutrients present in the dairy waste. Sustain. Prod. Consum. 2017, 9, 22–27. [Google Scholar] [CrossRef]
- Jeudy-Hugo, S.; Re, L.L.; Falduto, C. Understanding countries’ net-zero emissions targets. In OECD/IEA Climate Change Expert Group Papers; OECD: Paris, France, 2021. [Google Scholar]
- Shukla, P.R.; Skea, J.; Reisinger, A. (Eds.) Climate Change 2022: Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; WMO, IPCC Secretariat: Geneva, Switzerland, 2022. [Google Scholar]
- Den Elzen, M.G.; Dafnomilis, I.; Forsell, N.; Fragkos, P.; Fragkiadakis, K.; Höhne, N.; Kuramochi, T.; Nascimento, L.; Roelfsema, M.; van Soest, H.; et al. Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach. Mitig. Adapt. Strateg. Glob. Chang. 2022, 27, 33. [Google Scholar] [CrossRef]
- Choe, C.; Cheon, S.; Kim, H.; Lim, H. Mitigating climate change for negative CO2 emission via syngas methanation: Techno-economic and life-cycle assessments of renewable methane production. Renew. Sustain. Energy Rev. 2023, 185, 113628. [Google Scholar] [CrossRef]
- Creutzig, F.; Ravindranath, N.H.; Berndes, G.; Bolwig, S.; Bright, R.; Cherubini, F.; Chum, H.; Corbera, E.; Delucchi, M.; Faaij, A.; et al. Bioenergy and climate change mitigation: An assessment. GCB Bioenergy 2015, 7, 916–944. [Google Scholar] [CrossRef]
- Zuiderveen, E.A.R.; Kuipers, K.J.J.; Caldeira, C.; Hanssen, S.V.; van der Hulst, M.K.; de Jonge, M.M.J.; Vlysidis, A.; van Zelm, R.; Sala, S.; Huijbregts, M.A.J. The potential of emerging bio-based products to reduce environmental impacts. Nat. Commun. 2023, 14, 8521. [Google Scholar] [CrossRef]
- Nie, Y.; Bi, X. Life-cycle assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia. Biotechnol. Biofuels 2018, 11, 23. [Google Scholar] [CrossRef]
- Tu, Q.; McDonnell, B.E. Monte Carlo analysis of life cycle energy consumption and greenhouse gas (GHG) emission for biodiesel production from trap grease. J. Clean. Prod. 2016, 112, 2674–2683. [Google Scholar] [CrossRef]
- Dixon, J.; Bell, K.; Brush, S. Which way to net zero? A comparative analysis of seven UK 2050 decarbonisation pathways. Renew. Sustain. Energy Transit. 2022, 2, 100016. [Google Scholar] [CrossRef]
- Anika, O.C.; Nnabuife, S.G.; Bello, A.; Okoroafor, R.E.; Kuang, B.; Villa, R. Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Sci. Technol. 2022, 5, 100072. [Google Scholar] [CrossRef]
- Azevedo, I.; Bataille, C.; Bistline, J.; Clarke, L.; Davis, S. Net-zero emissions energy systems: What we know and do not know. Energy Clim. Chang. 2021, 2, 100049. [Google Scholar] [CrossRef]
- Sproul, E.; Barlow, J.; Quinn, J.C. Time-resolved cost analysis of natural gas power plant conversion to bioenergy with carbon capture and storage to support net-zero emissions. Environ. Sci. Technol. 2020, 54, 15338–15346. [Google Scholar] [CrossRef]
- Solomon, A.A.; Bogdanov, D.; Breyer, C. Solar driven net zero emission electricity supply with negligible carbon cost: Israel as a case study for Sun Belt countries. Energy 2018, 155, 87–104. [Google Scholar] [CrossRef]
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Hafner, S.; Jones, A.; Anger-Kraavi, A. Economic impacts of achieving a net-zero emissions target in the power sector. J. Clean. Prod. 2021, 312, 127610. [Google Scholar] [CrossRef]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef]
- Hemmat, A.; Aghilinategh, N.; Rezainejad, Y.; Sadeghi, M. Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil Tillage Res. 2010, 108, 43–50. [Google Scholar] [CrossRef]
- Smith, P.; Powlson, D.; Glendining, M.; Smith, J.O. Potential for carbon sequestration in European soils: Preliminary estimates for five scenarios using results from long-term experiments. Glob. Chang. Biol. 1997, 3, 67–79. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Lu, F.E.I.; Wang, X.; Han, B.; Ouyang, Z.; Duan, X.; Zheng, H.U.A.; Miao, H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob. Chang. Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- Fuhrman, J.; Bergero, C.; Weber, M.; Monteith, S.; Wang, F.M.; Clarens, A.F.; Doney, S.C.; Shobe, W.; McJeon, H. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Chang. 2023, 13, 341–350. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Angers, D.A.; Chenu, C.; Barré, P.; Martin, M.P.; Saby, N.P.; Walter, C. National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones. Sci. Total Environ. 2019, 666, 355–367. [Google Scholar] [CrossRef]
- GHG Emissions of All World Countries. Available online: https://edgar.jrc.ec.europa.eu/report_2021#emissions_table (accessed on 24 August 2023).
- Which Countries Have a Net Zero Carbon Goal? Available online: https://www.climatechangenews.com/2019/06/14/countries-net-zero-climate-goal/ (accessed on 24 August 2023).
- Available online: https://unstats.un.org/unsd/environment/agriculturalland.htm (accessed on 24 August 2023).
- Cuiping, L.; Chuangzhi, W.; Haitao, H. Study on the distribution and quantity of biomass residues resource in China. Biomass Bioenergy 2004, 27, 111–117. [Google Scholar] [CrossRef]
- Gronowska, M.; Joshi, S.; MacLeana, H.L. A review of US and Canadian biomass supply studies. BioResources 2009, 4, 341–369. [Google Scholar] [CrossRef]
- Farms and Farmland in the European Union—Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Farms_and_farmland_in_the_European_Union_-_statistics (accessed on 28 August 2023).
- Esteban, L.S.; Carrasco, J.E. Biomass resources and costs: Assessment in different EU countries. Biomass Bioenergy 2011, 35, S21–S30. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, N.; Baredar, P.; Shukla, A. A review on biomass energy resources, potential, conversion and policy in India. Renew. Sustain. Energy Rev. 2015, 45, 530–539. [Google Scholar] [CrossRef]
- Available online: https://climateactiontracker.org/countries/russian-federation/ (accessed on 24 August 2023).
- Namsaraev, Z.B.; Gotovtsev, P.M.; Komova, A.V.; Vasilov, R.G. Current status and potential of bioenergy in the Russian Federation. Renew. Sustain. Energy Rev. 2018, 81, 625–634. [Google Scholar] [CrossRef]
- Race to Net Zero: Carbon Neutral Goals by Country. Available online: https://www.visualcapitalist.com/sp/race-to-net-zero-carbon-neutral-goals-by-country/ (accessed on 27 August 2023).
- Ferreira, L.R.A.; Otto, R.B.; Silva, F.P.; De Souza, S.N.M.; De Souza, S.S.; Junior, O.A. Review of the energy potential of the residual biomass for the distributed generation in Brazil. Renew. Sustain. Energy Rev. 2018, 94, 440–455. [Google Scholar] [CrossRef]
- An Energy Sector Roadmap to Net Zero Emissions in Indonesia. Available online: https://www.iea.org/reports/an-energy-sector-roadmap-to-net-zero-emissions-in-indonesia (accessed on 27 August 2023).
- Lozano-García, D.F.; Santibañez-Aguilar, J.E.; Lozano, F.J.; Flores-Tlacuahuac, A. GIS-based modeling of residual biomass availability for energy production in Mexico. Renew. Sustain. Energy Rev. 2020, 120, 109610. [Google Scholar] [CrossRef]
- Available online: https://climateactiontracker.org/countries/saudi-arabia/ (accessed on 27 August 2023).
- Available online: https://www.oecd.org/regional/RO2021%20Poland.pdf (accessed on 27 August 2023).
- Available online: https://climateactiontracker.org/countries/argentina/net-zero-targets/ (accessed on 27 August 2023).
- Available online: https://www.wwf.org.my/our_work/climate_change/towards_net_zero_emissions_by_2050/ (accessed on 11 September 2023).
- Levasseur, A.; Lesage, P.; Margni, M.; Deschênes, L.; Samson, R. Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ. Sci. Technol. 2010, 44, 3169–3174. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.; Yao, Y. Dynamic life cycle assessment of energy technologies under different greenhouse gas concentration pathways. Environ. Sci. Technol. 2021, 56, 1395–1404. [Google Scholar] [CrossRef]
- Matthews, H.D.; Zickfeld, K.; Koch, A.; Luers, A. Accounting for the climate benefit of temporary carbon storage in nature. Nat. Commun. 2023, 14, 5485. [Google Scholar] [CrossRef]
- Sharma, B.; Kumar, J.; Ganguly, A.R.; Hoffman, F.M. Carbon cycle extremes accelerate weakening of the land carbon sink in the late 21st century. Biogeosciences 2023, 20, 1829–1841. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, R.; Agarwal, V. Mathematical Models and Dynamic Global Warming Potential Calculation for Estimating the Role of Organic Amendment in Net-Zero Goal Achievement. Energies 2024, 17, 4819. https://doi.org/10.3390/en17194819
Chowdhury R, Agarwal V. Mathematical Models and Dynamic Global Warming Potential Calculation for Estimating the Role of Organic Amendment in Net-Zero Goal Achievement. Energies. 2024; 17(19):4819. https://doi.org/10.3390/en17194819
Chicago/Turabian StyleChowdhury, Raja, and Vivek Agarwal. 2024. "Mathematical Models and Dynamic Global Warming Potential Calculation for Estimating the Role of Organic Amendment in Net-Zero Goal Achievement" Energies 17, no. 19: 4819. https://doi.org/10.3390/en17194819
APA StyleChowdhury, R., & Agarwal, V. (2024). Mathematical Models and Dynamic Global Warming Potential Calculation for Estimating the Role of Organic Amendment in Net-Zero Goal Achievement. Energies, 17(19), 4819. https://doi.org/10.3390/en17194819