The Energy Potential of Firewood and By-Products of Round Wood Processing—Economic and Technical Aspects
Abstract
:1. Introduction
An Overview of the Literature
2. Materials and Methods
- The determination of the type and quantity of raw wood harvested for energy in forests in Poland.
- The determination of the type and amount of biomass produced for energy by primary wood-processing plants.
- The determination of the energy potential of woody biomass obtained from the State Forests National Forest Holding and from the mechanical processing of raw wood.
- The determination of the economic potential of the woody biomass under analysis.
- The indication of the scale and possibilities of handling biomass in primary wood-processing plants.
3. Results
4. Discussion
5. Conclusions
- Each year, Polish sawmills generate over 6 million m3 of wood by-products processed to different extents. This value is similar to the declared resources of firewood and energy wood obtained directly from the State Forests National Forest Holding in Poland.
- The increase in prices of energy from conventional sources intensifies consumers’ attempts to use renewable sources to a greater extent, especially woody biomass.
- The potential percentage shares of heat and electricity generated from woody biomass, amounting to 13.72% and 9.33%, respectively, cannot be achieved, due to the actual use of part of the biomass. These values could be achieved by maximizing the use of by-products and waste generated in other industries of the wood sector and by using energy wood from plantations and recycled post-consumer wood.
- As shown by the results of the review of reference publications on meeting the demand for energy by the member-states of the European Union, the increase in the share of woody biomass is significantly correlated with the decrease in the share of fossil fuels. Therefore, an increase in the share of woody biomass in Poland may secure a significant part of the demand for energy in this country.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Juszczak, A.; Maj, M. Rozwój i Potencjał Energetyki Odnawialnej w Polsce. [Development and Potential of Renewable Energy in Poland]; Polski Instytut Ekonomiczny: Warszawa, Poland, 2020. [Google Scholar]
- E-magazyny.pl. Available online: https://e-magazyny.pl/aktualnosci/oze/eurostat-w-ue-juz-37-energii-pochodzi-z-odnawialnych-zrodel/ (accessed on 20 July 2024).
- Statistics Poland. Energy from Renewable Sources in 2022; GUS Statistics Poland: Warszawa, Poland, 2023; ISSN 1898-4347. Available online: https://stat.gov.pl/en/topics/environment-energy/energy/energy-from-renewable-sources-in-2022,3,15.html (accessed on 20 July 2024).
- Ritchie, H.; Rosado, P. Fossil Fuels. 2017. Available online: https://ourworldindata.org/fossil-fuels (accessed on 20 July 2024).
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129 Pt A, 457–472. [Google Scholar] [CrossRef]
- Ren21 Renewables. Report Global Status Report; Ren21: Paris, France, 2019; p. 336. Available online: https://www.ren21.net/reports/global-status-report/ (accessed on 11 June 2024).
- European Environment Agency. Share of Energy from Renewable Sources (nrg_ind_ren). Available online: https://www.eea.europa.eu/data-and-maps/data/external/share-of-energy-from-renewable-sources-1 (accessed on 11 June 2024).
- Mydlarz, K.; Wieruszewski, M. Economic, Technological as Well as Environmental and Social Aspects of Local Use of Wood By-Products Generated in Sawmills for Energy Purposes. Energies 2022, 15, 1337. [Google Scholar] [CrossRef]
- Stolarski, M.; Warmiński, M.; Krzyżaniak, M.; Olba-Zięty, E.; Akincza, M. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- Eurelectric Annual Report 2019. Available online: https://annualreport2019.eurelectric.org/ (accessed on 10 February 2024).
- Grzybek, A.; Gradziuk, P.; Kowalczyk, K. Słoma Energetyczne Paliwo. [Straw Energy Fuel]; Wydawnictwo Wieś Jutra Sp. z o.o.: Warszawa, Poland, 2001; p. 15. (In Polish) [Google Scholar]
- Eur-Lex. Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0944 (accessed on 10 October 2023).
- Lewandowski, W.M. Proekologiczne Odnawialne Źródła Energii; Wydawnictwo WNT: Warszawa, Poland, 2012; Volume 322, ISBN 9788363623579. (In Polish) [Google Scholar]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG (accessed on 22 February 2024).
- Chochowski, A.; Krawiec, F. Zarządzanie w Energetyce. Koncepcje, Zasoby, Strategie, Struktury, Procesy i Technologie Energetyki Odnawialnej. [Management in Energy. Concepts, Resources, Strategies, Structures, Processes, and Technologies of Renewable Energy]; Wydawnictwo Difin: Warszawa, Poland, 2008; pp. 80–83. ISBN 9788372518590. (In Polish) [Google Scholar]
- Directive 2019/944—Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU (Recast). Available online: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vkzda5zpqazl (accessed on 22 February 2024).
- Abbasi, T.; Abbasi, S.A. Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sustain. Energy Rev. 2010, 14, 919–937. [Google Scholar] [CrossRef]
- Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 Amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652. Available online: https://eur-lex.europa.eu/eli/dir/2023/2413/oj (accessed on 22 February 2024).
- McCormick, K.; Kautto, N. The bioeconomy in Europe: An Overview. Sustainability 2013, 5, 2589–2608. [Google Scholar] [CrossRef]
- Roszkowski, A. Bioenergia—Pola i lasy zastąpią węgiel, ropę i gaz? [Bioenergy-Fields and forests will replace coal, oil and gas?]. Inżynieria Rol. 2009, 13, 243–257. (In Polish) [Google Scholar]
- Leal-Arcas, R.; Akondo, N.; Rios, J.A. Energy Decentralization in the European Union. Georget. Environ. Law Rev. 2019, 32, 1042–1058. [Google Scholar]
- Sokólski, M.; Jankowski, K.J.; Załuski, D.; Szatkowski, A. Productivity, Energy and Economic Balance in the Production of Different Cultivars of Winter Oilseed Rape. A Case Study in North-Eastern Poland. Agronomy 2020, 10, 508. [Google Scholar] [CrossRef]
- Budzyński, W.S.; Jankowski, K.J.; Jarocki, M. An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland. Energy 2015, 90, 1272–1279. [Google Scholar] [CrossRef]
- Davis, S.C.; Anderson-Teixeira, K.J.; DeLucia, E.H. Life-cycle analysis and the ecology of biofuels. Trends Plant Sci. 2009, 14, 140–146. [Google Scholar] [CrossRef]
- Ajanovic, A. Biofuels versus food production: Does biofuels production increase food prices? Energy 2010, 36, 2070–2076. [Google Scholar] [CrossRef]
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 2008, 49, 2106–2116. [Google Scholar] [CrossRef]
- Keles, S.; Kar, T.; Bahadir, A.; Kaygusuz, K. Renewable energy from woody biomass in Turkey. J. Eng. Res. Appl. Sci. 2017, 6, 652–661. [Google Scholar]
- Bartosiewicz-Burczy, H. Ekonomika wykorzystania energii źródeł odnawialnych do produkcji energii elektrycznej. Energetyka 2002, 7, 458–463. (In Polish) [Google Scholar]
- Wyszomierski, R.; Bórawski, P.; Jankowski, K. Pozycja Polski w produkcji biomasy na tle innych krajów Unii Europejskiej. Roczniki Naukowe SERiA 2018, XX, 177–183. (In Polish) [Google Scholar] [CrossRef]
- Gostomczyk, W. Konkurencyjność odnawialnych źródeł energii. Rocz. Nauk. SERiA 2014, 16, 55–61. (In Polish) [Google Scholar]
- Górna, A.; Wieruszewski, M.; Szabelska-Beręsewicz, A.; Stanula, Z.; Adamowicz, K. Biomass Price Prediction Based on the Example of Poland. Forests 2022, 13, 2179. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Trociński, A.; Kawalerczyk, J. The effect of raw material selection on material efficiency indicators in large-sized roundwood processing. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar 2020, 19, 105–112. [Google Scholar] [CrossRef]
- Nosek, R.; Holubcik, M.; Jandacka, J. The impact of bark content of wood biomass on biofuel properties. BioResources 2016, 11, 44–53. [Google Scholar] [CrossRef]
- Konôpka, B.; Pajtík, J.; Šebeň, V.; Merganičová, K. Modeling Bark Thickness and Bark Biomass on Stems of Four Broadleaved Tree Species. Plants 2022, 11, 1148. [Google Scholar] [CrossRef]
- Urząd Regulacji Energetyki. Available online: https://www.ure.gov.pl/pl/urzad/informacje-ogolne/aktualnosci/5395,URE-za-stworzeniem-krajowego-systemu-weryfikacji-biomasy.html (accessed on 10 July 2024).
- Adamik, A.; Nowicki, M.; Puksas, A. Energy Oriented Concepts and Other SMART WORLD Trends as Game Changers of Co-Production—Reality or Future? Energies 2022, 15, 4112. [Google Scholar] [CrossRef]
- The European Commission’s Knowledge Centre for Bioeconomy. 2019. Available online: https://knowledge4policy.ec.europa.eu/sites/default/files/jrc114122_a0_infografica_bioeconomy_07-01-2019.pdf (accessed on 10 July 2024).
- Urząd Regulacji Energetyki. Available online: www.ure.gov.pl/pl/energia-elektryczna/ceny-wskazniki (accessed on 19 July 2024).
- European Union. Available online: www.europa.eu (accessed on 30 July 2024).
- Wieruszewski, M.; Górna, A.; Mydlarz, K.; Adamowicz, K. Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material. Energies 2022, 15, 4897. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Górna, A.; Stanula, Z.; Adamowicz, K. Energy Use of Woody Biomass in Poland: Its Resources and Harvesting Form. Energies 2022, 15, 6812. [Google Scholar] [CrossRef]
- GUS. Forestry 2017. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5510/1/13/1/lesnictwo_2017.pdf (accessed on 10 February 2024).
- GUS. Statistical Yearbook of Forestry 2018. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/en/defaultaktualnosci/3328/12/1/1/statistical_yearbook_of_forestry_2018.pdf (accessed on 10 February 2024).
- GUS. Statistical Yearbook of Forestry 2019. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/en/defaultaktualnosci/3328/12/2/1/statistical_yearbook_of_forestry_2019.pdf (accessed on 10 February 2024).
- GUS. Statistical Yearbook of Forestry 2021. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/en/defaultaktualnosci/3328/12/4/1/statistical_yearbook_of_forestry_2021.pdf (accessed on 10 February 2024).
- GUS. Statistical Yearbook of Forestry 2022. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/en/defaultaktualnosci/3328/12/5/1/statistical_yearbook_of_forestry_2022.pdf (accessed on 10 February 2024).
- Encyklopedia Lasy Polskie (Polish Forests Encyclopaedia). Available online: www.encyklopedia.lasypolskie.pl (accessed on 25 July 2024).
- Forest Land Balance. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/en/defaultaktualnosci/3322/3/4/1/forest_accounts_in_poland_in_2019.pdf (accessed on 11 January 2024).
- LP 2019—Report on the State of Forests in Poland 2019. Available online: www.bdl.lasy.gov.pl (accessed on 23 July 2024).
- National Forest Inventory (2019–2023) Download (Only Polish Language Version). Available online: https://www.bdl.lasy.gov.pl/portal/wisl-en (accessed on 23 October 2021).
- Tao, G.; Lestander, T.A.; Geladi, P.; Xiong, S. Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties. Renew. Sustain. Energy Rev. 2012, 16, 3481–3506. [Google Scholar] [CrossRef]
- Mirski, R.; Trociński, A.; Kawalerczyk, J.; Wieruszewski, M. Pine Logs Sorting as a Function of Bark Thickness. Forests 2021, 12, 893. [Google Scholar] [CrossRef]
- District Heating 2019—Challenges and Key Directions of Change. Available online: www.ure.gov.pl/pl/cieplo/energetyka-cieplna-w-l/9009,2019.html (accessed on 8 February 2024).
- Produkcja Energii Elektrycznej w Polsce. (Electricity Production in Poland). Available online: https://www.rynekelektryczny.pl/produkcja-energii-elektrycznej-w-polsce/ (accessed on 8 February 2024).
- Żuk, P.; Żuk, P. On the Socio-Cultural Determinants of Polish Entrepreneurs’ Attitudes towards the Development of Renewable Energy: Business, Climate Skepticism Ideology and Climate Change. Energies 2021, 14, 3418. [Google Scholar] [CrossRef]
- Nishiguchi, S.; Tabata, T. Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets. Renew. Sustain. Energy Rev. 2016, 57, 1279–1286. [Google Scholar] [CrossRef]
- Kumar, A.; Adamopoulos, S.; Jones, D.; Amiandamhen, S.O. Forest Biomass Availability and Utilization Potential in Sweden: A Review. Waste Biomass Valorization 2020, 12, 65–80. [Google Scholar] [CrossRef]
- European Commission. European Climate Pact. 2021. Available online: https://euromil.org/euromil-pledge-with-the-european-climate-pact/ (accessed on 2 August 2024).
- European Bank for Reconstruction and Development. Energy Sector Strategy 2019–2023 as Approved by Board of Directors at Their Meeting of 12 December 2018; European Bank for Reconstruction and Development: Strasburg, France, 2018; Available online: https://www.bing.com/search?q=European+Bank+for+Reconstruction+and+Development.+Energy+Sector+Strategy+2019%E2%80%932023+as+Approved+by+Board+of+Directors+at+Their+Meeting+of+12&qs=n&form=QBRE&sp=-1&lq=1&pq=european+bank+for+reconstruction+and+development.+energy+sector+strategy+2019%E2%80%932023+as+approved+by+board+of+directors+at+their+meeting+of+12&sc=0-139&sk=&cvid=86E018C90D6A43A8A2632D67B3632EDC&ghsh=0&ghacc=0&ghpl= (accessed on 11 June 2024).
- Rupasinghe, R.L.; Perera, P.; Bandara, R.; Amarasekera, H.; Vlosky, R. Insights into Properties of Biomass Energy Pellets Made from Mixtures of Woody and Non-Woody Biomass: A Meta-Analysis. Energies 2024, 17, 54. [Google Scholar] [CrossRef]
Type of Firewood | Calorific Value of Firewood [GJ/m3] | Volume of Harvested Firewood (Softwood and Hardwood)—Thousand m3 | Energy Potential of All Firewood Harvested in a Given Year [GJ] * | ||
---|---|---|---|---|---|
Annual Average —2010–2021 | Annual Average —2021 | Annual Average—2010–2021 | Annual Average—2021 | ||
Medium-sized softwood (S4) | 7.44 | 1599.33 | 1292 | 11,899.02 | 9612.48 |
Medium-sized hardwood (S4) | 10.00 | 1746.42 | 1557 | 17,464.20 | 15,570 |
Small-sized wood (softwood and hardwood together) (M1 and M2) | 8.00 | 1496.58 | 1407 | 11,972.64 | 11,256 |
Energy wood—softwood and hardwood (S2AP) * category since 2019 | 8.00 | 2448.33 | 2735 | 19,586.64 | 21,880 |
Total | 7290.66 | 6991 | 60,922.5 | 58,318.48 |
Types of By-Products | Volumes of By-Products [Thousand m3] | Energy Potentials of By-Products * [GJ] |
---|---|---|
Total by-products (40%) | 6606.3 | 31,462,411 |
Woodchips (18%) | 2573.1 | 13,131 |
Other piece waste (12%) | 2381.63 | 18,570,959 |
Sawdust and wood shavings (10%) | 1651.58 | 12,878,321 |
Bark (8%) | 1321.26 | 4,909,086 |
Total by-products + bark | 7927.56 | 36,371,497 |
Specifications | Heat | Electricity |
---|---|---|
Amount of energy generated in Poland | 425,100 TJ | 173.58 TWh |
Energy potential of the described woody biomass | 58,318.48 TJ | 16.2 TWh |
Potential percentage share of energy generated from the described woody biomass | 13.72% | 9.33% |
Value of energy potential (Polish zlotys—PLN) according to prices in 2021 | 2,631,329,817.6 PLN * | 4,504,896,000 PLN ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mydlarz, K.; Wieruszewski, M. The Energy Potential of Firewood and By-Products of Round Wood Processing—Economic and Technical Aspects. Energies 2024, 17, 4797. https://doi.org/10.3390/en17194797
Mydlarz K, Wieruszewski M. The Energy Potential of Firewood and By-Products of Round Wood Processing—Economic and Technical Aspects. Energies. 2024; 17(19):4797. https://doi.org/10.3390/en17194797
Chicago/Turabian StyleMydlarz, Katarzyna, and Marek Wieruszewski. 2024. "The Energy Potential of Firewood and By-Products of Round Wood Processing—Economic and Technical Aspects" Energies 17, no. 19: 4797. https://doi.org/10.3390/en17194797
APA StyleMydlarz, K., & Wieruszewski, M. (2024). The Energy Potential of Firewood and By-Products of Round Wood Processing—Economic and Technical Aspects. Energies, 17(19), 4797. https://doi.org/10.3390/en17194797