Effect of Meteorological Variables on Energy Demand in the Northeast and Southeast Regions of Brazil
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Temperature
3.2. Precipitation
3.3. Relative Humidity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC Climate Change. The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Chen, Y., Goldfarb, L., Gomis, L.I., Matthews, J.B.R., Berger, S., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Rocha, R.P.; Reboita, M.S.; Crespo, N.M. Analysis of the extreme precipitation event that occurred in Rio Grande do Sul between april and may 2024. J. Health NPEPS 2024, 9, e12603. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Jimenez, J.C.; Marengo, J.A.; Chongart, J.; Ronchail, J.; Lavado-Casimiro, W.; Ribeiro, J.V. The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features. Sci. Rep. 2024, 14, 8107. [Google Scholar] [CrossRef] [PubMed]
- Operador Nacional do Sistema Elétrico—O.N.S. 19/01/2015. Available online: https://sdro.ons.org.br/SDRO/DIARIO/index.htm (accessed on 2 February 2023).
- Almeida, P.M. Influência da Ventilação Natural na Sensação Térmica do Usuário em Ambiente Educacional. Master’s Thesis, Universidade Federal do Espírito Santos, Vitória, ES, Brasil, 2019. (In Portuguese). [Google Scholar]
- De Vecchi, R.; Candido, C.; Lamberts, R. Thermal history and its influence on occupants’ thermal acceptability and cooling preferences in warm-humid climates: A new desire for comfort? In Proceedings of the 7th Windsor Conference: The Changing Context of Comfort in an Unpredictable World, Windsor, UK, 12–15 April 2012. [Google Scholar]
- Sarduy, J.R.G.; Di Santo, K.G.; Saidel, M.A. Linear and non-linear methods for prediction of peak load at University of São Paulo. Measurement 2016, 78, 187–201. [Google Scholar] [CrossRef]
- OrtizBeviá, M.J.; RuizdeElvira, A.; Alvarez-García, F.J. The influence of meteorological variability on the mid-term evolution of the electricity load. Energy 2014, 76, 850–856. [Google Scholar] [CrossRef]
- Shaik, S.; Yeboah, O. Does climate influence energy demand? A regional analysis. Appl. Energy 2018, 212, 691–703. [Google Scholar] [CrossRef]
- Shaik, S. Contribution of climate change to sector-source energy demand. Energy 2024, 294, 130777. [Google Scholar] [CrossRef]
- Cabral, J.A.; Legey, L.F.L.; Cabral, M.V.F. Electricity consumption forecasting in Brazil: A spatial econometrics approach. Energy 2017, 126, 124–131. [Google Scholar] [CrossRef]
- Zuin, G.; Buechler, R.; Sun, T.; Zanocco, C.; Galuppo, F.; Veloso, A.; Rajagopal, R. Extreme event counterfactual analysis of electricity consumption in Brazil: Historical impacts and future outlook under climate change. Energy 2023, 281, 128101. [Google Scholar] [CrossRef]
- Behmiri, N.B.; Fezzi, C.; Ravazzolo, F. Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks. Energy 2023, 278, 127831. [Google Scholar] [CrossRef]
- Rozante, J.R.; Ramirez, E.; Fernandes, A.A. A newly developed South American Mapping of Temperature with estimated lapse rate corrections. Int. J. Climatol. 2022, 42, 2135–2152. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Xavier, A.C.; Scanlon, B.R.; King, C.W.; Alves, A.I. New improved Brazilian daily weather gridded data (1961–2020). Int. J. Climatol. 2022, 42, 8390–8404. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Elsevier: Amsterdam, The Netherlands, 2019; p. 840. [Google Scholar]
- Le, N.D.; Zidek, J.V. Statistical Analysis of Environmental Space-Time Processes; Springer: New York, NY, USA, 2006. [Google Scholar]
- Leite, N.H.; Lascano, C.P.Z.; Morais, H.G.V.; Silva, L.C.P. Impact of net-metering on solar photovoltaic investments for residential scale: A case study in Brazil. Renew. Energy 2024, 231, 120788. [Google Scholar] [CrossRef]
- Pousa, R.; Costa, M.H.; Pimenta, F.M.; Fontes, V.C.; Brito, V.F.A.; Castro, M. Climate Change and Intense Irrigation Growth in Western Bahia, Brazil: The Urgent Need Hydroclimat Monitoring. Water 2019, 11, 933. [Google Scholar] [CrossRef]
- Silva, W.L.; Oscar-Júnior, A.C.; Cavalcanti, I.F.A.; Treistman, F. An overview of precipitation climatology in Brazil: Space-time variability of frequency and intensity associated with atmospheric systems. Hydrol. Sci. J. 2021, 66, 289–308. [Google Scholar] [CrossRef]
Stations | Concession | Consumer | Acronym | Period |
---|---|---|---|---|
Asa Branca, BA | Neoenergia Coelba | 81% Res | ASB | Mar. 2019 to Nov. 2023 |
Barreiras Norte, BA | Neoenergia Coelba | 79% Res | BRN | Jan. 2011 to Nov. 2023 |
Lobato, BA | Neoenergia Coelba | 79% Res | LBT | Jan. 2016 to Nov. 2023 |
Rio Guará, BA | Neoenergia Coelba | 73% Rur | RGA | Nov. 2015 to Nov. 2023 |
Formoso, BA | Neoenergia Coelba | 65% Rur | FRM | Nov. 2015 to Nov. 2023 |
América Dourada II, BA | Neoenergia Coelba | 46% Rur | ADD | Jan. 2017 to Nov. 2023 |
Andradina, SP | Neoenergia Elektro | 66% Res | ANR | Aug. 2010 to Nov. 2023 |
Francisco Morato, SP | Neoenergia Elektro | 87% Res | FRM | Aug. 2010 to Nov. 2023 |
Ubatuba I, SP | Neoenergia Elektro | 74% Res | UBA2 | Aug. 2010 to Nov. 2023 |
Pau Amarelo, PE | Neoenergia PE | 85% Res | PAM | Dec. 2015 to Nov. 2023 |
Don Avelar, PE | Neoenergia PE | 84% Res | DAV | Dec. 2015 to Nov. 2023 |
Campus, PE | Neoenergia PE | 81% Res | CPS | Dec. 2015 to Nov. 2023 |
Jiqui, RN | Neoenergia Cosern | 77% Res | JQI | Jan. 2016 to Nov. 2023 |
Mossoró III, RN | Neoenergia Cosern | 74% Res | MST | Jan. 2016 to Nov. 2023 |
Natal RN | Neoenergia Cosern | 74% Res | NTU | Jan. 2014 to Dec. 2018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, H.B.; Herdies, D.L.; Santos, L.F.d.; Hackerott, J.A.; Herdies, B.R.; Silva, F.D.d.S.; Silva, M.C.L.d.; de Quadro, M.F.L.; Semolini, R.; Cortez, A.; et al. Effect of Meteorological Variables on Energy Demand in the Northeast and Southeast Regions of Brazil. Energies 2024, 17, 4776. https://doi.org/10.3390/en17194776
Gomes HB, Herdies DL, Santos LFd, Hackerott JA, Herdies BR, Silva FDdS, Silva MCLd, de Quadro MFL, Semolini R, Cortez A, et al. Effect of Meteorological Variables on Energy Demand in the Northeast and Southeast Regions of Brazil. Energies. 2024; 17(19):4776. https://doi.org/10.3390/en17194776
Chicago/Turabian StyleGomes, Helber Barros, Dirceu Luís Herdies, Luiz Fernando dos Santos, João Augusto Hackerott, Bruno Ribeiro Herdies, Fabrício Daniel dos Santos Silva, Maria Cristina Lemos da Silva, Mario Francisco Leal de Quadro, Robinson Semolini, Amanda Cortez, and et al. 2024. "Effect of Meteorological Variables on Energy Demand in the Northeast and Southeast Regions of Brazil" Energies 17, no. 19: 4776. https://doi.org/10.3390/en17194776
APA StyleGomes, H. B., Herdies, D. L., Santos, L. F. d., Hackerott, J. A., Herdies, B. R., Silva, F. D. d. S., Silva, M. C. L. d., de Quadro, M. F. L., Semolini, R., Cortez, A., Schatz, B., Cerqueira, B. D., & Moura Junior, D. H. (2024). Effect of Meteorological Variables on Energy Demand in the Northeast and Southeast Regions of Brazil. Energies, 17(19), 4776. https://doi.org/10.3390/en17194776