Fault Diagnosis for Motor Bearings via an Intelligent Strategy Combined with Signal Reconstruction and Deep Learning
Abstract
:1. Introduction
2. Experimental Platform and Data Description
3. Signal Decomposition and Feature Extraction Model
3.1. Signal Reconstruction Method Based on ICEEMDAN and VMD
- Step I. Acquisition of high-frequency characteristics of signals
- Step II. Acquisition of high-frequency characteristics of signals
3.2. Fault Feature Extraction Method Based on Improved Information Entropy (IIE)
4. Fault Diagnosis Model Based on Data-Driven and Deep Learning
4.1. MSCNN-BiLSTM-Based Fault Diagnosis Model Integrating an Attention Mechanism
4.2. Computation Scheme and Parameter Values
5. Verification for Fault Diagnosis
5.1. Diagnosis Results Analysis
5.2. Comparison of Fault Diagnosis Accuracy via Different Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Z.X.; Wang, Y.; Ge, M.F.; Liu, J. Data-Driven Fault Diagnosis Method Based on Compressed Sensing and Improved Multi-Scale Network. IEEE Trans. Ind. Electron. 2020, 67, 3216–3225. [Google Scholar] [CrossRef]
- Shao, H.D.; Xia, M.; Han, G.J.; Zhang, Y.; Wan, J. Intelligent Fault Diagnosis of Rotor-Bearing System under Varying Working Conditions with Modified Transfer CNN and Thermal Images. IEEE Trans. Ind. Inform. 2021, 17, 3488–3496. [Google Scholar] [CrossRef]
- Knap, P.; Lalik, K.; Balazy, P. Boosted Convolutional Neural Network Algorithm for the Classification of the Bearing Fault from 1-D Raw Sensor Data. Sensors 2023, 23, 4295. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.K.; Yao, Y.C.; Wang, Y.; Yang, X.; Zhao, X.; Geng, D.; Li, Y.; Liu, L. A Modal Frequency Estimation Method of Non-Stationary Signal under Mass Time-Varying Condition Based on EMD Algorithm. Appl. Sci. 2022, 12, 8187. [Google Scholar] [CrossRef]
- Guo, M.F.; Zeng, X.D.; Chen, D.Y.; Yang, N.C. Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems. IEEE Sens. J. 2017, 18, 1291–1300. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, A.; Wang, Z.; Li, J.; Zhao, H.; Yang, X. Wind Power Prediction Based on EMD-KPCA-BiLSTM-ATT Model. Energies 2024, 17, 2568. [Google Scholar] [CrossRef]
- Wang, D.; Li, S.; Fu, X. Short-Term Power Load Forecasting Based on Secondary Cleaning and CNN-BILSTM-Attention. Energies 2024, 17, 4142. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Zhang, X.; Yang, Z.; Yao, J. Carbon Price Forecasting Using Optimized Sliding Window Empirical Wavelet Transform and Gated Recurrent Unit Network to Mitigate Data Leakage. Energies 2024, 17, 4358. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. Math. Phys. Eng. Sci. 1998, 903, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Konstantin, D.; Dominique, Z. Variational Mode Decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar]
- Li, Z.; Chen, J.; Zi, Y.; Pan, J. Independence-Oriented VMD to Identify Fault Feature for Wheel Set Bearing Fault Diagnosis of High-Speed Locomotive. Mech. Syst. Signal Process. 2017, 85, 512–529. [Google Scholar] [CrossRef]
- Ding, L.; Guo, H.; Bian, L. Convolutional Neural Networks Based on Resonance Demodulation of Vibration Signal for Rolling Bearing Fault Diagnosis in Permanent Magnet Synchronous Motors. Energies 2024, 17, 4334. [Google Scholar] [CrossRef]
- Tama, B.A.; Vania, M.; Lee, S.; Lim, S. Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals. Artif. Intell. Rev. 2023, 56, 4667–4709. [Google Scholar] [CrossRef]
- Chen, X.H.; Yang, R.; Xue, Y.H.; Huang, M.; Ferrero, R.; Wang, Z. Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016. IEEE Trans. Instrum. Meas. 2023, 72, 3508221. [Google Scholar] [CrossRef]
- Qiao, M.Y.; Yan, S.H.; Tang, X.X.; Xu, C. Deep Convolutional and LSTM Recurrent Neural Networks for Rolling Bearing Fault Diagnosis under Strong Noises and Variable Loads. IEEE Access 2020, 8, 66257–66269. [Google Scholar] [CrossRef]
- Hao, S.J.; Ge, F.X.; Li, Y.M.; Jiang, J. Multisensor Bearing Fault Diagnosis Based on One-Dimensional Convolutional Long Short-Term Memory Networks. Measurement 2020, 159, 107802. [Google Scholar] [CrossRef]
- Guo, Y.R.; Mao, J.; Zhao, M. Rolling Bearing Fault Diagnosis Method Based on Attention CNN and BiLSTM Network. Neural Process. Lett. 2023, 55, 3377–3410. [Google Scholar] [CrossRef]
- Case Western Reserve University Bearing Data Center Website. 2013. Available online: https://engineering.case.edu/bearingdatacenter/ (accessed on 31 January 2023).
- Li, Z.W.; Xu, H.Y.; Jiang, B.B.; Han, F. Wavelet Threshold Ultrasound Echo Signal Denoising Algorithm Based on CEEMDAN. Electronics 2023, 12, 3026. [Google Scholar] [CrossRef]
- Pan, H.; Badawi, D.; Bassi, I.; Ozev, S.; Cetin, A.E. Detecting Anomaly in Chemical Sensors via L1-Kernel-Based Principal Component Analysis. IEEE Sens. Lett. 2022, 6, 7004304. [Google Scholar] [CrossRef]
- Zivieri, R. Magnetic Skyrmions as Information Entropy Carriers. IEEE Trans. Magn. 2022, 58, 1500105. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, K.; Zhu, G.; Li, Z.; Li, Y.; Meng, P.; Xu, Y.; Lu, L. A Partial Discharge Signal Separation Method Applicable for Various Sensors Based on Time–Frequency Feature Extraction of t-SNE. IEEE Trans. Instrum. Meas. 2024, 73, 3505609. [Google Scholar] [CrossRef]
Dataset | Training Set | Test Set | Verification Set | State |
---|---|---|---|---|
Φ1/Φ2/Φ3/Φ4 | 175 | 50 | 25 | HEA |
175 | 50 | 25 | IRF | |
175 | 50 | 25 | ORF | |
175 | 50 | 25 | REF | |
Total | 2800 | 800 | 400 |
Parameters used in ICCEMDAN | |||
Number of IMFs | STD of added noise | Ensemble members | Window length |
5 | 2% | 30 | 1/4 |
Parameters used in VMD | |||
Number of IMFs | Penalty factor | Convergence threshold | Iterations |
7 | 10 | 1 × 10−6 | 50 |
Parameters used in MSCNN-BiLSTM | |||
Minimum batch size | Iterations | Learning rate | Solver |
64 | 50 | 0.006 | “adam” |
Number of states | Gradient threshold | Learning rate decline cycle | Learning rate decline factor |
4 | 1 | 20 | 0.25 |
HEA | IRF | ORF | REF | |
---|---|---|---|---|
Number | 89 | 104 | 101 | 106 |
Labeled as | 1 | 2 | 3 | 4 |
Reported Model | ICEEMEDAN-VMD-IIE-CNN | VMD-IIE-CNN-BiLSTM | ICEEMDAN-IIE-CNN-BiLSTM | |
---|---|---|---|---|
Accuracy | 99.25% | 95.75% | 82% | 85% |
No. | Signal Reconstruction | Feature Selection | Classifier | Accuracy |
---|---|---|---|---|
1 | ICEEMEDAN-VMD | IIE | MSCNN-BiLSTM | 99.25% |
2 | ICEEMEDAN-VMD | IIE | CNN | 82% |
3 | ICEEMDAN | IIE | CNN-BiLSTM | 85% |
4 | ICEEMEDAN-VMD | × | MSCNN-BiLSTM | 86.5% |
5 | ICEEMEDAN-VMD | IIE | SVM | 93.75% |
6 | ICEEMEDAN-VMD | IIE | GRNN | 95.25% |
7 | ICEEMEDAN-VMD | IIE | DPRNN | 96.5% |
8 | ICEEMEDAN | IIE | DPRNN | 86.25% |
9 | VMD | IIE | DPRNN | 84.75% |
10 | ICEEMEDAN-VMD | × | DPRNN | 88.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Fan, N.; Peng, X.; Zhang, C.; Li, M.; Yang, X.; Ma, L. Fault Diagnosis for Motor Bearings via an Intelligent Strategy Combined with Signal Reconstruction and Deep Learning. Energies 2024, 17, 4773. https://doi.org/10.3390/en17194773
Li W, Fan N, Peng X, Zhang C, Li M, Yang X, Ma L. Fault Diagnosis for Motor Bearings via an Intelligent Strategy Combined with Signal Reconstruction and Deep Learning. Energies. 2024; 17(19):4773. https://doi.org/10.3390/en17194773
Chicago/Turabian StyleLi, Weiguo, Naiyuan Fan, Xiang Peng, Changhong Zhang, Mingyang Li, Xu Yang, and Lijuan Ma. 2024. "Fault Diagnosis for Motor Bearings via an Intelligent Strategy Combined with Signal Reconstruction and Deep Learning" Energies 17, no. 19: 4773. https://doi.org/10.3390/en17194773
APA StyleLi, W., Fan, N., Peng, X., Zhang, C., Li, M., Yang, X., & Ma, L. (2024). Fault Diagnosis for Motor Bearings via an Intelligent Strategy Combined with Signal Reconstruction and Deep Learning. Energies, 17(19), 4773. https://doi.org/10.3390/en17194773